| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lssclg | GIF version | ||
| Description: Closure property of a subspace. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 8-Jan-2015.) |
| Ref | Expression |
|---|---|
| lsscl.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| lsscl.b | ⊢ 𝐵 = (Base‘𝐹) |
| lsscl.p | ⊢ + = (+g‘𝑊) |
| lsscl.t | ⊢ · = ( ·𝑠 ‘𝑊) |
| lsscl.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| Ref | Expression |
|---|---|
| lssclg | ⊢ ((𝑊 ∈ 𝐶 ∧ 𝑈 ∈ 𝑆 ∧ (𝑍 ∈ 𝐵 ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) → ((𝑍 · 𝑋) + 𝑌) ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 1000 | . . . 4 ⊢ ((𝑊 ∈ 𝐶 ∧ 𝑈 ∈ 𝑆 ∧ (𝑍 ∈ 𝐵 ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) → 𝑈 ∈ 𝑆) | |
| 2 | lsscl.f | . . . . . 6 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 3 | lsscl.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐹) | |
| 4 | eqid 2204 | . . . . . 6 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 5 | lsscl.p | . . . . . 6 ⊢ + = (+g‘𝑊) | |
| 6 | lsscl.t | . . . . . 6 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 7 | lsscl.s | . . . . . 6 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 8 | 2, 3, 4, 5, 6, 7 | islssmg 14062 | . . . . 5 ⊢ (𝑊 ∈ 𝐶 → (𝑈 ∈ 𝑆 ↔ (𝑈 ⊆ (Base‘𝑊) ∧ ∃𝑗 𝑗 ∈ 𝑈 ∧ ∀𝑥 ∈ 𝐵 ∀𝑎 ∈ 𝑈 ∀𝑏 ∈ 𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈))) |
| 9 | 8 | 3ad2ant1 1020 | . . . 4 ⊢ ((𝑊 ∈ 𝐶 ∧ 𝑈 ∈ 𝑆 ∧ (𝑍 ∈ 𝐵 ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) → (𝑈 ∈ 𝑆 ↔ (𝑈 ⊆ (Base‘𝑊) ∧ ∃𝑗 𝑗 ∈ 𝑈 ∧ ∀𝑥 ∈ 𝐵 ∀𝑎 ∈ 𝑈 ∀𝑏 ∈ 𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈))) |
| 10 | 1, 9 | mpbid 147 | . . 3 ⊢ ((𝑊 ∈ 𝐶 ∧ 𝑈 ∈ 𝑆 ∧ (𝑍 ∈ 𝐵 ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) → (𝑈 ⊆ (Base‘𝑊) ∧ ∃𝑗 𝑗 ∈ 𝑈 ∧ ∀𝑥 ∈ 𝐵 ∀𝑎 ∈ 𝑈 ∀𝑏 ∈ 𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈)) |
| 11 | 10 | simp3d 1013 | . 2 ⊢ ((𝑊 ∈ 𝐶 ∧ 𝑈 ∈ 𝑆 ∧ (𝑍 ∈ 𝐵 ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) → ∀𝑥 ∈ 𝐵 ∀𝑎 ∈ 𝑈 ∀𝑏 ∈ 𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈) |
| 12 | oveq1 5950 | . . . . . 6 ⊢ (𝑥 = 𝑍 → (𝑥 · 𝑎) = (𝑍 · 𝑎)) | |
| 13 | 12 | oveq1d 5958 | . . . . 5 ⊢ (𝑥 = 𝑍 → ((𝑥 · 𝑎) + 𝑏) = ((𝑍 · 𝑎) + 𝑏)) |
| 14 | 13 | eleq1d 2273 | . . . 4 ⊢ (𝑥 = 𝑍 → (((𝑥 · 𝑎) + 𝑏) ∈ 𝑈 ↔ ((𝑍 · 𝑎) + 𝑏) ∈ 𝑈)) |
| 15 | oveq2 5951 | . . . . . 6 ⊢ (𝑎 = 𝑋 → (𝑍 · 𝑎) = (𝑍 · 𝑋)) | |
| 16 | 15 | oveq1d 5958 | . . . . 5 ⊢ (𝑎 = 𝑋 → ((𝑍 · 𝑎) + 𝑏) = ((𝑍 · 𝑋) + 𝑏)) |
| 17 | 16 | eleq1d 2273 | . . . 4 ⊢ (𝑎 = 𝑋 → (((𝑍 · 𝑎) + 𝑏) ∈ 𝑈 ↔ ((𝑍 · 𝑋) + 𝑏) ∈ 𝑈)) |
| 18 | oveq2 5951 | . . . . 5 ⊢ (𝑏 = 𝑌 → ((𝑍 · 𝑋) + 𝑏) = ((𝑍 · 𝑋) + 𝑌)) | |
| 19 | 18 | eleq1d 2273 | . . . 4 ⊢ (𝑏 = 𝑌 → (((𝑍 · 𝑋) + 𝑏) ∈ 𝑈 ↔ ((𝑍 · 𝑋) + 𝑌) ∈ 𝑈)) |
| 20 | 14, 17, 19 | rspc3v 2892 | . . 3 ⊢ ((𝑍 ∈ 𝐵 ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → (∀𝑥 ∈ 𝐵 ∀𝑎 ∈ 𝑈 ∀𝑏 ∈ 𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈 → ((𝑍 · 𝑋) + 𝑌) ∈ 𝑈)) |
| 21 | 20 | 3ad2ant3 1022 | . 2 ⊢ ((𝑊 ∈ 𝐶 ∧ 𝑈 ∈ 𝑆 ∧ (𝑍 ∈ 𝐵 ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) → (∀𝑥 ∈ 𝐵 ∀𝑎 ∈ 𝑈 ∀𝑏 ∈ 𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈 → ((𝑍 · 𝑋) + 𝑌) ∈ 𝑈)) |
| 22 | 11, 21 | mpd 13 | 1 ⊢ ((𝑊 ∈ 𝐶 ∧ 𝑈 ∈ 𝑆 ∧ (𝑍 ∈ 𝐵 ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) → ((𝑍 · 𝑋) + 𝑌) ∈ 𝑈) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 980 = wceq 1372 ∃wex 1514 ∈ wcel 2175 ∀wral 2483 ⊆ wss 3165 ‘cfv 5270 (class class class)co 5943 Basecbs 12774 +gcplusg 12851 Scalarcsca 12854 ·𝑠 cvsca 12855 LSubSpclss 14056 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-cnex 8015 ax-resscn 8016 ax-1re 8018 ax-addrcl 8021 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-iota 5231 df-fun 5272 df-fn 5273 df-fv 5278 df-ov 5946 df-inn 9036 df-ndx 12777 df-slot 12778 df-base 12780 df-lssm 14057 |
| This theorem is referenced by: lssvacl 14069 lssvsubcl 14070 lssvscl 14079 islss3 14083 lssintclm 14088 |
| Copyright terms: Public domain | W3C validator |