| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grplrinv | GIF version | ||
| Description: In a group, every member has a left and right inverse. (Contributed by AV, 1-Sep-2021.) |
| Ref | Expression |
|---|---|
| grplrinv.b | ⊢ 𝐵 = (Base‘𝐺) |
| grplrinv.p | ⊢ + = (+g‘𝐺) |
| grplrinv.i | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| grplrinv | ⊢ (𝐺 ∈ Grp → ∀𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ((𝑦 + 𝑥) = 0 ∧ (𝑥 + 𝑦) = 0 )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grplrinv.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | eqid 2229 | . . . 4 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
| 3 | 1, 2 | grpinvcl 13567 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → ((invg‘𝐺)‘𝑥) ∈ 𝐵) |
| 4 | oveq1 6001 | . . . . . 6 ⊢ (𝑦 = ((invg‘𝐺)‘𝑥) → (𝑦 + 𝑥) = (((invg‘𝐺)‘𝑥) + 𝑥)) | |
| 5 | 4 | eqeq1d 2238 | . . . . 5 ⊢ (𝑦 = ((invg‘𝐺)‘𝑥) → ((𝑦 + 𝑥) = 0 ↔ (((invg‘𝐺)‘𝑥) + 𝑥) = 0 )) |
| 6 | oveq2 6002 | . . . . . 6 ⊢ (𝑦 = ((invg‘𝐺)‘𝑥) → (𝑥 + 𝑦) = (𝑥 + ((invg‘𝐺)‘𝑥))) | |
| 7 | 6 | eqeq1d 2238 | . . . . 5 ⊢ (𝑦 = ((invg‘𝐺)‘𝑥) → ((𝑥 + 𝑦) = 0 ↔ (𝑥 + ((invg‘𝐺)‘𝑥)) = 0 )) |
| 8 | 5, 7 | anbi12d 473 | . . . 4 ⊢ (𝑦 = ((invg‘𝐺)‘𝑥) → (((𝑦 + 𝑥) = 0 ∧ (𝑥 + 𝑦) = 0 ) ↔ ((((invg‘𝐺)‘𝑥) + 𝑥) = 0 ∧ (𝑥 + ((invg‘𝐺)‘𝑥)) = 0 ))) |
| 9 | 8 | adantl 277 | . . 3 ⊢ (((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 = ((invg‘𝐺)‘𝑥)) → (((𝑦 + 𝑥) = 0 ∧ (𝑥 + 𝑦) = 0 ) ↔ ((((invg‘𝐺)‘𝑥) + 𝑥) = 0 ∧ (𝑥 + ((invg‘𝐺)‘𝑥)) = 0 ))) |
| 10 | grplrinv.p | . . . . 5 ⊢ + = (+g‘𝐺) | |
| 11 | grplrinv.i | . . . . 5 ⊢ 0 = (0g‘𝐺) | |
| 12 | 1, 10, 11, 2 | grplinv 13569 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → (((invg‘𝐺)‘𝑥) + 𝑥) = 0 ) |
| 13 | 1, 10, 11, 2 | grprinv 13570 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → (𝑥 + ((invg‘𝐺)‘𝑥)) = 0 ) |
| 14 | 12, 13 | jca 306 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → ((((invg‘𝐺)‘𝑥) + 𝑥) = 0 ∧ (𝑥 + ((invg‘𝐺)‘𝑥)) = 0 )) |
| 15 | 3, 9, 14 | rspcedvd 2913 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐵 ((𝑦 + 𝑥) = 0 ∧ (𝑥 + 𝑦) = 0 )) |
| 16 | 15 | ralrimiva 2603 | 1 ⊢ (𝐺 ∈ Grp → ∀𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ((𝑦 + 𝑥) = 0 ∧ (𝑥 + 𝑦) = 0 )) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 ∈ wcel 2200 ∀wral 2508 ∃wrex 2509 ‘cfv 5314 (class class class)co 5994 Basecbs 13018 +gcplusg 13096 0gc0g 13275 Grpcgrp 13519 invgcminusg 13520 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-cnex 8078 ax-resscn 8079 ax-1re 8081 ax-addrcl 8084 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-riota 5947 df-ov 5997 df-inn 9099 df-2 9157 df-ndx 13021 df-slot 13022 df-base 13024 df-plusg 13109 df-0g 13277 df-mgm 13375 df-sgrp 13421 df-mnd 13436 df-grp 13522 df-minusg 13523 |
| This theorem is referenced by: grpidinv2 13577 |
| Copyright terms: Public domain | W3C validator |