ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpidinv GIF version

Theorem grpidinv 13435
Description: A group has a left and right identity element, and every member has a left and right inverse. (Contributed by NM, 14-Oct-2006.) (Revised by AV, 1-Sep-2021.)
Hypotheses
Ref Expression
grpidinv.b 𝐵 = (Base‘𝐺)
grpidinv.p + = (+g𝐺)
Assertion
Ref Expression
grpidinv (𝐺 ∈ Grp → ∃𝑢𝐵𝑥𝐵 (((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥) ∧ ∃𝑦𝐵 ((𝑦 + 𝑥) = 𝑢 ∧ (𝑥 + 𝑦) = 𝑢)))
Distinct variable groups:   𝑢,𝐺,𝑥,𝑦   𝑢,𝐵,𝑦   𝑢, + ,𝑦
Allowed substitution hints:   𝐵(𝑥)   + (𝑥)

Proof of Theorem grpidinv
StepHypRef Expression
1 grpidinv.b . . 3 𝐵 = (Base‘𝐺)
2 eqid 2206 . . 3 (0g𝐺) = (0g𝐺)
31, 2grpidcl 13405 . 2 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝐵)
4 oveq1 5958 . . . . . . 7 (𝑢 = (0g𝐺) → (𝑢 + 𝑥) = ((0g𝐺) + 𝑥))
54eqeq1d 2215 . . . . . 6 (𝑢 = (0g𝐺) → ((𝑢 + 𝑥) = 𝑥 ↔ ((0g𝐺) + 𝑥) = 𝑥))
6 oveq2 5959 . . . . . . 7 (𝑢 = (0g𝐺) → (𝑥 + 𝑢) = (𝑥 + (0g𝐺)))
76eqeq1d 2215 . . . . . 6 (𝑢 = (0g𝐺) → ((𝑥 + 𝑢) = 𝑥 ↔ (𝑥 + (0g𝐺)) = 𝑥))
85, 7anbi12d 473 . . . . 5 (𝑢 = (0g𝐺) → (((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥) ↔ (((0g𝐺) + 𝑥) = 𝑥 ∧ (𝑥 + (0g𝐺)) = 𝑥)))
9 eqeq2 2216 . . . . . . 7 (𝑢 = (0g𝐺) → ((𝑦 + 𝑥) = 𝑢 ↔ (𝑦 + 𝑥) = (0g𝐺)))
10 eqeq2 2216 . . . . . . 7 (𝑢 = (0g𝐺) → ((𝑥 + 𝑦) = 𝑢 ↔ (𝑥 + 𝑦) = (0g𝐺)))
119, 10anbi12d 473 . . . . . 6 (𝑢 = (0g𝐺) → (((𝑦 + 𝑥) = 𝑢 ∧ (𝑥 + 𝑦) = 𝑢) ↔ ((𝑦 + 𝑥) = (0g𝐺) ∧ (𝑥 + 𝑦) = (0g𝐺))))
1211rexbidv 2508 . . . . 5 (𝑢 = (0g𝐺) → (∃𝑦𝐵 ((𝑦 + 𝑥) = 𝑢 ∧ (𝑥 + 𝑦) = 𝑢) ↔ ∃𝑦𝐵 ((𝑦 + 𝑥) = (0g𝐺) ∧ (𝑥 + 𝑦) = (0g𝐺))))
138, 12anbi12d 473 . . . 4 (𝑢 = (0g𝐺) → ((((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥) ∧ ∃𝑦𝐵 ((𝑦 + 𝑥) = 𝑢 ∧ (𝑥 + 𝑦) = 𝑢)) ↔ ((((0g𝐺) + 𝑥) = 𝑥 ∧ (𝑥 + (0g𝐺)) = 𝑥) ∧ ∃𝑦𝐵 ((𝑦 + 𝑥) = (0g𝐺) ∧ (𝑥 + 𝑦) = (0g𝐺)))))
1413ralbidv 2507 . . 3 (𝑢 = (0g𝐺) → (∀𝑥𝐵 (((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥) ∧ ∃𝑦𝐵 ((𝑦 + 𝑥) = 𝑢 ∧ (𝑥 + 𝑦) = 𝑢)) ↔ ∀𝑥𝐵 ((((0g𝐺) + 𝑥) = 𝑥 ∧ (𝑥 + (0g𝐺)) = 𝑥) ∧ ∃𝑦𝐵 ((𝑦 + 𝑥) = (0g𝐺) ∧ (𝑥 + 𝑦) = (0g𝐺)))))
1514adantl 277 . 2 ((𝐺 ∈ Grp ∧ 𝑢 = (0g𝐺)) → (∀𝑥𝐵 (((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥) ∧ ∃𝑦𝐵 ((𝑦 + 𝑥) = 𝑢 ∧ (𝑥 + 𝑦) = 𝑢)) ↔ ∀𝑥𝐵 ((((0g𝐺) + 𝑥) = 𝑥 ∧ (𝑥 + (0g𝐺)) = 𝑥) ∧ ∃𝑦𝐵 ((𝑦 + 𝑥) = (0g𝐺) ∧ (𝑥 + 𝑦) = (0g𝐺)))))
16 grpidinv.p . . . 4 + = (+g𝐺)
171, 16, 2grpidinv2 13434 . . 3 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → ((((0g𝐺) + 𝑥) = 𝑥 ∧ (𝑥 + (0g𝐺)) = 𝑥) ∧ ∃𝑦𝐵 ((𝑦 + 𝑥) = (0g𝐺) ∧ (𝑥 + 𝑦) = (0g𝐺))))
1817ralrimiva 2580 . 2 (𝐺 ∈ Grp → ∀𝑥𝐵 ((((0g𝐺) + 𝑥) = 𝑥 ∧ (𝑥 + (0g𝐺)) = 𝑥) ∧ ∃𝑦𝐵 ((𝑦 + 𝑥) = (0g𝐺) ∧ (𝑥 + 𝑦) = (0g𝐺))))
193, 15, 18rspcedvd 2884 1 (𝐺 ∈ Grp → ∃𝑢𝐵𝑥𝐵 (((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥) ∧ ∃𝑦𝐵 ((𝑦 + 𝑥) = 𝑢 ∧ (𝑥 + 𝑦) = 𝑢)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2177  wral 2485  wrex 2486  cfv 5276  (class class class)co 5951  Basecbs 12876  +gcplusg 12953  0gc0g 13132  Grpcgrp 13376
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-cnex 8023  ax-resscn 8024  ax-1re 8026  ax-addrcl 8029
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-riota 5906  df-ov 5954  df-inn 9044  df-2 9102  df-ndx 12879  df-slot 12880  df-base 12882  df-plusg 12966  df-0g 13134  df-mgm 13232  df-sgrp 13278  df-mnd 13293  df-grp 13379  df-minusg 13380
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator