![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > grpidinv | GIF version |
Description: A group has a left and right identity element, and every member has a left and right inverse. (Contributed by NM, 14-Oct-2006.) (Revised by AV, 1-Sep-2021.) |
Ref | Expression |
---|---|
grpidinv.b | ⊢ 𝐵 = (Base‘𝐺) |
grpidinv.p | ⊢ + = (+g‘𝐺) |
Ref | Expression |
---|---|
grpidinv | ⊢ (𝐺 ∈ Grp → ∃𝑢 ∈ 𝐵 ∀𝑥 ∈ 𝐵 (((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥) ∧ ∃𝑦 ∈ 𝐵 ((𝑦 + 𝑥) = 𝑢 ∧ (𝑥 + 𝑦) = 𝑢))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpidinv.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | eqid 2177 | . . 3 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
3 | 1, 2 | grpidcl 12909 | . 2 ⊢ (𝐺 ∈ Grp → (0g‘𝐺) ∈ 𝐵) |
4 | oveq1 5884 | . . . . . . 7 ⊢ (𝑢 = (0g‘𝐺) → (𝑢 + 𝑥) = ((0g‘𝐺) + 𝑥)) | |
5 | 4 | eqeq1d 2186 | . . . . . 6 ⊢ (𝑢 = (0g‘𝐺) → ((𝑢 + 𝑥) = 𝑥 ↔ ((0g‘𝐺) + 𝑥) = 𝑥)) |
6 | oveq2 5885 | . . . . . . 7 ⊢ (𝑢 = (0g‘𝐺) → (𝑥 + 𝑢) = (𝑥 + (0g‘𝐺))) | |
7 | 6 | eqeq1d 2186 | . . . . . 6 ⊢ (𝑢 = (0g‘𝐺) → ((𝑥 + 𝑢) = 𝑥 ↔ (𝑥 + (0g‘𝐺)) = 𝑥)) |
8 | 5, 7 | anbi12d 473 | . . . . 5 ⊢ (𝑢 = (0g‘𝐺) → (((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥) ↔ (((0g‘𝐺) + 𝑥) = 𝑥 ∧ (𝑥 + (0g‘𝐺)) = 𝑥))) |
9 | eqeq2 2187 | . . . . . . 7 ⊢ (𝑢 = (0g‘𝐺) → ((𝑦 + 𝑥) = 𝑢 ↔ (𝑦 + 𝑥) = (0g‘𝐺))) | |
10 | eqeq2 2187 | . . . . . . 7 ⊢ (𝑢 = (0g‘𝐺) → ((𝑥 + 𝑦) = 𝑢 ↔ (𝑥 + 𝑦) = (0g‘𝐺))) | |
11 | 9, 10 | anbi12d 473 | . . . . . 6 ⊢ (𝑢 = (0g‘𝐺) → (((𝑦 + 𝑥) = 𝑢 ∧ (𝑥 + 𝑦) = 𝑢) ↔ ((𝑦 + 𝑥) = (0g‘𝐺) ∧ (𝑥 + 𝑦) = (0g‘𝐺)))) |
12 | 11 | rexbidv 2478 | . . . . 5 ⊢ (𝑢 = (0g‘𝐺) → (∃𝑦 ∈ 𝐵 ((𝑦 + 𝑥) = 𝑢 ∧ (𝑥 + 𝑦) = 𝑢) ↔ ∃𝑦 ∈ 𝐵 ((𝑦 + 𝑥) = (0g‘𝐺) ∧ (𝑥 + 𝑦) = (0g‘𝐺)))) |
13 | 8, 12 | anbi12d 473 | . . . 4 ⊢ (𝑢 = (0g‘𝐺) → ((((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥) ∧ ∃𝑦 ∈ 𝐵 ((𝑦 + 𝑥) = 𝑢 ∧ (𝑥 + 𝑦) = 𝑢)) ↔ ((((0g‘𝐺) + 𝑥) = 𝑥 ∧ (𝑥 + (0g‘𝐺)) = 𝑥) ∧ ∃𝑦 ∈ 𝐵 ((𝑦 + 𝑥) = (0g‘𝐺) ∧ (𝑥 + 𝑦) = (0g‘𝐺))))) |
14 | 13 | ralbidv 2477 | . . 3 ⊢ (𝑢 = (0g‘𝐺) → (∀𝑥 ∈ 𝐵 (((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥) ∧ ∃𝑦 ∈ 𝐵 ((𝑦 + 𝑥) = 𝑢 ∧ (𝑥 + 𝑦) = 𝑢)) ↔ ∀𝑥 ∈ 𝐵 ((((0g‘𝐺) + 𝑥) = 𝑥 ∧ (𝑥 + (0g‘𝐺)) = 𝑥) ∧ ∃𝑦 ∈ 𝐵 ((𝑦 + 𝑥) = (0g‘𝐺) ∧ (𝑥 + 𝑦) = (0g‘𝐺))))) |
15 | 14 | adantl 277 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑢 = (0g‘𝐺)) → (∀𝑥 ∈ 𝐵 (((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥) ∧ ∃𝑦 ∈ 𝐵 ((𝑦 + 𝑥) = 𝑢 ∧ (𝑥 + 𝑦) = 𝑢)) ↔ ∀𝑥 ∈ 𝐵 ((((0g‘𝐺) + 𝑥) = 𝑥 ∧ (𝑥 + (0g‘𝐺)) = 𝑥) ∧ ∃𝑦 ∈ 𝐵 ((𝑦 + 𝑥) = (0g‘𝐺) ∧ (𝑥 + 𝑦) = (0g‘𝐺))))) |
16 | grpidinv.p | . . . 4 ⊢ + = (+g‘𝐺) | |
17 | 1, 16, 2 | grpidinv2 12933 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → ((((0g‘𝐺) + 𝑥) = 𝑥 ∧ (𝑥 + (0g‘𝐺)) = 𝑥) ∧ ∃𝑦 ∈ 𝐵 ((𝑦 + 𝑥) = (0g‘𝐺) ∧ (𝑥 + 𝑦) = (0g‘𝐺)))) |
18 | 17 | ralrimiva 2550 | . 2 ⊢ (𝐺 ∈ Grp → ∀𝑥 ∈ 𝐵 ((((0g‘𝐺) + 𝑥) = 𝑥 ∧ (𝑥 + (0g‘𝐺)) = 𝑥) ∧ ∃𝑦 ∈ 𝐵 ((𝑦 + 𝑥) = (0g‘𝐺) ∧ (𝑥 + 𝑦) = (0g‘𝐺)))) |
19 | 3, 15, 18 | rspcedvd 2849 | 1 ⊢ (𝐺 ∈ Grp → ∃𝑢 ∈ 𝐵 ∀𝑥 ∈ 𝐵 (((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥) ∧ ∃𝑦 ∈ 𝐵 ((𝑦 + 𝑥) = 𝑢 ∧ (𝑥 + 𝑦) = 𝑢))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 ∈ wcel 2148 ∀wral 2455 ∃wrex 2456 ‘cfv 5218 (class class class)co 5877 Basecbs 12464 +gcplusg 12538 0gc0g 12710 Grpcgrp 12882 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-cnex 7904 ax-resscn 7905 ax-1re 7907 ax-addrcl 7910 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-riota 5833 df-ov 5880 df-inn 8922 df-2 8980 df-ndx 12467 df-slot 12468 df-base 12470 df-plusg 12551 df-0g 12712 df-mgm 12780 df-sgrp 12813 df-mnd 12823 df-grp 12885 df-minusg 12886 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |