| Step | Hyp | Ref
 | Expression | 
| 1 |   | caoftrn.5 | 
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝑅𝑦 ∧ 𝑦𝑇𝑧) → 𝑥𝑈𝑧)) | 
| 2 | 1 | ralrimivvva 2580 | 
. . . . 5
⊢ (𝜑 → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ((𝑥𝑅𝑦 ∧ 𝑦𝑇𝑧) → 𝑥𝑈𝑧)) | 
| 3 | 2 | adantr 276 | 
. . . 4
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ((𝑥𝑅𝑦 ∧ 𝑦𝑇𝑧) → 𝑥𝑈𝑧)) | 
| 4 |   | caofref.2 | 
. . . . . 6
⊢ (𝜑 → 𝐹:𝐴⟶𝑆) | 
| 5 | 4 | ffvelcdmda 5697 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐹‘𝑤) ∈ 𝑆) | 
| 6 |   | caofcom.3 | 
. . . . . 6
⊢ (𝜑 → 𝐺:𝐴⟶𝑆) | 
| 7 | 6 | ffvelcdmda 5697 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐺‘𝑤) ∈ 𝑆) | 
| 8 |   | caofass.4 | 
. . . . . 6
⊢ (𝜑 → 𝐻:𝐴⟶𝑆) | 
| 9 | 8 | ffvelcdmda 5697 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐻‘𝑤) ∈ 𝑆) | 
| 10 |   | breq1 4036 | 
. . . . . . . 8
⊢ (𝑥 = (𝐹‘𝑤) → (𝑥𝑅𝑦 ↔ (𝐹‘𝑤)𝑅𝑦)) | 
| 11 | 10 | anbi1d 465 | 
. . . . . . 7
⊢ (𝑥 = (𝐹‘𝑤) → ((𝑥𝑅𝑦 ∧ 𝑦𝑇𝑧) ↔ ((𝐹‘𝑤)𝑅𝑦 ∧ 𝑦𝑇𝑧))) | 
| 12 |   | breq1 4036 | 
. . . . . . 7
⊢ (𝑥 = (𝐹‘𝑤) → (𝑥𝑈𝑧 ↔ (𝐹‘𝑤)𝑈𝑧)) | 
| 13 | 11, 12 | imbi12d 234 | 
. . . . . 6
⊢ (𝑥 = (𝐹‘𝑤) → (((𝑥𝑅𝑦 ∧ 𝑦𝑇𝑧) → 𝑥𝑈𝑧) ↔ (((𝐹‘𝑤)𝑅𝑦 ∧ 𝑦𝑇𝑧) → (𝐹‘𝑤)𝑈𝑧))) | 
| 14 |   | breq2 4037 | 
. . . . . . . 8
⊢ (𝑦 = (𝐺‘𝑤) → ((𝐹‘𝑤)𝑅𝑦 ↔ (𝐹‘𝑤)𝑅(𝐺‘𝑤))) | 
| 15 |   | breq1 4036 | 
. . . . . . . 8
⊢ (𝑦 = (𝐺‘𝑤) → (𝑦𝑇𝑧 ↔ (𝐺‘𝑤)𝑇𝑧)) | 
| 16 | 14, 15 | anbi12d 473 | 
