Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  2tp1odd GIF version

Theorem 2tp1odd 11637
 Description: A number which is twice an integer increased by 1 is odd. (Contributed by AV, 16-Jul-2021.)
Assertion
Ref Expression
2tp1odd ((𝐴 ∈ ℤ ∧ 𝐵 = ((2 · 𝐴) + 1)) → ¬ 2 ∥ 𝐵)

Proof of Theorem 2tp1odd
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 id 19 . . . . 5 (𝐴 ∈ ℤ → 𝐴 ∈ ℤ)
2 oveq2 5791 . . . . . . . 8 (𝑘 = 𝐴 → (2 · 𝑘) = (2 · 𝐴))
32oveq1d 5798 . . . . . . 7 (𝑘 = 𝐴 → ((2 · 𝑘) + 1) = ((2 · 𝐴) + 1))
43eqeq1d 2149 . . . . . 6 (𝑘 = 𝐴 → (((2 · 𝑘) + 1) = ((2 · 𝐴) + 1) ↔ ((2 · 𝐴) + 1) = ((2 · 𝐴) + 1)))
54adantl 275 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑘 = 𝐴) → (((2 · 𝑘) + 1) = ((2 · 𝐴) + 1) ↔ ((2 · 𝐴) + 1) = ((2 · 𝐴) + 1)))
6 eqidd 2141 . . . . 5 (𝐴 ∈ ℤ → ((2 · 𝐴) + 1) = ((2 · 𝐴) + 1))
71, 5, 6rspcedvd 2800 . . . 4 (𝐴 ∈ ℤ → ∃𝑘 ∈ ℤ ((2 · 𝑘) + 1) = ((2 · 𝐴) + 1))
8 2z 9126 . . . . . . . 8 2 ∈ ℤ
98a1i 9 . . . . . . 7 (𝐴 ∈ ℤ → 2 ∈ ℤ)
109, 1zmulcld 9223 . . . . . 6 (𝐴 ∈ ℤ → (2 · 𝐴) ∈ ℤ)
1110peano2zd 9220 . . . . 5 (𝐴 ∈ ℤ → ((2 · 𝐴) + 1) ∈ ℤ)
12 odd2np1 11626 . . . . 5 (((2 · 𝐴) + 1) ∈ ℤ → (¬ 2 ∥ ((2 · 𝐴) + 1) ↔ ∃𝑘 ∈ ℤ ((2 · 𝑘) + 1) = ((2 · 𝐴) + 1)))
1311, 12syl 14 . . . 4 (𝐴 ∈ ℤ → (¬ 2 ∥ ((2 · 𝐴) + 1) ↔ ∃𝑘 ∈ ℤ ((2 · 𝑘) + 1) = ((2 · 𝐴) + 1)))
147, 13mpbird 166 . . 3 (𝐴 ∈ ℤ → ¬ 2 ∥ ((2 · 𝐴) + 1))
1514adantr 274 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 = ((2 · 𝐴) + 1)) → ¬ 2 ∥ ((2 · 𝐴) + 1))
16 breq2 3942 . . 3 (𝐵 = ((2 · 𝐴) + 1) → (2 ∥ 𝐵 ↔ 2 ∥ ((2 · 𝐴) + 1)))
1716adantl 275 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 = ((2 · 𝐴) + 1)) → (2 ∥ 𝐵 ↔ 2 ∥ ((2 · 𝐴) + 1)))
1815, 17mtbird 663 1 ((𝐴 ∈ ℤ ∧ 𝐵 = ((2 · 𝐴) + 1)) → ¬ 2 ∥ 𝐵)
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 103   ↔ wb 104   = wceq 1332   ∈ wcel 1481  ∃wrex 2418   class class class wbr 3938  (class class class)co 5783  1c1 7665   + caddc 7667   · cmul 7669  2c2 8815  ℤcz 9098   ∥ cdvds 11549 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4055  ax-pow 4107  ax-pr 4140  ax-un 4364  ax-setind 4461  ax-cnex 7755  ax-resscn 7756  ax-1cn 7757  ax-1re 7758  ax-icn 7759  ax-addcl 7760  ax-addrcl 7761  ax-mulcl 7762  ax-mulrcl 7763  ax-addcom 7764  ax-mulcom 7765  ax-addass 7766  ax-mulass 7767  ax-distr 7768  ax-i2m1 7769  ax-0lt1 7770  ax-1rid 7771  ax-0id 7772  ax-rnegex 7773  ax-precex 7774  ax-cnre 7775  ax-pre-ltirr 7776  ax-pre-ltwlin 7777  ax-pre-lttrn 7778  ax-pre-apti 7779  ax-pre-ltadd 7780  ax-pre-mulgt0 7781  ax-pre-mulext 7782 This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-xor 1355  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2692  df-sbc 2915  df-dif 3079  df-un 3081  df-in 3083  df-ss 3090  df-pw 3518  df-sn 3539  df-pr 3540  df-op 3542  df-uni 3746  df-int 3781  df-br 3939  df-opab 3999  df-id 4224  df-po 4227  df-iso 4228  df-xp 4554  df-rel 4555  df-cnv 4556  df-co 4557  df-dm 4558  df-iota 5097  df-fun 5134  df-fv 5140  df-riota 5739  df-ov 5786  df-oprab 5787  df-mpo 5788  df-pnf 7846  df-mnf 7847  df-xr 7848  df-ltxr 7849  df-le 7850  df-sub 7979  df-neg 7980  df-reap 8381  df-ap 8388  df-div 8477  df-inn 8765  df-2 8823  df-n0 9022  df-z 9099  df-dvds 11550 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator