Proof of Theorem grpidinv
| Step | Hyp | Ref
 | Expression | 
| 1 |   | grpidinv.b | 
. . 3
⊢ 𝐵 = (Base‘𝐺) | 
| 2 |   | eqid 2196 | 
. . 3
⊢
(0g‘𝐺) = (0g‘𝐺) | 
| 3 | 1, 2 | grpidcl 13161 | 
. 2
⊢ (𝐺 ∈ Grp →
(0g‘𝐺)
∈ 𝐵) | 
| 4 |   | oveq1 5929 | 
. . . . . . 7
⊢ (𝑢 = (0g‘𝐺) → (𝑢 + 𝑥) = ((0g‘𝐺) + 𝑥)) | 
| 5 | 4 | eqeq1d 2205 | 
. . . . . 6
⊢ (𝑢 = (0g‘𝐺) → ((𝑢 + 𝑥) = 𝑥 ↔ ((0g‘𝐺) + 𝑥) = 𝑥)) | 
| 6 |   | oveq2 5930 | 
. . . . . . 7
⊢ (𝑢 = (0g‘𝐺) → (𝑥 + 𝑢) = (𝑥 + (0g‘𝐺))) | 
| 7 | 6 | eqeq1d 2205 | 
. . . . . 6
⊢ (𝑢 = (0g‘𝐺) → ((𝑥 + 𝑢) = 𝑥 ↔ (𝑥 + (0g‘𝐺)) = 𝑥)) | 
| 8 | 5, 7 | anbi12d 473 | 
. . . . 5
⊢ (𝑢 = (0g‘𝐺) → (((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥) ↔ (((0g‘𝐺) + 𝑥) = 𝑥 ∧ (𝑥 + (0g‘𝐺)) = 𝑥))) | 
| 9 |   | eqeq2 2206 | 
. . . . . . 7
⊢ (𝑢 = (0g‘𝐺) → ((𝑦 + 𝑥) = 𝑢 ↔ (𝑦 + 𝑥) = (0g‘𝐺))) | 
| 10 |   | eqeq2 2206 | 
. . . . . . 7
⊢ (𝑢 = (0g‘𝐺) → ((𝑥 + 𝑦) = 𝑢 ↔ (𝑥 + 𝑦) = (0g‘𝐺))) | 
| 11 | 9, 10 | anbi12d 473 | 
. . . . . 6
⊢ (𝑢 = (0g‘𝐺) → (((𝑦 + 𝑥) = 𝑢 ∧ (𝑥 + 𝑦) = 𝑢) ↔ ((𝑦 + 𝑥) = (0g‘𝐺) ∧ (𝑥 + 𝑦) = (0g‘𝐺)))) | 
| 12 | 11 | rexbidv 2498 | 
. . . . 5
⊢ (𝑢 = (0g‘𝐺) → (∃𝑦 ∈ 𝐵 ((𝑦 + 𝑥) = 𝑢 ∧ (𝑥 + 𝑦) = 𝑢) ↔ ∃𝑦 ∈ 𝐵 ((𝑦 + 𝑥) = (0g‘𝐺) ∧ (𝑥 + 𝑦) = (0g‘𝐺)))) | 
| 13 | 8, 12 | anbi12d 473 | 
. . . 4
⊢ (𝑢 = (0g‘𝐺) → ((((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥) ∧ ∃𝑦 ∈ 𝐵 ((𝑦 + 𝑥) = 𝑢 ∧ (𝑥 + 𝑦) = 𝑢)) ↔ ((((0g‘𝐺) + 𝑥) = 𝑥 ∧ (𝑥 + (0g‘𝐺)) = 𝑥) ∧ ∃𝑦 ∈ 𝐵 ((𝑦 + 𝑥) = (0g‘𝐺) ∧ (𝑥 + 𝑦) = (0g‘𝐺))))) | 
| 14 | 13 | ralbidv 2497 | 
. . 3
⊢ (𝑢 = (0g‘𝐺) → (∀𝑥 ∈ 𝐵 (((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥) ∧ ∃𝑦 ∈ 𝐵 ((𝑦 + 𝑥) = 𝑢 ∧ (𝑥 + 𝑦) = 𝑢)) ↔ ∀𝑥 ∈ 𝐵 ((((0g‘𝐺) + 𝑥) = 𝑥 ∧ (𝑥 + (0g‘𝐺)) = 𝑥) ∧ ∃𝑦 ∈ 𝐵 ((𝑦 + 𝑥) = (0g‘𝐺) ∧ (𝑥 + 𝑦) = (0g‘𝐺))))) | 
| 15 | 14 | adantl 277 | 
. 2
⊢ ((𝐺 ∈ Grp ∧ 𝑢 = (0g‘𝐺)) → (∀𝑥 ∈ 𝐵 (((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥) ∧ ∃𝑦 ∈ 𝐵 ((𝑦 + 𝑥) = 𝑢 ∧ (𝑥 + 𝑦) = 𝑢)) ↔ ∀𝑥 ∈ 𝐵 ((((0g‘𝐺) + 𝑥) = 𝑥 ∧ (𝑥 + (0g‘𝐺)) = 𝑥) ∧ ∃𝑦 ∈ 𝐵 ((𝑦 + 𝑥) = (0g‘𝐺) ∧ (𝑥 + 𝑦) = (0g‘𝐺))))) | 
| 16 |   | grpidinv.p | 
. . . 4
⊢  + =
(+g‘𝐺) | 
| 17 | 1, 16, 2 | grpidinv2 13190 | 
. . 3
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → ((((0g‘𝐺) + 𝑥) = 𝑥 ∧ (𝑥 + (0g‘𝐺)) = 𝑥) ∧ ∃𝑦 ∈ 𝐵 ((𝑦 + 𝑥) = (0g‘𝐺) ∧ (𝑥 + 𝑦) = (0g‘𝐺)))) | 
| 18 | 17 | ralrimiva 2570 | 
. 2
⊢ (𝐺 ∈ Grp → ∀𝑥 ∈ 𝐵 ((((0g‘𝐺) + 𝑥) = 𝑥 ∧ (𝑥 + (0g‘𝐺)) = 𝑥) ∧ ∃𝑦 ∈ 𝐵 ((𝑦 + 𝑥) = (0g‘𝐺) ∧ (𝑥 + 𝑦) = (0g‘𝐺)))) | 
| 19 | 3, 15, 18 | rspcedvd 2874 | 
1
⊢ (𝐺 ∈ Grp → ∃𝑢 ∈ 𝐵 ∀𝑥 ∈ 𝐵 (((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥) ∧ ∃𝑦 ∈ 𝐵 ((𝑦 + 𝑥) = 𝑢 ∧ (𝑥 + 𝑦) = 𝑢))) |