. . . . . . 7
⊢ (𝑦 = (𝐺‘𝑤) → (((𝐹‘𝑤)𝑅𝑦 ∧ 𝑦𝑇𝑧) ↔ ((𝐹‘𝑤)𝑅(𝐺‘𝑤) ∧ (𝐺‘𝑤)𝑇𝑧))) | 
| 17 | 16 | imbi1d 231 | 
. . . . . 6
⊢ (𝑦 = (𝐺‘𝑤) → ((((𝐹‘𝑤)𝑅𝑦 ∧ 𝑦𝑇𝑧) → (𝐹‘𝑤)𝑈𝑧) ↔ (((𝐹‘𝑤)𝑅(𝐺‘𝑤) ∧ (𝐺‘𝑤)𝑇𝑧) → (𝐹‘𝑤)𝑈𝑧))) | 
| 18 |   | breq2 4037 | 
. . . . . . . 8
⊢ (𝑧 = (𝐻‘𝑤) → ((𝐺‘𝑤)𝑇𝑧 ↔ (𝐺‘𝑤)𝑇(𝐻‘𝑤))) | 
| 19 | 18 | anbi2d 464 | 
. . . . . . 7
⊢ (𝑧 = (𝐻‘𝑤) → (((𝐹‘𝑤)𝑅(𝐺‘𝑤) ∧ (𝐺‘𝑤)𝑇𝑧) ↔ ((𝐹‘𝑤)𝑅(𝐺‘𝑤) ∧ (𝐺‘𝑤)𝑇(𝐻‘𝑤)))) | 
| 20 |   | breq2 4037 | 
. . . . . . 7
⊢ (𝑧 = (𝐻‘𝑤) → ((𝐹‘𝑤)𝑈𝑧 ↔ (𝐹‘𝑤)𝑈(𝐻‘𝑤))) | 
| 21 | 19, 20 | imbi12d 234 | 
. . . . . 6
⊢ (𝑧 = (𝐻‘𝑤) → ((((𝐹‘𝑤)𝑅(𝐺‘𝑤) ∧ (𝐺‘𝑤)𝑇𝑧) → (𝐹‘𝑤)𝑈𝑧) ↔ (((𝐹‘𝑤)𝑅(𝐺‘𝑤) ∧ (𝐺‘𝑤)𝑇(𝐻‘𝑤)) → (𝐹‘𝑤)𝑈(𝐻‘𝑤)))) | 
| 22 | 13, 17, 21 | rspc3v 2884 | 
. . . . 5
⊢ (((𝐹‘𝑤) ∈ 𝑆 ∧ (𝐺‘𝑤) ∈ 𝑆 ∧ (𝐻‘𝑤) ∈ 𝑆) → (∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ((𝑥𝑅𝑦 ∧ 𝑦𝑇𝑧) → 𝑥𝑈𝑧) → (((𝐹‘𝑤)𝑅(𝐺‘𝑤) ∧ (𝐺‘𝑤)𝑇(𝐻‘𝑤)) → (𝐹‘𝑤)𝑈(𝐻‘𝑤)))) | 
| 23 | 5, 7, 9, 22 | syl3anc 1249 | 
. . . 4
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ((𝑥𝑅𝑦 ∧ 𝑦𝑇𝑧) → 𝑥𝑈𝑧) → (((𝐹‘𝑤)𝑅(𝐺‘𝑤) ∧ (𝐺‘𝑤)𝑇(𝐻‘𝑤)) → (𝐹‘𝑤)𝑈(𝐻‘𝑤)))) | 
| 24 | 3, 23 | mpd 13 | 
. . 3
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (((𝐹‘𝑤)𝑅(𝐺‘𝑤) ∧ (𝐺‘𝑤)𝑇(𝐻‘𝑤)) → (𝐹‘𝑤)𝑈(𝐻‘𝑤))) | 
| 25 | 24 | ralimdva 2564 | 
. 2
⊢ (𝜑 → (∀𝑤 ∈ 𝐴 ((𝐹‘𝑤)𝑅(𝐺‘𝑤) ∧ (𝐺‘𝑤)𝑇(𝐻‘𝑤)) → ∀𝑤 ∈ 𝐴 (𝐹‘𝑤)𝑈(𝐻‘𝑤))) | 
| 26 |   | ffn 5407 | 
. . . . . 6
⊢ (𝐹:𝐴⟶𝑆 → 𝐹 Fn 𝐴) | 
| 27 | 4, 26 | syl 14 | 
. . . . 5
