ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caoftrn GIF version

Theorem caoftrn 6102
Description: Transfer a transitivity law to the function relation. (Contributed by Mario Carneiro, 28-Jul-2014.)
Hypotheses
Ref Expression
caofref.1 (𝜑𝐴𝑉)
caofref.2 (𝜑𝐹:𝐴𝑆)
caofcom.3 (𝜑𝐺:𝐴𝑆)
caofass.4 (𝜑𝐻:𝐴𝑆)
caoftrn.5 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥𝑅𝑦𝑦𝑇𝑧) → 𝑥𝑈𝑧))
Assertion
Ref Expression
caoftrn (𝜑 → ((𝐹𝑟 𝑅𝐺𝐺𝑟 𝑇𝐻) → 𝐹𝑟 𝑈𝐻))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐹   𝑥,𝐺,𝑦,𝑧   𝑥,𝐻,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝑥,𝑇,𝑦,𝑧   𝑥,𝑈,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧)   𝑉(𝑥,𝑦,𝑧)

Proof of Theorem caoftrn
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 caoftrn.5 . . . . . 6 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥𝑅𝑦𝑦𝑇𝑧) → 𝑥𝑈𝑧))
21ralrimivvva 2560 . . . . 5 (𝜑 → ∀𝑥𝑆𝑦𝑆𝑧𝑆 ((𝑥𝑅𝑦𝑦𝑇𝑧) → 𝑥𝑈𝑧))
32adantr 276 . . . 4 ((𝜑𝑤𝐴) → ∀𝑥𝑆𝑦𝑆𝑧𝑆 ((𝑥𝑅𝑦𝑦𝑇𝑧) → 𝑥𝑈𝑧))
4 caofref.2 . . . . . 6 (𝜑𝐹:𝐴𝑆)
54ffvelcdmda 5647 . . . . 5 ((𝜑𝑤𝐴) → (𝐹𝑤) ∈ 𝑆)
6 caofcom.3 . . . . . 6 (𝜑𝐺:𝐴𝑆)
76ffvelcdmda 5647 . . . . 5 ((𝜑𝑤𝐴) → (𝐺𝑤) ∈ 𝑆)
8 caofass.4 . . . . . 6 (𝜑𝐻:𝐴𝑆)
98ffvelcdmda 5647 . . . . 5 ((𝜑𝑤𝐴) → (𝐻𝑤) ∈ 𝑆)
10 breq1 4003 . . . . . . . 8 (𝑥 = (𝐹𝑤) → (𝑥𝑅𝑦 ↔ (𝐹𝑤)𝑅𝑦))
1110anbi1d 465 . . . . . . 7 (𝑥 = (𝐹𝑤) → ((𝑥𝑅𝑦𝑦𝑇𝑧) ↔ ((𝐹𝑤)𝑅𝑦𝑦𝑇𝑧)))
12 breq1 4003 . . . . . . 7 (𝑥 = (𝐹𝑤) → (𝑥𝑈𝑧 ↔ (𝐹𝑤)𝑈𝑧))
1311, 12imbi12d 234 . . . . . 6 (𝑥 = (𝐹𝑤) → (((𝑥𝑅𝑦𝑦𝑇𝑧) → 𝑥𝑈𝑧) ↔ (((𝐹𝑤)𝑅𝑦𝑦𝑇𝑧) → (𝐹𝑤)𝑈𝑧)))
14 breq2 4004 . . . . . . . 8 (𝑦 = (𝐺𝑤) → ((𝐹𝑤)𝑅𝑦 ↔ (𝐹𝑤)𝑅(𝐺𝑤)))
15 breq1 4003 . . . . . . . 8 (𝑦 = (𝐺𝑤) → (𝑦𝑇𝑧 ↔ (𝐺𝑤)𝑇𝑧))
1614, 15anbi12d 473 . . . . . . 7 (𝑦 = (𝐺𝑤) → (((𝐹𝑤)𝑅𝑦𝑦𝑇𝑧) ↔ ((𝐹𝑤)𝑅(𝐺𝑤) ∧ (𝐺𝑤)𝑇𝑧)))
1716imbi1d 231 . . . . . 6 (𝑦 = (𝐺𝑤) → ((((𝐹𝑤)𝑅𝑦𝑦𝑇𝑧) → (𝐹𝑤)𝑈𝑧) ↔ (((𝐹𝑤)𝑅(𝐺𝑤) ∧ (𝐺𝑤)𝑇𝑧) → (𝐹𝑤)𝑈𝑧)))
18 breq2 4004 . . . . . . . 8 (𝑧 = (𝐻𝑤) → ((𝐺𝑤)𝑇𝑧 ↔ (𝐺𝑤)𝑇(𝐻𝑤)))
1918anbi2d 464 . . . . . . 7 (𝑧 = (𝐻𝑤) → (((𝐹𝑤)𝑅(𝐺𝑤) ∧ (𝐺𝑤)𝑇𝑧) ↔ ((𝐹𝑤)𝑅(𝐺𝑤) ∧ (𝐺𝑤)𝑇(𝐻𝑤))))
