ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grplrinv GIF version

Theorem grplrinv 12933
Description: In a group, every member has a left and right inverse. (Contributed by AV, 1-Sep-2021.)
Hypotheses
Ref Expression
grplrinv.b 𝐵 = (Base‘𝐺)
grplrinv.p + = (+g𝐺)
grplrinv.i 0 = (0g𝐺)
Assertion
Ref Expression
grplrinv (𝐺 ∈ Grp → ∀𝑥𝐵𝑦𝐵 ((𝑦 + 𝑥) = 0 ∧ (𝑥 + 𝑦) = 0 ))
Distinct variable groups:   𝑦,𝐵   𝑥,𝐺,𝑦   𝑦, +   𝑦, 0
Allowed substitution hints:   𝐵(𝑥)   + (𝑥)   0 (𝑥)

Proof of Theorem grplrinv
StepHypRef Expression
1 grplrinv.b . . . 4 𝐵 = (Base‘𝐺)
2 eqid 2177 . . . 4 (invg𝐺) = (invg𝐺)
31, 2grpinvcl 12927 . . 3 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → ((invg𝐺)‘𝑥) ∈ 𝐵)
4 oveq1 5885 . . . . . 6 (𝑦 = ((invg𝐺)‘𝑥) → (𝑦 + 𝑥) = (((invg𝐺)‘𝑥) + 𝑥))
54eqeq1d 2186 . . . . 5 (𝑦 = ((invg𝐺)‘𝑥) → ((𝑦 + 𝑥) = 0 ↔ (((invg𝐺)‘𝑥) + 𝑥) = 0 ))
6 oveq2 5886 . . . . . 6 (𝑦 = ((invg𝐺)‘𝑥) → (𝑥 + 𝑦) = (𝑥 + ((invg𝐺)‘𝑥)))
76eqeq1d 2186 . . . . 5 (𝑦 = ((invg𝐺)‘𝑥) → ((𝑥 + 𝑦) = 0 ↔ (𝑥 + ((invg𝐺)‘𝑥)) = 0 ))
85, 7anbi12d 473 . . . 4 (𝑦 = ((invg𝐺)‘𝑥) → (((𝑦 + 𝑥) = 0 ∧ (𝑥 + 𝑦) = 0 ) ↔ ((((invg𝐺)‘𝑥) + 𝑥) = 0 ∧ (𝑥 + ((invg𝐺)‘𝑥)) = 0 )))
98adantl 277 . . 3 (((𝐺 ∈ Grp ∧ 𝑥𝐵) ∧ 𝑦 = ((invg𝐺)‘𝑥)) → (((𝑦 + 𝑥) = 0 ∧ (𝑥 + 𝑦) = 0 ) ↔ ((((invg𝐺)‘𝑥) + 𝑥) = 0 ∧ (𝑥 + ((invg𝐺)‘𝑥)) = 0 )))
10 grplrinv.p . . . . 5 + = (+g𝐺)
11 grplrinv.i . . . . 5 0 = (0g𝐺)
121, 10, 11, 2grplinv 12928 . . . 4 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → (((invg𝐺)‘𝑥) + 𝑥) = 0 )
131, 10, 11, 2grprinv 12929 . . . 4 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → (𝑥 + ((invg𝐺)‘𝑥)) = 0 )
1412, 13jca 306 . . 3 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → ((((invg𝐺)‘𝑥) + 𝑥) = 0 ∧ (𝑥 + ((invg𝐺)‘𝑥)) = 0 ))
153, 9, 14rspcedvd 2849 . 2 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → ∃𝑦𝐵 ((𝑦 + 𝑥) = 0 ∧ (𝑥 + 𝑦) = 0 ))
1615ralrimiva 2550 1 (𝐺 ∈ Grp → ∀𝑥𝐵𝑦𝐵 ((𝑦 + 𝑥) = 0 ∧ (𝑥 + 𝑦) = 0 ))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wcel 2148  wral 2455  wrex 2456  cfv 5218  (class class class)co 5878  Basecbs 12465  +gcplusg 12539  0gc0g 12711  Grpcgrp 12883  invgcminusg 12884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-cnex 7905  ax-resscn 7906  ax-1re 7908  ax-addrcl 7911
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5834  df-ov 5881  df-inn 8923  df-2 8981  df-ndx 12468  df-slot 12469  df-base 12471  df-plusg 12552  df-0g 12713  df-mgm 12781  df-sgrp 12814  df-mnd 12824  df-grp 12886  df-minusg 12887
This theorem is referenced by:  grpidinv2  12934
  Copyright terms: Public domain W3C validator