![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dvdsprmpweq | GIF version |
Description: If a positive integer divides a prime power, it is a prime power. (Contributed by AV, 25-Jul-2021.) |
Ref | Expression |
---|---|
dvdsprmpweq | ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴 ∥ (𝑃↑𝑁) → ∃𝑛 ∈ ℕ0 𝐴 = (𝑃↑𝑛))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 999 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 𝑃 ∈ ℙ) | |
2 | simp2 1000 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 𝐴 ∈ ℕ) | |
3 | 1, 2 | pccld 12441 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝑃 pCnt 𝐴) ∈ ℕ0) |
4 | 3 | adantr 276 | . . 3 ⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃↑𝑁)) → (𝑃 pCnt 𝐴) ∈ ℕ0) |
5 | oveq2 5927 | . . . . 5 ⊢ (𝑛 = (𝑃 pCnt 𝐴) → (𝑃↑𝑛) = (𝑃↑(𝑃 pCnt 𝐴))) | |
6 | 5 | eqeq2d 2205 | . . . 4 ⊢ (𝑛 = (𝑃 pCnt 𝐴) → (𝐴 = (𝑃↑𝑛) ↔ 𝐴 = (𝑃↑(𝑃 pCnt 𝐴)))) |
7 | 6 | adantl 277 | . . 3 ⊢ ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃↑𝑁)) ∧ 𝑛 = (𝑃 pCnt 𝐴)) → (𝐴 = (𝑃↑𝑛) ↔ 𝐴 = (𝑃↑(𝑃 pCnt 𝐴)))) |
8 | simpl3 1004 | . . . . 5 ⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃↑𝑁)) → 𝑁 ∈ ℕ0) | |
9 | oveq2 5927 | . . . . . . 7 ⊢ (𝑛 = 𝑁 → (𝑃↑𝑛) = (𝑃↑𝑁)) | |
10 | 9 | breq2d 4042 | . . . . . 6 ⊢ (𝑛 = 𝑁 → (𝐴 ∥ (𝑃↑𝑛) ↔ 𝐴 ∥ (𝑃↑𝑁))) |
11 | 10 | adantl 277 | . . . . 5 ⊢ ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃↑𝑁)) ∧ 𝑛 = 𝑁) → (𝐴 ∥ (𝑃↑𝑛) ↔ 𝐴 ∥ (𝑃↑𝑁))) |
12 | simpr 110 | . . . . 5 ⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃↑𝑁)) → 𝐴 ∥ (𝑃↑𝑁)) | |
13 | 8, 11, 12 | rspcedvd 2871 | . . . 4 ⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃↑𝑁)) → ∃𝑛 ∈ ℕ0 𝐴 ∥ (𝑃↑𝑛)) |
14 | pcprmpw2 12474 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (∃𝑛 ∈ ℕ0 𝐴 ∥ (𝑃↑𝑛) ↔ 𝐴 = (𝑃↑(𝑃 pCnt 𝐴)))) | |
15 | 14 | 3adant3 1019 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (∃𝑛 ∈ ℕ0 𝐴 ∥ (𝑃↑𝑛) ↔ 𝐴 = (𝑃↑(𝑃 pCnt 𝐴)))) |
16 | 15 | adantr 276 | . . . 4 ⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃↑𝑁)) → (∃𝑛 ∈ ℕ0 𝐴 ∥ (𝑃↑𝑛) ↔ 𝐴 = (𝑃↑(𝑃 pCnt 𝐴)))) |
17 | 13, 16 | mpbid 147 | . . 3 ⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃↑𝑁)) → 𝐴 = (𝑃↑(𝑃 pCnt 𝐴))) |
18 | 4, 7, 17 | rspcedvd 2871 | . 2 ⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃↑𝑁)) → ∃𝑛 ∈ ℕ0 𝐴 = (𝑃↑𝑛)) |
19 | 18 | ex 115 | 1 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴 ∥ (𝑃↑𝑁) → ∃𝑛 ∈ ℕ0 𝐴 = (𝑃↑𝑛))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 = wceq 1364 ∈ wcel 2164 ∃wrex 2473 class class class wbr 4030 (class class class)co 5919 ℕcn 8984 ℕ0cn0 9243 ↑cexp 10612 ∥ cdvds 11933 ℙcprime 12248 pCnt cpc 12425 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-iinf 4621 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-mulrcl 7973 ax-addcom 7974 ax-mulcom 7975 ax-addass 7976 ax-mulass 7977 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-1rid 7981 ax-0id 7982 ax-rnegex 7983 ax-precex 7984 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-apti 7989 ax-pre-ltadd 7990 ax-pre-mulgt0 7991 ax-pre-mulext 7992 ax-arch 7993 ax-caucvg 7994 |
This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-if 3559 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-id 4325 df-po 4328 df-iso 4329 df-iord 4398 df-on 4400 df-ilim 4401 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-isom 5264 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-recs 6360 df-frec 6446 df-1o 6471 df-2o 6472 df-er 6589 df-en 6797 df-sup 7045 df-inf 7046 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-reap 8596 df-ap 8603 df-div 8694 df-inn 8985 df-2 9043 df-3 9044 df-4 9045 df-n0 9244 df-xnn0 9307 df-z 9321 df-uz 9596 df-q 9688 df-rp 9723 df-fz 10078 df-fzo 10212 df-fl 10342 df-mod 10397 df-seqfrec 10522 df-exp 10613 df-cj 10989 df-re 10990 df-im 10991 df-rsqrt 11145 df-abs 11146 df-dvds 11934 df-gcd 12083 df-prm 12249 df-pc 12426 |
This theorem is referenced by: dvdsprmpweqnn 12477 dvdsprmpweqle 12478 |
Copyright terms: Public domain | W3C validator |