ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lssclg GIF version

Theorem lssclg 13640
Description: Closure property of a subspace. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 8-Jan-2015.)
Hypotheses
Ref Expression
lsscl.f 𝐹 = (Scalar‘𝑊)
lsscl.b 𝐵 = (Base‘𝐹)
lsscl.p + = (+g𝑊)
lsscl.t · = ( ·𝑠𝑊)
lsscl.s 𝑆 = (LSubSp‘𝑊)
Assertion
Ref Expression
lssclg ((𝑊𝐶𝑈𝑆 ∧ (𝑍𝐵𝑋𝑈𝑌𝑈)) → ((𝑍 · 𝑋) + 𝑌) ∈ 𝑈)

Proof of Theorem lssclg
Dummy variables 𝑥 𝑎 𝑏 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 999 . . . 4 ((𝑊𝐶𝑈𝑆 ∧ (𝑍𝐵𝑋𝑈𝑌𝑈)) → 𝑈𝑆)
2 lsscl.f . . . . . 6 𝐹 = (Scalar‘𝑊)
3 lsscl.b . . . . . 6 𝐵 = (Base‘𝐹)
4 eqid 2188 . . . . . 6 (Base‘𝑊) = (Base‘𝑊)
5 lsscl.p . . . . . 6 + = (+g𝑊)
6 lsscl.t . . . . . 6 · = ( ·𝑠𝑊)
7 lsscl.s . . . . . 6 𝑆 = (LSubSp‘𝑊)
82, 3, 4, 5, 6, 7islssmg 13634 . . . . 5 (𝑊𝐶 → (𝑈𝑆 ↔ (𝑈 ⊆ (Base‘𝑊) ∧ ∃𝑗 𝑗𝑈 ∧ ∀𝑥𝐵𝑎𝑈𝑏𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈)))
983ad2ant1 1019 . . . 4 ((𝑊𝐶𝑈𝑆 ∧ (𝑍𝐵𝑋𝑈𝑌𝑈)) → (𝑈𝑆 ↔ (𝑈 ⊆ (Base‘𝑊) ∧ ∃𝑗 𝑗𝑈 ∧ ∀𝑥𝐵𝑎𝑈𝑏𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈)))
101, 9mpbid 147 . . 3 ((𝑊𝐶𝑈𝑆 ∧ (𝑍𝐵𝑋𝑈𝑌𝑈)) → (𝑈 ⊆ (Base‘𝑊) ∧ ∃𝑗 𝑗𝑈 ∧ ∀𝑥𝐵𝑎𝑈𝑏𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈))
1110simp3d 1012 . 2 ((𝑊𝐶𝑈𝑆 ∧ (𝑍𝐵𝑋𝑈𝑌𝑈)) → ∀𝑥𝐵𝑎𝑈𝑏𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈)
12 oveq1 5897 . . . . . 6 (𝑥 = 𝑍 → (𝑥 · 𝑎) = (𝑍 · 𝑎))
1312oveq1d 5905 . . . . 5 (𝑥 = 𝑍 → ((𝑥 · 𝑎) + 𝑏) = ((𝑍 · 𝑎) + 𝑏))
1413eleq1d 2257 . . . 4 (𝑥 = 𝑍 → (((𝑥 · 𝑎) + 𝑏) ∈ 𝑈 ↔ ((𝑍 · 𝑎) + 𝑏) ∈ 𝑈))
15 oveq2 5898 . . . . . 6 (𝑎 = 𝑋 → (𝑍 · 𝑎) = (𝑍 · 𝑋))
1615oveq1d 5905 . . . . 5 (𝑎 = 𝑋 → ((𝑍 · 𝑎) + 𝑏) = ((𝑍 · 𝑋) + 𝑏))
1716eleq1d 2257 . . . 4 (𝑎 = 𝑋 → (((𝑍 · 𝑎) + 𝑏) ∈ 𝑈 ↔ ((𝑍 · 𝑋) + 𝑏) ∈ 𝑈))
18 oveq2 5898 . . . . 5 (𝑏 = 𝑌 → ((𝑍 · 𝑋) + 𝑏) = ((𝑍 · 𝑋) + 𝑌))
1918eleq1d 2257 . . . 4 (𝑏 = 𝑌 → (((𝑍 · 𝑋) + 𝑏) ∈ 𝑈 ↔ ((𝑍 · 𝑋) + 𝑌) ∈ 𝑈))
2014, 17, 19rspc3v 2871 . . 3 ((𝑍𝐵𝑋𝑈𝑌𝑈) → (∀𝑥𝐵𝑎𝑈𝑏𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈 → ((𝑍 · 𝑋) + 𝑌) ∈ 𝑈))
21203ad2ant3 1021 . 2 ((𝑊𝐶𝑈𝑆 ∧ (𝑍𝐵𝑋𝑈𝑌𝑈)) → (∀𝑥𝐵𝑎𝑈𝑏𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈 → ((𝑍 · 𝑋) + 𝑌) ∈ 𝑈))
2211, 21mpd 13 1 ((𝑊𝐶𝑈𝑆 ∧ (𝑍𝐵𝑋𝑈𝑌𝑈)) → ((𝑍 · 𝑋) + 𝑌) ∈ 𝑈)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  w3a 979   = wceq 1363  wex 1502  wcel 2159  wral 2467  wss 3143  cfv 5230  (class class class)co 5890  Basecbs 12479  +gcplusg 12554  Scalarcsca 12557   ·𝑠 cvsca 12558  LSubSpclss 13628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2161  ax-14 2162  ax-ext 2170  ax-sep 4135  ax-pow 4188  ax-pr 4223  ax-un 4447  ax-cnex 7919  ax-resscn 7920  ax-1re 7922  ax-addrcl 7925
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-eu 2040  df-mo 2041  df-clab 2175  df-cleq 2181  df-clel 2184  df-nfc 2320  df-ral 2472  df-rex 2473  df-rab 2476  df-v 2753  df-sbc 2977  df-csb 3072  df-un 3147  df-in 3149  df-ss 3156  df-pw 3591  df-sn 3612  df-pr 3613  df-op 3615  df-uni 3824  df-int 3859  df-br 4018  df-opab 4079  df-mpt 4080  df-id 4307  df-xp 4646  df-rel 4647  df-cnv 4648  df-co 4649  df-dm 4650  df-rn 4651  df-res 4652  df-iota 5192  df-fun 5232  df-fn 5233  df-fv 5238  df-ov 5893  df-inn 8937  df-ndx 12482  df-slot 12483  df-base 12485  df-lssm 13629
This theorem is referenced by:  lssvacl  13641  lssvsubcl  13642  lssvscl  13651  islss3  13655  lssintclm  13660
  Copyright terms: Public domain W3C validator