⊢ (𝜑 → 𝐹 Fn 𝐴) | 
| 28 |   | ffn 5407 | 
. . . . . 6
⊢ (𝐺:𝐴⟶𝑆 → 𝐺 Fn 𝐴) | 
| 29 | 6, 28 | syl 14 | 
. . . . 5
⊢ (𝜑 → 𝐺 Fn 𝐴) | 
| 30 |   | caofref.1 | 
. . . . 5
⊢ (𝜑 → 𝐴 ∈ 𝑉) | 
| 31 |   | inidm 3372 | 
. . . . 5
⊢ (𝐴 ∩ 𝐴) = 𝐴 | 
| 32 |   | eqidd 2197 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐹‘𝑤) = (𝐹‘𝑤)) | 
| 33 |   | eqidd 2197 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐺‘𝑤) = (𝐺‘𝑤)) | 
| 34 | 27, 29, 30, 30, 31, 32, 33 | ofrfval 6144 | 
. . . 4
⊢ (𝜑 → (𝐹 ∘𝑟 𝑅𝐺 ↔ ∀𝑤 ∈ 𝐴 (𝐹‘𝑤)𝑅(𝐺‘𝑤))) | 
| 35 |   | ffn 5407 | 
. . . . . 6
⊢ (𝐻:𝐴⟶𝑆 → 𝐻 Fn 𝐴) | 
| 36 | 8, 35 | syl 14 | 
. . . . 5
⊢ (𝜑 → 𝐻 Fn 𝐴) | 
| 37 |   | eqidd 2197 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐻‘𝑤) = (𝐻‘𝑤)) | 
| 38 | 29, 36, 30, 30, 31, 33, 37 | ofrfval 6144 | 
. . . 4
⊢ (𝜑 → (𝐺 ∘𝑟 𝑇𝐻 ↔ ∀𝑤 ∈ 𝐴 (𝐺‘𝑤)𝑇(𝐻‘𝑤))) | 
| 39 | 34, 38 | anbi12d 473 | 
. . 3
⊢ (𝜑 → ((𝐹 ∘𝑟 𝑅𝐺 ∧ 𝐺 ∘𝑟 𝑇𝐻) ↔ (∀𝑤 ∈ 𝐴 (𝐹‘𝑤)𝑅(𝐺‘𝑤) ∧ ∀𝑤 ∈ 𝐴 (𝐺‘𝑤)𝑇(𝐻‘𝑤)))) | 
| 40 |   | r19.26 2623 | 
. . 3
⊢
(∀𝑤 ∈
𝐴 ((𝐹‘𝑤)𝑅(𝐺‘𝑤) ∧ (𝐺‘𝑤)𝑇(𝐻‘𝑤)) ↔ (∀𝑤 ∈ 𝐴 (𝐹‘𝑤)𝑅(𝐺‘𝑤) ∧ ∀𝑤 ∈ 𝐴 (𝐺‘𝑤)𝑇(𝐻‘𝑤))) | 
| 41 | 39, 40 | bitr4di 198 | 
. 2
⊢ (𝜑 → ((𝐹 ∘𝑟 𝑅𝐺 ∧ 𝐺 ∘𝑟 𝑇𝐻) ↔ ∀𝑤 ∈ 𝐴 ((𝐹‘𝑤)𝑅(𝐺‘𝑤) ∧ (𝐺‘𝑤)𝑇(𝐻‘𝑤)))) | 
| 42 | 27, 36, 30, 30, 31, 32, 37 | ofrfval 6144 | 
. 2
⊢ (𝜑 → (𝐹 ∘𝑟 𝑈𝐻 ↔ ∀𝑤 ∈ 𝐴 (𝐹‘𝑤)𝑈(𝐻‘𝑤))) | 
| 43 | 25, 41, 42 | 3imtr4d 203 | 
1
⊢ (𝜑 → ((𝐹 ∘𝑟 𝑅𝐺 ∧ 𝐺 ∘𝑟 𝑇𝐻) → 𝐹 ∘𝑟 𝑈𝐻)) |