![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lssclg | GIF version |
Description: Closure property of a subspace. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 8-Jan-2015.) |
Ref | Expression |
---|---|
lsscl.f | ⊢ 𝐹 = (Scalar‘𝑊) |
lsscl.b | ⊢ 𝐵 = (Base‘𝐹) |
lsscl.p | ⊢ + = (+g‘𝑊) |
lsscl.t | ⊢ · = ( ·𝑠 ‘𝑊) |
lsscl.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
Ref | Expression |
---|---|
lssclg | ⊢ ((𝑊 ∈ 𝐶 ∧ 𝑈 ∈ 𝑆 ∧ (𝑍 ∈ 𝐵 ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) → ((𝑍 · 𝑋) + 𝑌) ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 999 | . . . 4 ⊢ ((𝑊 ∈ 𝐶 ∧ 𝑈 ∈ 𝑆 ∧ (𝑍 ∈ 𝐵 ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) → 𝑈 ∈ 𝑆) | |
2 | lsscl.f | . . . . . 6 ⊢ 𝐹 = (Scalar‘𝑊) | |
3 | lsscl.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐹) | |
4 | eqid 2188 | . . . . . 6 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
5 | lsscl.p | . . . . . 6 ⊢ + = (+g‘𝑊) | |
6 | lsscl.t | . . . . . 6 ⊢ · = ( ·𝑠 ‘𝑊) | |
7 | lsscl.s | . . . . . 6 ⊢ 𝑆 = (LSubSp‘𝑊) | |
8 | 2, 3, 4, 5, 6, 7 | islssmg 13634 | . . . . 5 ⊢ (𝑊 ∈ 𝐶 → (𝑈 ∈ 𝑆 ↔ (𝑈 ⊆ (Base‘𝑊) ∧ ∃𝑗 𝑗 ∈ 𝑈 ∧ ∀𝑥 ∈ 𝐵 ∀𝑎 ∈ 𝑈 ∀𝑏 ∈ 𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈))) |
9 | 8 | 3ad2ant1 1019 | . . . 4 ⊢ ((𝑊 ∈ 𝐶 ∧ 𝑈 ∈ 𝑆 ∧ (𝑍 ∈ 𝐵 ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) → (𝑈 ∈ 𝑆 ↔ (𝑈 ⊆ (Base‘𝑊) ∧ ∃𝑗 𝑗 ∈ 𝑈 ∧ ∀𝑥 ∈ 𝐵 ∀𝑎 ∈ 𝑈 ∀𝑏 ∈ 𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈))) |
10 | 1, 9 | mpbid 147 | . . 3 ⊢ ((𝑊 ∈ 𝐶 ∧ 𝑈 ∈ 𝑆 ∧ (𝑍 ∈ 𝐵 ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) → (𝑈 ⊆ (Base‘𝑊) ∧ ∃𝑗 𝑗 ∈ 𝑈 ∧ ∀𝑥 ∈ 𝐵 ∀𝑎 ∈ 𝑈 ∀𝑏 ∈ 𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈)) |
11 | 10 | simp3d 1012 | . 2 ⊢ ((𝑊 ∈ 𝐶 ∧ 𝑈 ∈ 𝑆 ∧ (𝑍 ∈ 𝐵 ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) → ∀𝑥 ∈ 𝐵 ∀𝑎 ∈ 𝑈 ∀𝑏 ∈ 𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈) |
12 | oveq1 5897 | . . . . . 6 ⊢ (𝑥 = 𝑍 → (𝑥 · 𝑎) = (𝑍 · 𝑎)) | |
13 | 12 | oveq1d 5905 | . . . . 5 ⊢ (𝑥 = 𝑍 → ((𝑥 · 𝑎) + 𝑏) = ((𝑍 · 𝑎) + 𝑏)) |
14 | 13 | eleq1d 2257 | . . . 4 ⊢ (𝑥 = 𝑍 → (((𝑥 · 𝑎) + 𝑏) ∈ 𝑈 ↔ ((𝑍 · 𝑎) + 𝑏) ∈ 𝑈)) |
