ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2tp1odd GIF version

Theorem 2tp1odd 11508
Description: A number which is twice an integer increased by 1 is odd. (Contributed by AV, 16-Jul-2021.)
Assertion
Ref Expression
2tp1odd ((𝐴 ∈ ℤ ∧ 𝐵 = ((2 · 𝐴) + 1)) → ¬ 2 ∥ 𝐵)

Proof of Theorem 2tp1odd
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 id 19 . . . . 5 (𝐴 ∈ ℤ → 𝐴 ∈ ℤ)
2 oveq2 5750 . . . . . . . 8 (𝑘 = 𝐴 → (2 · 𝑘) = (2 · 𝐴))
32oveq1d 5757 . . . . . . 7 (𝑘 = 𝐴 → ((2 · 𝑘) + 1) = ((2 · 𝐴) + 1))
43eqeq1d 2126 . . . . . 6 (𝑘 = 𝐴 → (((2 · 𝑘) + 1) = ((2 · 𝐴) + 1) ↔ ((2 · 𝐴) + 1) = ((2 · 𝐴) + 1)))
54adantl 275 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑘 = 𝐴) → (((2 · 𝑘) + 1) = ((2 · 𝐴) + 1) ↔ ((2 · 𝐴) + 1) = ((2 · 𝐴) + 1)))
6 eqidd 2118 . . . . 5 (𝐴 ∈ ℤ → ((2 · 𝐴) + 1) = ((2 · 𝐴) + 1))
71, 5, 6rspcedvd 2769 . . . 4 (𝐴 ∈ ℤ → ∃𝑘 ∈ ℤ ((2 · 𝑘) + 1) = ((2 · 𝐴) + 1))
8 2z 9050 . . . . . . . 8 2 ∈ ℤ
98a1i 9 . . . . . . 7 (𝐴 ∈ ℤ → 2 ∈ ℤ)
109, 1zmulcld 9147 . . . . . 6 (𝐴 ∈ ℤ → (2 · 𝐴) ∈ ℤ)
1110peano2zd 9144 . . . . 5 (𝐴 ∈ ℤ → ((2 · 𝐴) + 1) ∈ ℤ)
12 odd2np1 11497 . . . . 5 (((2 · 𝐴) + 1) ∈ ℤ → (¬ 2 ∥ ((2 · 𝐴) + 1) ↔ ∃𝑘 ∈ ℤ ((2 · 𝑘) + 1) = ((2 · 𝐴) + 1)))
1311, 12syl 14 . . . 4 (𝐴 ∈ ℤ → (¬ 2 ∥ ((2 · 𝐴) + 1) ↔ ∃𝑘 ∈ ℤ ((2 · 𝑘) + 1) = ((2 · 𝐴) + 1)))
147, 13mpbird 166 . . 3 (𝐴 ∈ ℤ → ¬ 2 ∥ ((2 · 𝐴) + 1))
1514adantr 274 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 = ((2 · 𝐴) + 1)) → ¬ 2 ∥ ((2 · 𝐴) + 1))
16 breq2 3903 . . 3 (𝐵 = ((2 · 𝐴) + 1) → (2 ∥ 𝐵 ↔ 2 ∥ ((2 · 𝐴) + 1)))
1716adantl 275 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 = ((2 · 𝐴) + 1)) → (2 ∥ 𝐵 ↔ 2 ∥ ((2 · 𝐴) + 1)))
1815, 17mtbird 647 1 ((𝐴 ∈ ℤ ∧ 𝐵 = ((2 · 𝐴) + 1)) → ¬ 2 ∥ 𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104   = wceq 1316  wcel 1465  wrex 2394   class class class wbr 3899  (class class class)co 5742  1c1 7589   + caddc 7591   · cmul 7593  2c2 8739  cz 9022  cdvds 11420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-sep 4016  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-cnex 7679  ax-resscn 7680  ax-1cn 7681  ax-1re 7682  ax-icn 7683  ax-addcl 7684  ax-addrcl 7685  ax-mulcl 7686  ax-mulrcl 7687  ax-addcom 7688  ax-mulcom 7689  ax-addass 7690  ax-mulass 7691  ax-distr 7692  ax-i2m1 7693  ax-0lt1 7694  ax-1rid 7695  ax-0id 7696  ax-rnegex 7697  ax-precex 7698  ax-cnre 7699  ax-pre-ltirr 7700  ax-pre-ltwlin 7701  ax-pre-lttrn 7702  ax-pre-apti 7703  ax-pre-ltadd 7704  ax-pre-mulgt0 7705  ax-pre-mulext 7706
This theorem depends on definitions:  df-bi 116  df-3or 948  df-3an 949  df-tru 1319  df-fal 1322  df-xor 1339  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-nel 2381  df-ral 2398  df-rex 2399  df-reu 2400  df-rmo 2401  df-rab 2402  df-v 2662  df-sbc 2883  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-br 3900  df-opab 3960  df-id 4185  df-po 4188  df-iso 4189  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-iota 5058  df-fun 5095  df-fv 5101  df-riota 5698  df-ov 5745  df-oprab 5746  df-mpo 5747  df-pnf 7770  df-mnf 7771  df-xr 7772  df-ltxr 7773  df-le 7774  df-sub 7903  df-neg 7904  df-reap 8305  df-ap 8312  df-div 8401  df-inn 8689  df-2 8747  df-n0 8946  df-z 9023  df-dvds 11421
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator