| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ringid | GIF version | ||
| Description: The multiplication operation of a unital ring has (one or more) identity elements. (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by Mario Carneiro, 22-Dec-2013.) (Revised by AV, 24-Aug-2021.) |
| Ref | Expression |
|---|---|
| ringid.b | ⊢ 𝐵 = (Base‘𝑅) |
| ringid.t | ⊢ · = (.r‘𝑅) |
| Ref | Expression |
|---|---|
| ringid | ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ∃𝑢 ∈ 𝐵 ((𝑢 · 𝑋) = 𝑋 ∧ (𝑋 · 𝑢) = 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringid.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | eqid 2196 | . . . 4 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 3 | 1, 2 | ringidcl 13652 | . . 3 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ 𝐵) |
| 4 | 3 | adantr 276 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (1r‘𝑅) ∈ 𝐵) |
| 5 | oveq1 5932 | . . . . 5 ⊢ (𝑢 = (1r‘𝑅) → (𝑢 · 𝑋) = ((1r‘𝑅) · 𝑋)) | |
| 6 | 5 | eqeq1d 2205 | . . . 4 ⊢ (𝑢 = (1r‘𝑅) → ((𝑢 · 𝑋) = 𝑋 ↔ ((1r‘𝑅) · 𝑋) = 𝑋)) |
| 7 | oveq2 5933 | . . . . 5 ⊢ (𝑢 = (1r‘𝑅) → (𝑋 · 𝑢) = (𝑋 · (1r‘𝑅))) | |
| 8 | 7 | eqeq1d 2205 | . . . 4 ⊢ (𝑢 = (1r‘𝑅) → ((𝑋 · 𝑢) = 𝑋 ↔ (𝑋 · (1r‘𝑅)) = 𝑋)) |
| 9 | 6, 8 | anbi12d 473 | . . 3 ⊢ (𝑢 = (1r‘𝑅) → (((𝑢 · 𝑋) = 𝑋 ∧ (𝑋 · 𝑢) = 𝑋) ↔ (((1r‘𝑅) · 𝑋) = 𝑋 ∧ (𝑋 · (1r‘𝑅)) = 𝑋))) |
| 10 | 9 | adantl 277 | . 2 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ 𝑢 = (1r‘𝑅)) → (((𝑢 · 𝑋) = 𝑋 ∧ (𝑋 · 𝑢) = 𝑋) ↔ (((1r‘𝑅) · 𝑋) = 𝑋 ∧ (𝑋 · (1r‘𝑅)) = 𝑋))) |
| 11 | ringid.t | . . 3 ⊢ · = (.r‘𝑅) | |
| 12 | 1, 11, 2 | ringidmlem 13654 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (((1r‘𝑅) · 𝑋) = 𝑋 ∧ (𝑋 · (1r‘𝑅)) = 𝑋)) |
| 13 | 4, 10, 12 | rspcedvd 2874 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ∃𝑢 ∈ 𝐵 ((𝑢 · 𝑋) = 𝑋 ∧ (𝑋 · 𝑢) = 𝑋)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2167 ∃wrex 2476 ‘cfv 5259 (class class class)co 5925 Basecbs 12703 .rcmulr 12781 1rcur 13591 Ringcrg 13628 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-i2m1 8001 ax-0lt1 8002 ax-0id 8004 ax-rnegex 8005 ax-pre-ltirr 8008 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-pnf 8080 df-mnf 8081 df-ltxr 8083 df-inn 9008 df-2 9066 df-3 9067 df-ndx 12706 df-slot 12707 df-base 12709 df-sets 12710 df-plusg 12793 df-mulr 12794 df-0g 12960 df-mgm 13058 df-sgrp 13104 df-mnd 13119 df-mgp 13553 df-ur 13592 df-ring 13630 |
| This theorem is referenced by: ringadd2 13659 |
| Copyright terms: Public domain | W3C validator |