15 | oveq2 5898 | . . . . . 6 ⊢ (𝑎 = 𝑋 → (𝑍 · 𝑎) = (𝑍 · 𝑋)) | |
16 | 15 | oveq1d 5905 | . . . . 5 ⊢ (𝑎 = 𝑋 → ((𝑍 · 𝑎) + 𝑏) = ((𝑍 · 𝑋) + 𝑏)) |
17 | 16 | eleq1d 2257 | . . . 4 ⊢ (𝑎 = 𝑋 → (((𝑍 · 𝑎) + 𝑏) ∈ 𝑈 ↔ ((𝑍 · 𝑋) + 𝑏) ∈ 𝑈)) |
18 | oveq2 5898 | . . . . 5 ⊢ (𝑏 = 𝑌 → ((𝑍 · 𝑋) + 𝑏) = ((𝑍 · 𝑋) + 𝑌)) | |
19 | 18 | eleq1d 2257 | . . . 4 ⊢ (𝑏 = 𝑌 → (((𝑍 · 𝑋) + 𝑏) ∈ 𝑈 ↔ ((𝑍 · 𝑋) + 𝑌) ∈ 𝑈)) |
20 | 14, 17, 19 | rspc3v 2871 | . . 3 ⊢ ((𝑍 ∈ 𝐵 ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → (∀𝑥 ∈ 𝐵 ∀𝑎 ∈ 𝑈 ∀𝑏 ∈ 𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈 → ((𝑍 · 𝑋) + 𝑌) ∈ 𝑈)) |
21 | 20 | 3ad2ant3 1021 | . 2 ⊢ ((𝑊 ∈ 𝐶 ∧ 𝑈 ∈ 𝑆 ∧ (𝑍 ∈ 𝐵 ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) → (∀𝑥 ∈ 𝐵 ∀𝑎 ∈ 𝑈 ∀𝑏 ∈ 𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈 → ((𝑍 · 𝑋) + 𝑌) ∈ 𝑈)) |
22 | 11, 21 | mpd 13 | 1 ⊢ ((𝑊 ∈ 𝐶 ∧ 𝑈 ∈ 𝑆 ∧ (𝑍 ∈ 𝐵 ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) → ((𝑍 · 𝑋) + 𝑌) ∈ 𝑈) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 979 = wceq 1363 ∃wex 1502 ∈ wcel 2159 ∀wral 2467 ⊆ wss 3143 ‘cfv 5230 (class class class)co 5890 Basecbs 12479 +gcplusg 12554 Scalarcsca 12557 ·𝑠 cvsca 12558 LSubSpclss 13628 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2161 ax-14 2162 ax-ext 2170 ax-sep 4135 ax-pow 4188 ax-pr 4223 ax-un 4447 ax-cnex 7919 ax-resscn 7920 ax-1re 7922 ax-addrcl 7925 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-nf 1471 df-sb 1773 df-eu 2040 df-mo 2041 df-clab 2175 df-cleq 2181 df-clel 2184 df-nfc 2320 df-ral 2472 df-rex 2473 df-rab 2476 df-v 2753 df-sbc 2977 df-csb 3072 df-un 3147 df-in 3149 df-ss 3156 df-pw 3591 df-sn 3612 df-pr 3613 df-op 3615 df-uni 3824 df-int 3859 df-br 4018 df-opab 4079 df-mpt 4080 df-id 4307 df-xp 4646 df-rel 4647 df-cnv 4648 df-co 4649 df-dm 4650 df-rn 4651 df-res 4652 df-iota 5192 df-fun 5232 df-fn 5233 df-fv 5238 df-ov 5893 df-inn 8937 df-ndx 12482 df-slot 12483 df-base 12485 df-lssm 13629 |
This theorem is referenced by: lssvacl 13641 lssvsubcl 13642 lssvscl 13651 islss3 13655 lssintclm 13660 |
Copyright terms: Public domain | W3C validator |