ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modqmuladd GIF version

Theorem modqmuladd 10334
Description: Decomposition of an integer into a multiple of a modulus and a remainder. (Contributed by Jim Kingdon, 23-Oct-2021.)
Hypotheses
Ref Expression
modqmuladd.a (𝜑𝐴 ∈ ℤ)
modqmuladd.bq (𝜑𝐵 ∈ ℚ)
modqmuladd.b (𝜑𝐵 ∈ (0[,)𝑀))
modqmuladd.m (𝜑𝑀 ∈ ℚ)
modqmuladd.mgt0 (𝜑 → 0 < 𝑀)
Assertion
Ref Expression
modqmuladd (𝜑 → ((𝐴 mod 𝑀) = 𝐵 ↔ ∃𝑘 ∈ ℤ 𝐴 = ((𝑘 · 𝑀) + 𝐵)))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝑀   𝜑,𝑘

Proof of Theorem modqmuladd
StepHypRef Expression
1 modqmuladd.a . . . . . . 7 (𝜑𝐴 ∈ ℤ)
2 zq 9597 . . . . . . 7 (𝐴 ∈ ℤ → 𝐴 ∈ ℚ)
31, 2syl 14 . . . . . 6 (𝜑𝐴 ∈ ℚ)
4 modqmuladd.m . . . . . 6 (𝜑𝑀 ∈ ℚ)
5 modqmuladd.mgt0 . . . . . . 7 (𝜑 → 0 < 𝑀)
65gt0ne0d 8443 . . . . . 6 (𝜑𝑀 ≠ 0)
7 qdivcl 9614 . . . . . 6 ((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 𝑀 ≠ 0) → (𝐴 / 𝑀) ∈ ℚ)
83, 4, 6, 7syl3anc 1238 . . . . 5 (𝜑 → (𝐴 / 𝑀) ∈ ℚ)
98flqcld 10245 . . . 4 (𝜑 → (⌊‘(𝐴 / 𝑀)) ∈ ℤ)
10 oveq1 5872 . . . . . . 7 (𝑘 = (⌊‘(𝐴 / 𝑀)) → (𝑘 · 𝑀) = ((⌊‘(𝐴 / 𝑀)) · 𝑀))
1110oveq1d 5880 . . . . . 6 (𝑘 = (⌊‘(𝐴 / 𝑀)) → ((𝑘 · 𝑀) + (𝐴 mod 𝑀)) = (((⌊‘(𝐴 / 𝑀)) · 𝑀) + (𝐴 mod 𝑀)))
1211eqeq2d 2187 . . . . 5 (𝑘 = (⌊‘(𝐴 / 𝑀)) → (𝐴 = ((𝑘 · 𝑀) + (𝐴 mod 𝑀)) ↔ 𝐴 = (((⌊‘(𝐴 / 𝑀)) · 𝑀) + (𝐴 mod 𝑀))))
1312adantl 277 . . . 4 ((𝜑𝑘 = (⌊‘(𝐴 / 𝑀))) → (𝐴 = ((𝑘 · 𝑀) + (𝐴 mod 𝑀)) ↔ 𝐴 = (((⌊‘(𝐴 / 𝑀)) · 𝑀) + (𝐴 mod 𝑀))))
14 flqpmodeq 10295 . . . . . 6 ((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) → (((⌊‘(𝐴 / 𝑀)) · 𝑀) + (𝐴 mod 𝑀)) = 𝐴)
153, 4, 5, 14syl3anc 1238 . . . . 5 (𝜑 → (((⌊‘(𝐴 / 𝑀)) · 𝑀) + (𝐴 mod 𝑀)) = 𝐴)
1615eqcomd 2181 . . . 4 (𝜑𝐴 = (((⌊‘(𝐴 / 𝑀)) · 𝑀) + (𝐴 mod 𝑀)))
179, 13, 16rspcedvd 2845 . . 3 (𝜑 → ∃𝑘 ∈ ℤ 𝐴 = ((𝑘 · 𝑀) + (𝐴 mod 𝑀)))
18 oveq2 5873 . . . . . 6 (𝐵 = (𝐴 mod 𝑀) → ((𝑘 · 𝑀) + 𝐵) = ((𝑘 · 𝑀) + (𝐴 mod 𝑀)))
1918eqeq2d 2187 . . . . 5 (𝐵 = (𝐴 mod 𝑀) → (𝐴 = ((𝑘 · 𝑀) + 𝐵) ↔ 𝐴 = ((𝑘 · 𝑀) + (𝐴 mod 𝑀))))
2019eqcoms 2178 . . . 4 ((𝐴 mod 𝑀) = 𝐵 → (𝐴 = ((𝑘 · 𝑀) + 𝐵) ↔ 𝐴 = ((𝑘 · 𝑀) + (𝐴 mod 𝑀))))
2120rexbidv 2476 . . 3 ((𝐴 mod 𝑀) = 𝐵 → (∃𝑘 ∈ ℤ 𝐴 = ((𝑘 · 𝑀) + 𝐵) ↔ ∃𝑘 ∈ ℤ 𝐴 = ((𝑘 · 𝑀) + (𝐴 mod 𝑀))))
2217, 21syl5ibrcom 157 . 2 (𝜑 → ((𝐴 mod 𝑀) = 𝐵 → ∃𝑘 ∈ ℤ 𝐴 = ((𝑘 · 𝑀) + 𝐵)))
23 oveq1 5872 . . . . . 6 (𝐴 = ((𝑘 · 𝑀) + 𝐵) → (𝐴 mod 𝑀) = (((𝑘 · 𝑀) + 𝐵) mod 𝑀))
2423adantl 277 . . . . 5 (((𝜑𝑘 ∈ ℤ) ∧ 𝐴 = ((𝑘 · 𝑀) + 𝐵)) → (𝐴 mod 𝑀) = (((𝑘 · 𝑀) + 𝐵) mod 𝑀))
25 simplr 528 . . . . . 6 (((𝜑𝑘 ∈ ℤ) ∧ 𝐴 = ((𝑘 · 𝑀) + 𝐵)) → 𝑘 ∈ ℤ)
264ad2antrr 488 . . . . . 6 (((𝜑𝑘 ∈ ℤ) ∧ 𝐴 = ((𝑘 · 𝑀) + 𝐵)) → 𝑀 ∈ ℚ)
27 modqmuladd.bq . . . . . . 7 (𝜑𝐵 ∈ ℚ)
2827ad2antrr 488 . . . . . 6 (((𝜑𝑘 ∈ ℤ) ∧ 𝐴 = ((𝑘 · 𝑀) + 𝐵)) → 𝐵 ∈ ℚ)
29 modqmuladd.b . . . . . . 7 (𝜑𝐵 ∈ (0[,)𝑀))
3029ad2antrr 488 . . . . . 6 (((𝜑𝑘 ∈ ℤ) ∧ 𝐴 = ((𝑘 · 𝑀) + 𝐵)) → 𝐵 ∈ (0[,)𝑀))
31 mulqaddmodid 10332 . . . . . 6 (((𝑘 ∈ ℤ ∧ 𝑀 ∈ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ∈ (0[,)𝑀))) → (((𝑘 · 𝑀) + 𝐵) mod 𝑀) = 𝐵)
3225, 26, 28, 30, 31syl22anc 1239 . . . . 5 (((𝜑𝑘 ∈ ℤ) ∧ 𝐴 = ((𝑘 · 𝑀) + 𝐵)) → (((𝑘 · 𝑀) + 𝐵) mod 𝑀) = 𝐵)
3324, 32eqtrd 2208 . . . 4 (((𝜑𝑘 ∈ ℤ) ∧ 𝐴 = ((𝑘 · 𝑀) + 𝐵)) → (𝐴 mod 𝑀) = 𝐵)
3433ex 115 . . 3 ((𝜑𝑘 ∈ ℤ) → (𝐴 = ((𝑘 · 𝑀) + 𝐵) → (𝐴 mod 𝑀) = 𝐵))
3534rexlimdva 2592 . 2 (𝜑 → (∃𝑘 ∈ ℤ 𝐴 = ((𝑘 · 𝑀) + 𝐵) → (𝐴 mod 𝑀) = 𝐵))
3622, 35impbid 129 1 (𝜑 → ((𝐴 mod 𝑀) = 𝐵 ↔ ∃𝑘 ∈ ℤ 𝐴 = ((𝑘 · 𝑀) + 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wcel 2146  wne 2345  wrex 2454   class class class wbr 3998  cfv 5208  (class class class)co 5865  0cc0 7786   + caddc 7789   · cmul 7791   < clt 7966   / cdiv 8601  cz 9224  cq 9590  [,)cico 9859  cfl 10236   mod cmo 10290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-mulrcl 7885  ax-addcom 7886  ax-mulcom 7887  ax-addass 7888  ax-mulass 7889  ax-distr 7890  ax-i2m1 7891  ax-0lt1 7892  ax-1rid 7893  ax-0id 7894  ax-rnegex 7895  ax-precex 7896  ax-cnre 7897  ax-pre-ltirr 7898  ax-pre-ltwlin 7899  ax-pre-lttrn 7900  ax-pre-apti 7901  ax-pre-ltadd 7902  ax-pre-mulgt0 7903  ax-pre-mulext 7904  ax-arch 7905
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-reu 2460  df-rmo 2461  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-po 4290  df-iso 4291  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-fv 5216  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132  df-pnf 7968  df-mnf 7969  df-xr 7970  df-ltxr 7971  df-le 7972  df-sub 8104  df-neg 8105  df-reap 8506  df-ap 8513  df-div 8602  df-inn 8891  df-n0 9148  df-z 9225  df-q 9591  df-rp 9623  df-ico 9863  df-fl 10238  df-mod 10291
This theorem is referenced by:  modqmuladdim  10335
  Copyright terms: Public domain W3C validator