20 breq2 4004 . . . . . . 7 (𝑧 = (𝐻𝑤) → ((𝐹𝑤)𝑈𝑧 ↔ (𝐹𝑤)𝑈(𝐻𝑤)))
2119, 20imbi12d 234 . . . . . 6 (𝑧 = (𝐻𝑤) → ((((𝐹𝑤)𝑅(𝐺𝑤) ∧ (𝐺𝑤)𝑇𝑧) → (𝐹𝑤)𝑈𝑧) ↔ (((𝐹𝑤)𝑅(𝐺𝑤) ∧ (𝐺𝑤)𝑇(𝐻𝑤)) → (𝐹𝑤)𝑈(𝐻𝑤))))
2213, 17, 21rspc3v 2857 . . . . 5 (((𝐹𝑤) ∈ 𝑆 ∧ (𝐺𝑤) ∈ 𝑆 ∧ (𝐻𝑤) ∈ 𝑆) → (∀𝑥𝑆𝑦𝑆𝑧𝑆 ((𝑥𝑅𝑦𝑦𝑇𝑧) → 𝑥𝑈𝑧) → (((𝐹𝑤)𝑅(𝐺𝑤) ∧ (𝐺𝑤)𝑇(𝐻𝑤)) → (𝐹𝑤)𝑈(𝐻𝑤))))
235, 7, 9, 22syl3anc 1238 . . . 4 ((𝜑𝑤𝐴) → (∀𝑥𝑆𝑦𝑆𝑧𝑆 ((𝑥𝑅𝑦𝑦𝑇𝑧) → 𝑥𝑈𝑧) → (((𝐹𝑤)𝑅(𝐺𝑤) ∧ (𝐺𝑤)𝑇(𝐻𝑤)) → (𝐹𝑤)𝑈(𝐻𝑤))))
243, 23mpd 13 . . 3 ((𝜑𝑤𝐴) → (((𝐹𝑤)𝑅(𝐺𝑤) ∧ (𝐺𝑤)𝑇(𝐻𝑤)) → (𝐹𝑤)𝑈(𝐻𝑤)))
2524ralimdva 2544 . 2 (𝜑 → (∀𝑤𝐴 ((𝐹𝑤)𝑅(𝐺𝑤) ∧ (𝐺𝑤)𝑇(𝐻𝑤)) → ∀𝑤𝐴 (𝐹𝑤)𝑈(𝐻𝑤)))
26 ffn 5361 . . . . . 6 (𝐹:𝐴𝑆𝐹 Fn 𝐴)
274, 26syl 14 . . . . 5 (𝜑𝐹 Fn 𝐴)
28 ffn 5361 . . . . . 6 (𝐺:𝐴𝑆𝐺 Fn 𝐴)
296, 28syl 14 . . . . 5 (𝜑𝐺 Fn 𝐴)
30 caofref.1 . . . . 5 (𝜑𝐴𝑉)
31 inidm 3344 . . . . 5 (𝐴𝐴) = 𝐴
32 eqidd 2178 . . . . 5 ((𝜑𝑤𝐴) → (𝐹𝑤) = (𝐹𝑤))
33 eqidd 2178 . . . . 5 ((𝜑𝑤𝐴) → (𝐺𝑤) = (𝐺𝑤))
3427, 29, 30, 30, 31, 32, 33ofrfval 6085 . . . 4 (𝜑 → (𝐹𝑟 𝑅𝐺 ↔ ∀𝑤𝐴 (𝐹𝑤)𝑅(𝐺𝑤)))
35 ffn 5361 . . . . . 6 (𝐻:𝐴𝑆𝐻 Fn 𝐴)
368, 35syl 14 . . . . 5 (𝜑𝐻 Fn 𝐴)
37 eqidd 2178 . . . . 5 ((𝜑𝑤𝐴) → (𝐻𝑤) = (𝐻𝑤))
3829, 36, 30, 30, 31, 33, 37ofrfval 6085 . . . 4 (𝜑 → (𝐺𝑟 𝑇𝐻 ↔ ∀𝑤𝐴 (𝐺𝑤)𝑇(𝐻𝑤)))
3934, 38anbi12d 473 . . 3 (𝜑 → ((𝐹𝑟 𝑅𝐺𝐺𝑟 𝑇𝐻) ↔ (∀𝑤𝐴 (𝐹𝑤)𝑅(𝐺𝑤) ∧ ∀𝑤𝐴 (𝐺𝑤)𝑇(𝐻𝑤))))
40 r19.26 2603 . . 3 (∀𝑤𝐴 ((𝐹𝑤)𝑅(𝐺𝑤) ∧ (𝐺𝑤)𝑇(𝐻𝑤)) ↔ (∀𝑤𝐴 (𝐹𝑤)𝑅(𝐺𝑤) ∧ ∀𝑤𝐴 (𝐺𝑤)𝑇(𝐻𝑤)))
4139, 40bitr4di 198 . 2 (𝜑 → ((𝐹𝑟 𝑅𝐺𝐺𝑟 𝑇𝐻) ↔ ∀𝑤𝐴 ((𝐹𝑤)𝑅(𝐺𝑤) ∧ (𝐺𝑤)𝑇(𝐻𝑤))))
4227, 36, 30, 30, 31, 32, 37ofrfval 6085 . 2 (𝜑 → (𝐹𝑟 𝑈𝐻 ↔ ∀𝑤𝐴 (𝐹𝑤)𝑈(𝐻𝑤)))
4325, 41, 423imtr4d 203 1 (𝜑 → ((𝐹𝑟 𝑅𝐺𝐺𝑟 𝑇𝐻) → 𝐹𝑟 𝑈𝐻))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 978   = wceq 1353  wcel 2148  wral 2455   class class class wbr 4000   Fn wfn 5207  wf 5208  cfv 5212  𝑟 cofr 6076
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-pow 4171  ax-pr 4206
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-id 4290  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-ofr 6078
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator