ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caoftrn GIF version

Theorem caoftrn 6086
Description: Transfer a transitivity law to the function relation. (Contributed by Mario Carneiro, 28-Jul-2014.)
Hypotheses
Ref Expression
caofref.1 (𝜑𝐴𝑉)
caofref.2 (𝜑𝐹:𝐴𝑆)
caofcom.3 (𝜑𝐺:𝐴𝑆)
caofass.4 (𝜑𝐻:𝐴𝑆)
caoftrn.5 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥𝑅𝑦𝑦𝑇𝑧) → 𝑥𝑈𝑧))
Assertion
Ref Expression
caoftrn (𝜑 → ((𝐹𝑟 𝑅𝐺𝐺𝑟 𝑇𝐻) → 𝐹𝑟 𝑈𝐻))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐹   𝑥,𝐺,𝑦,𝑧   𝑥,𝐻,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝑥,𝑇,𝑦,𝑧   𝑥,𝑈,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧)   𝑉(𝑥,𝑦,𝑧)

Proof of Theorem caoftrn
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 caoftrn.5 . . . . . 6 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥𝑅𝑦𝑦𝑇𝑧) → 𝑥𝑈𝑧))
21ralrimivvva 2553 . . . . 5 (𝜑 → ∀𝑥𝑆𝑦𝑆𝑧𝑆 ((𝑥𝑅𝑦𝑦𝑇𝑧) → 𝑥𝑈𝑧))
32adantr 274 . . . 4 ((𝜑𝑤𝐴) → ∀𝑥𝑆𝑦𝑆𝑧𝑆 ((𝑥𝑅𝑦𝑦𝑇𝑧) → 𝑥𝑈𝑧))
4 caofref.2 . . . . . 6 (𝜑𝐹:𝐴𝑆)
54ffvelrnda 5631 . . . . 5 ((𝜑𝑤𝐴) → (𝐹𝑤) ∈ 𝑆)
6 caofcom.3 . . . . . 6 (𝜑𝐺:𝐴𝑆)
76ffvelrnda 5631 . . . . 5 ((𝜑𝑤𝐴) → (𝐺𝑤) ∈ 𝑆)
8 caofass.4 . . . . . 6 (𝜑𝐻:𝐴𝑆)
98ffvelrnda 5631 . . . . 5 ((𝜑𝑤𝐴) → (𝐻𝑤) ∈ 𝑆)
10 breq1 3992 . . . . . . . 8 (𝑥 = (𝐹𝑤) → (𝑥𝑅𝑦 ↔ (𝐹𝑤)𝑅𝑦))
1110anbi1d 462 . . . . . . 7 (𝑥 = (𝐹𝑤) → ((𝑥𝑅𝑦𝑦𝑇𝑧) ↔ ((𝐹𝑤)𝑅𝑦𝑦𝑇𝑧)))
12 breq1 3992 . . . . . . 7 (𝑥 = (𝐹𝑤) → (𝑥𝑈𝑧 ↔ (𝐹𝑤)𝑈𝑧))
1311, 12imbi12d 233 . . . . . 6 (𝑥 = (𝐹𝑤) → (((𝑥𝑅𝑦𝑦𝑇𝑧) → 𝑥𝑈𝑧) ↔ (((𝐹𝑤)𝑅𝑦𝑦𝑇𝑧) → (𝐹𝑤)𝑈𝑧)))
14 breq2 3993 . . . . . . . 8 (𝑦 = (𝐺𝑤) → ((𝐹𝑤)𝑅𝑦 ↔ (𝐹𝑤)𝑅(𝐺𝑤)))
15 breq1 3992 . . . . . . . 8 (𝑦 = (𝐺𝑤) → (𝑦𝑇𝑧 ↔ (𝐺𝑤)𝑇𝑧))
1614, 15anbi12d 470 . . . . . . 7 (𝑦 = (𝐺𝑤) → (((𝐹𝑤)𝑅𝑦𝑦𝑇𝑧) ↔ ((𝐹𝑤)𝑅(𝐺𝑤) ∧ (𝐺𝑤)𝑇𝑧)))
1716imbi1d 230 . . . . . 6 (𝑦 = (𝐺𝑤) → ((((𝐹𝑤)𝑅𝑦𝑦𝑇𝑧) → (𝐹𝑤)𝑈𝑧) ↔ (((𝐹𝑤)𝑅(𝐺𝑤) ∧ (𝐺𝑤)𝑇𝑧) → (𝐹𝑤)𝑈𝑧)))
18 breq2 3993 . . . . . . . 8 (𝑧 = (𝐻𝑤) → ((𝐺𝑤)𝑇𝑧 ↔ (𝐺𝑤)𝑇(𝐻𝑤)))
1918anbi2d 461 . . . . . . 7 (𝑧 = (𝐻𝑤) → (((𝐹𝑤)𝑅(𝐺𝑤) ∧ (𝐺𝑤)𝑇𝑧) ↔ ((𝐹𝑤)𝑅(𝐺𝑤) ∧ (𝐺𝑤)𝑇(𝐻𝑤))))
20 breq2 3993 . . . . . . 7 (𝑧 = (𝐻𝑤) → ((𝐹𝑤)𝑈𝑧 ↔ (𝐹𝑤)𝑈(𝐻𝑤)))
2119, 20imbi12d 233 . . . . . 6 (𝑧 = (𝐻𝑤) → ((((𝐹𝑤)𝑅(𝐺𝑤) ∧ (𝐺𝑤)𝑇𝑧) → (𝐹𝑤)𝑈𝑧) ↔ (((𝐹𝑤)𝑅(𝐺𝑤) ∧ (𝐺𝑤)𝑇(𝐻𝑤)) → (𝐹𝑤)𝑈(𝐻𝑤))))
2213, 17, 21rspc3v 2850 . . . . 5 (((𝐹𝑤) ∈ 𝑆 ∧ (𝐺𝑤) ∈ 𝑆 ∧ (𝐻𝑤) ∈ 𝑆) → (∀𝑥𝑆𝑦𝑆𝑧𝑆 ((𝑥𝑅𝑦𝑦𝑇𝑧) → 𝑥𝑈𝑧) → (((𝐹𝑤)𝑅(𝐺𝑤) ∧ (𝐺𝑤)𝑇(𝐻𝑤)) → (𝐹𝑤)𝑈(𝐻𝑤))))
235, 7, 9, 22syl3anc 1233 . . . 4 ((𝜑𝑤𝐴) → (∀𝑥𝑆𝑦𝑆𝑧𝑆 ((𝑥𝑅𝑦𝑦𝑇𝑧) → 𝑥𝑈𝑧) → (((𝐹𝑤)𝑅(𝐺𝑤) ∧ (𝐺𝑤)𝑇(𝐻𝑤)) → (𝐹𝑤)𝑈(𝐻𝑤))))
243, 23mpd 13 . . 3 ((𝜑𝑤𝐴) → (((𝐹𝑤)𝑅(𝐺𝑤) ∧ (𝐺𝑤)𝑇(𝐻𝑤)) → (𝐹𝑤)𝑈(𝐻𝑤)))
2524ralimdva 2537 . 2 (𝜑 → (∀𝑤𝐴 ((𝐹𝑤)𝑅(𝐺𝑤) ∧ (𝐺𝑤)𝑇(𝐻𝑤)) → ∀𝑤𝐴 (𝐹𝑤)𝑈(𝐻𝑤)))
26 ffn 5347 . . . . . 6 (𝐹:𝐴𝑆𝐹 Fn 𝐴)
274, 26syl 14 . . . . 5 (𝜑𝐹 Fn 𝐴)
28 ffn 5347 . . . . . 6 (𝐺:𝐴𝑆𝐺 Fn 𝐴)
296, 28syl 14 . . . . 5 (𝜑𝐺 Fn 𝐴)
30 caofref.1 . . . . 5 (𝜑𝐴𝑉)
31 inidm 3336 . . . . 5 (𝐴𝐴) = 𝐴
32 eqidd 2171 . . . . 5 ((𝜑𝑤𝐴) → (𝐹𝑤) = (𝐹𝑤))
33 eqidd 2171 . . . . 5 ((𝜑𝑤𝐴) → (𝐺𝑤) = (𝐺𝑤))
3427, 29, 30, 30, 31, 32, 33ofrfval 6069 . . . 4 (𝜑 → (𝐹𝑟 𝑅𝐺 ↔ ∀𝑤𝐴 (𝐹𝑤)𝑅(𝐺𝑤)))
35 ffn 5347 . . . . . 6 (𝐻:𝐴𝑆𝐻 Fn 𝐴)
368, 35syl 14 . . . . 5 (𝜑𝐻 Fn 𝐴)
37 eqidd 2171 . . . . 5 ((𝜑𝑤𝐴) → (𝐻𝑤) = (𝐻𝑤))
3829, 36, 30, 30, 31, 33, 37ofrfval 6069 . . . 4 (𝜑 → (𝐺𝑟 𝑇𝐻 ↔ ∀𝑤𝐴 (𝐺𝑤)𝑇(𝐻𝑤)))
3934, 38anbi12d 470 . . 3 (𝜑 → ((𝐹𝑟 𝑅𝐺𝐺𝑟 𝑇𝐻) ↔ (∀𝑤𝐴 (𝐹𝑤)𝑅(𝐺𝑤) ∧ ∀𝑤𝐴 (𝐺𝑤)𝑇(𝐻𝑤))))
40 r19.26 2596 . . 3 (∀𝑤𝐴 ((𝐹𝑤)𝑅(𝐺𝑤) ∧ (𝐺𝑤)𝑇(𝐻𝑤)) ↔ (∀𝑤𝐴 (𝐹𝑤)𝑅(𝐺𝑤) ∧ ∀𝑤𝐴 (𝐺𝑤)𝑇(𝐻𝑤)))
4139, 40bitr4di 197 . 2 (𝜑 → ((𝐹𝑟 𝑅𝐺𝐺𝑟 𝑇𝐻) ↔ ∀𝑤𝐴 ((𝐹𝑤)𝑅(𝐺𝑤) ∧ (𝐺𝑤)𝑇(𝐻𝑤))))
4227, 36, 30, 30, 31, 32, 37ofrfval 6069 . 2 (𝜑 → (𝐹𝑟 𝑈𝐻 ↔ ∀𝑤𝐴 (𝐹𝑤)𝑈(𝐻𝑤)))
4325, 41, 423imtr4d 202 1 (𝜑 → ((𝐹𝑟 𝑅𝐺𝐺𝑟 𝑇𝐻) → 𝐹𝑟 𝑈𝐻))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 973   = wceq 1348  wcel 2141  wral 2448   class class class wbr 3989   Fn wfn 5193  wf 5194  cfv 5198  𝑟 cofr 6060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ofr 6062
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator