ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ringid GIF version

Theorem ringid 13002
Description: The multiplication operation of a unital ring has (one or more) identity elements. (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by Mario Carneiro, 22-Dec-2013.) (Revised by AV, 24-Aug-2021.)
Hypotheses
Ref Expression
ringid.b 𝐵 = (Base‘𝑅)
ringid.t · = (.r𝑅)
Assertion
Ref Expression
ringid ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ∃𝑢𝐵 ((𝑢 · 𝑋) = 𝑋 ∧ (𝑋 · 𝑢) = 𝑋))
Distinct variable groups:   𝑢,𝐵   𝑢,𝑅   𝑢,𝑋   𝑢, ·

Proof of Theorem ringid
StepHypRef Expression
1 ringid.b . . . 4 𝐵 = (Base‘𝑅)
2 eqid 2175 . . . 4 (1r𝑅) = (1r𝑅)
31, 2ringidcl 12996 . . 3 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐵)
43adantr 276 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (1r𝑅) ∈ 𝐵)
5 oveq1 5872 . . . . 5 (𝑢 = (1r𝑅) → (𝑢 · 𝑋) = ((1r𝑅) · 𝑋))
65eqeq1d 2184 . . . 4 (𝑢 = (1r𝑅) → ((𝑢 · 𝑋) = 𝑋 ↔ ((1r𝑅) · 𝑋) = 𝑋))
7 oveq2 5873 . . . . 5 (𝑢 = (1r𝑅) → (𝑋 · 𝑢) = (𝑋 · (1r𝑅)))
87eqeq1d 2184 . . . 4 (𝑢 = (1r𝑅) → ((𝑋 · 𝑢) = 𝑋 ↔ (𝑋 · (1r𝑅)) = 𝑋))
96, 8anbi12d 473 . . 3 (𝑢 = (1r𝑅) → (((𝑢 · 𝑋) = 𝑋 ∧ (𝑋 · 𝑢) = 𝑋) ↔ (((1r𝑅) · 𝑋) = 𝑋 ∧ (𝑋 · (1r𝑅)) = 𝑋)))
109adantl 277 . 2 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ 𝑢 = (1r𝑅)) → (((𝑢 · 𝑋) = 𝑋 ∧ (𝑋 · 𝑢) = 𝑋) ↔ (((1r𝑅) · 𝑋) = 𝑋 ∧ (𝑋 · (1r𝑅)) = 𝑋)))
11 ringid.t . . 3 · = (.r𝑅)
121, 11, 2ringidmlem 12998 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (((1r𝑅) · 𝑋) = 𝑋 ∧ (𝑋 · (1r𝑅)) = 𝑋))
134, 10, 12rspcedvd 2845 1 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ∃𝑢𝐵 ((𝑢 · 𝑋) = 𝑋 ∧ (𝑋 · 𝑢) = 𝑋))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wcel 2146  wrex 2454  cfv 5208  (class class class)co 5865  Basecbs 12428  .rcmulr 12493  1rcur 12935  Ringcrg 12972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-addcom 7886  ax-addass 7888  ax-i2m1 7891  ax-0lt1 7892  ax-0id 7894  ax-rnegex 7895  ax-pre-ltirr 7898  ax-pre-ltadd 7902
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-reu 2460  df-rmo 2461  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-fv 5216  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-pnf 7968  df-mnf 7969  df-ltxr 7971  df-inn 8891  df-2 8949  df-3 8950  df-ndx 12431  df-slot 12432  df-base 12434  df-sets 12435  df-plusg 12505  df-mulr 12506  df-0g 12628  df-mgm 12640  df-sgrp 12673  df-mnd 12683  df-mgp 12926  df-ur 12936  df-ring 12974
This theorem is referenced by:  ringadd2  13003
  Copyright terms: Public domain W3C validator