ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modqmuladd GIF version

Theorem modqmuladd 10596
Description: Decomposition of an integer into a multiple of a modulus and a remainder. (Contributed by Jim Kingdon, 23-Oct-2021.)
Hypotheses
Ref Expression
modqmuladd.a (𝜑𝐴 ∈ ℤ)
modqmuladd.bq (𝜑𝐵 ∈ ℚ)
modqmuladd.b (𝜑𝐵 ∈ (0[,)𝑀))
modqmuladd.m (𝜑𝑀 ∈ ℚ)
modqmuladd.mgt0 (𝜑 → 0 < 𝑀)
Assertion
Ref Expression
modqmuladd (𝜑 → ((𝐴 mod 𝑀) = 𝐵 ↔ ∃𝑘 ∈ ℤ 𝐴 = ((𝑘 · 𝑀) + 𝐵)))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝑀   𝜑,𝑘

Proof of Theorem modqmuladd
StepHypRef Expression
1 modqmuladd.a . . . . . . 7 (𝜑𝐴 ∈ ℤ)
2 zq 9829 . . . . . . 7 (𝐴 ∈ ℤ → 𝐴 ∈ ℚ)
31, 2syl 14 . . . . . 6 (𝜑𝐴 ∈ ℚ)
4 modqmuladd.m . . . . . 6 (𝜑𝑀 ∈ ℚ)
5 modqmuladd.mgt0 . . . . . . 7 (𝜑 → 0 < 𝑀)
65gt0ne0d 8667 . . . . . 6 (𝜑𝑀 ≠ 0)
7 qdivcl 9846 . . . . . 6 ((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 𝑀 ≠ 0) → (𝐴 / 𝑀) ∈ ℚ)
83, 4, 6, 7syl3anc 1271 . . . . 5 (𝜑 → (𝐴 / 𝑀) ∈ ℚ)
98flqcld 10505 . . . 4 (𝜑 → (⌊‘(𝐴 / 𝑀)) ∈ ℤ)
10 oveq1 6014 . . . . . . 7 (𝑘 = (⌊‘(𝐴 / 𝑀)) → (𝑘 · 𝑀) = ((⌊‘(𝐴 / 𝑀)) · 𝑀))
1110oveq1d 6022 . . . . . 6 (𝑘 = (⌊‘(𝐴 / 𝑀)) → ((𝑘 · 𝑀) + (𝐴 mod 𝑀)) = (((⌊‘(𝐴 / 𝑀)) · 𝑀) + (𝐴 mod 𝑀)))
1211eqeq2d 2241 . . . . 5 (𝑘 = (⌊‘(𝐴 / 𝑀)) → (𝐴 = ((𝑘 · 𝑀) + (𝐴 mod 𝑀)) ↔ 𝐴 = (((⌊‘(𝐴 / 𝑀)) · 𝑀) + (𝐴 mod 𝑀))))
1312adantl 277 . . . 4 ((𝜑𝑘 = (⌊‘(𝐴 / 𝑀))) → (𝐴 = ((𝑘 · 𝑀) + (𝐴 mod 𝑀)) ↔ 𝐴 = (((⌊‘(𝐴 / 𝑀)) · 𝑀) + (𝐴 mod 𝑀))))
14 flqpmodeq 10557 . . . . . 6 ((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) → (((⌊‘(𝐴 / 𝑀)) · 𝑀) + (𝐴 mod 𝑀)) = 𝐴)
153, 4, 5, 14syl3anc 1271 . . . . 5 (𝜑 → (((⌊‘(𝐴 / 𝑀)) · 𝑀) + (𝐴 mod 𝑀)) = 𝐴)
1615eqcomd 2235 . . . 4 (𝜑𝐴 = (((⌊‘(𝐴 / 𝑀)) · 𝑀) + (𝐴 mod 𝑀)))
179, 13, 16rspcedvd 2913 . . 3 (𝜑 → ∃𝑘 ∈ ℤ 𝐴 = ((𝑘 · 𝑀) + (𝐴 mod 𝑀)))
18 oveq2 6015 . . . . . 6 (𝐵 = (𝐴 mod 𝑀) → ((𝑘 · 𝑀) + 𝐵) = ((𝑘 · 𝑀) + (𝐴 mod 𝑀)))
1918eqeq2d 2241 . . . . 5 (𝐵 = (𝐴 mod 𝑀) → (𝐴 = ((𝑘 · 𝑀) + 𝐵) ↔ 𝐴 = ((𝑘 · 𝑀) + (𝐴 mod 𝑀))))
2019eqcoms 2232 . . . 4 ((𝐴 mod 𝑀) = 𝐵 → (𝐴 = ((𝑘 · 𝑀) + 𝐵) ↔ 𝐴 = ((𝑘 · 𝑀) + (𝐴 mod 𝑀))))
2120rexbidv 2531 . . 3 ((𝐴 mod 𝑀) = 𝐵 → (∃𝑘 ∈ ℤ 𝐴 = ((𝑘 · 𝑀) + 𝐵) ↔ ∃𝑘 ∈ ℤ 𝐴 = ((𝑘 · 𝑀) + (𝐴 mod 𝑀))))
2217, 21syl5ibrcom 157 . 2 (𝜑 → ((𝐴 mod 𝑀) = 𝐵 → ∃𝑘 ∈ ℤ 𝐴 = ((𝑘 · 𝑀) + 𝐵)))
23 oveq1 6014 . . . . . 6 (𝐴 = ((𝑘 · 𝑀) + 𝐵) → (𝐴 mod 𝑀) = (((𝑘 · 𝑀) + 𝐵) mod 𝑀))
2423adantl 277 . . . . 5 (((𝜑𝑘 ∈ ℤ) ∧ 𝐴 = ((𝑘 · 𝑀) + 𝐵)) → (𝐴 mod 𝑀) = (((𝑘 · 𝑀) + 𝐵) mod 𝑀))
25 simplr 528 . . . . . 6 (((𝜑𝑘 ∈ ℤ) ∧ 𝐴 = ((𝑘 · 𝑀) + 𝐵)) → 𝑘 ∈ ℤ)
264ad2antrr 488 . . . . . 6 (((𝜑𝑘 ∈ ℤ) ∧ 𝐴 = ((𝑘 · 𝑀) + 𝐵)) → 𝑀 ∈ ℚ)
27 modqmuladd.bq . . . . . . 7 (𝜑𝐵 ∈ ℚ)
2827ad2antrr 488 . . . . . 6 (((𝜑𝑘 ∈ ℤ) ∧ 𝐴 = ((𝑘 · 𝑀) + 𝐵)) → 𝐵 ∈ ℚ)
29 modqmuladd.b . . . . . . 7 (𝜑𝐵 ∈ (0[,)𝑀))
3029ad2antrr 488 . . . . . 6 (((𝜑𝑘 ∈ ℤ) ∧ 𝐴 = ((𝑘 · 𝑀) + 𝐵)) → 𝐵 ∈ (0[,)𝑀))
31 mulqaddmodid 10594 . . . . . 6 (((𝑘 ∈ ℤ ∧ 𝑀 ∈ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ∈ (0[,)𝑀))) → (((𝑘 · 𝑀) + 𝐵) mod 𝑀) = 𝐵)
3225, 26, 28, 30, 31syl22anc 1272 . . . . 5 (((𝜑𝑘 ∈ ℤ) ∧ 𝐴 = ((𝑘 · 𝑀) + 𝐵)) → (((𝑘 · 𝑀) + 𝐵) mod 𝑀) = 𝐵)
3324, 32eqtrd 2262 . . . 4 (((𝜑𝑘 ∈ ℤ) ∧ 𝐴 = ((𝑘 · 𝑀) + 𝐵)) → (𝐴 mod 𝑀) = 𝐵)
3433ex 115 . . 3 ((𝜑𝑘 ∈ ℤ) → (𝐴 = ((𝑘 · 𝑀) + 𝐵) → (𝐴 mod 𝑀) = 𝐵))
3534rexlimdva 2648 . 2 (𝜑 → (∃𝑘 ∈ ℤ 𝐴 = ((𝑘 · 𝑀) + 𝐵) → (𝐴 mod 𝑀) = 𝐵))
3622, 35impbid 129 1 (𝜑 → ((𝐴 mod 𝑀) = 𝐵 ↔ ∃𝑘 ∈ ℤ 𝐴 = ((𝑘 · 𝑀) + 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  wne 2400  wrex 2509   class class class wbr 4083  cfv 5318  (class class class)co 6007  0cc0 8007   + caddc 8010   · cmul 8012   < clt 8189   / cdiv 8827  cz 9454  cq 9822  [,)cico 10094  cfl 10496   mod cmo 10552
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123  ax-pre-mulgt0 8124  ax-pre-mulext 8125  ax-arch 8126
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-po 4387  df-iso 4388  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-reap 8730  df-ap 8737  df-div 8828  df-inn 9119  df-n0 9378  df-z 9455  df-q 9823  df-rp 9858  df-ico 10098  df-fl 10498  df-mod 10553
This theorem is referenced by:  modqmuladdim  10597
  Copyright terms: Public domain W3C validator