ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modqmuladd GIF version

Theorem modqmuladd 10458
Description: Decomposition of an integer into a multiple of a modulus and a remainder. (Contributed by Jim Kingdon, 23-Oct-2021.)
Hypotheses
Ref Expression
modqmuladd.a (𝜑𝐴 ∈ ℤ)
modqmuladd.bq (𝜑𝐵 ∈ ℚ)
modqmuladd.b (𝜑𝐵 ∈ (0[,)𝑀))
modqmuladd.m (𝜑𝑀 ∈ ℚ)
modqmuladd.mgt0 (𝜑 → 0 < 𝑀)
Assertion
Ref Expression
modqmuladd (𝜑 → ((𝐴 mod 𝑀) = 𝐵 ↔ ∃𝑘 ∈ ℤ 𝐴 = ((𝑘 · 𝑀) + 𝐵)))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝑀   𝜑,𝑘

Proof of Theorem modqmuladd
StepHypRef Expression
1 modqmuladd.a . . . . . . 7 (𝜑𝐴 ∈ ℤ)
2 zq 9700 . . . . . . 7 (𝐴 ∈ ℤ → 𝐴 ∈ ℚ)
31, 2syl 14 . . . . . 6 (𝜑𝐴 ∈ ℚ)
4 modqmuladd.m . . . . . 6 (𝜑𝑀 ∈ ℚ)
5 modqmuladd.mgt0 . . . . . . 7 (𝜑 → 0 < 𝑀)
65gt0ne0d 8539 . . . . . 6 (𝜑𝑀 ≠ 0)
7 qdivcl 9717 . . . . . 6 ((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 𝑀 ≠ 0) → (𝐴 / 𝑀) ∈ ℚ)
83, 4, 6, 7syl3anc 1249 . . . . 5 (𝜑 → (𝐴 / 𝑀) ∈ ℚ)
98flqcld 10367 . . . 4 (𝜑 → (⌊‘(𝐴 / 𝑀)) ∈ ℤ)
10 oveq1 5929 . . . . . . 7 (𝑘 = (⌊‘(𝐴 / 𝑀)) → (𝑘 · 𝑀) = ((⌊‘(𝐴 / 𝑀)) · 𝑀))
1110oveq1d 5937 . . . . . 6 (𝑘 = (⌊‘(𝐴 / 𝑀)) → ((𝑘 · 𝑀) + (𝐴 mod 𝑀)) = (((⌊‘(𝐴 / 𝑀)) · 𝑀) + (𝐴 mod 𝑀)))
1211eqeq2d 2208 . . . . 5 (𝑘 = (⌊‘(𝐴 / 𝑀)) → (𝐴 = ((𝑘 · 𝑀) + (𝐴 mod 𝑀)) ↔ 𝐴 = (((⌊‘(𝐴 / 𝑀)) · 𝑀) + (𝐴 mod 𝑀))))
1312adantl 277 . . . 4 ((𝜑𝑘 = (⌊‘(𝐴 / 𝑀))) → (𝐴 = ((𝑘 · 𝑀) + (𝐴 mod 𝑀)) ↔ 𝐴 = (((⌊‘(𝐴 / 𝑀)) · 𝑀) + (𝐴 mod 𝑀))))
14 flqpmodeq 10419 . . . . . 6 ((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) → (((⌊‘(𝐴 / 𝑀)) · 𝑀) + (𝐴 mod 𝑀)) = 𝐴)
153, 4, 5, 14syl3anc 1249 . . . . 5 (𝜑 → (((⌊‘(𝐴 / 𝑀)) · 𝑀) + (𝐴 mod 𝑀)) = 𝐴)
1615eqcomd 2202 . . . 4 (𝜑𝐴 = (((⌊‘(𝐴 / 𝑀)) · 𝑀) + (𝐴 mod 𝑀)))
179, 13, 16rspcedvd 2874 . . 3 (𝜑 → ∃𝑘 ∈ ℤ 𝐴 = ((𝑘 · 𝑀) + (𝐴 mod 𝑀)))
18 oveq2 5930 . . . . . 6 (𝐵 = (𝐴 mod 𝑀) → ((𝑘 · 𝑀) + 𝐵) = ((𝑘 · 𝑀) + (𝐴 mod 𝑀)))
1918eqeq2d 2208 . . . . 5 (𝐵 = (𝐴 mod 𝑀) → (𝐴 = ((𝑘 · 𝑀) + 𝐵) ↔ 𝐴 = ((𝑘 · 𝑀) + (𝐴 mod 𝑀))))
2019eqcoms 2199 . . . 4 ((𝐴 mod 𝑀) = 𝐵 → (𝐴 = ((𝑘 · 𝑀) + 𝐵) ↔ 𝐴 = ((𝑘 · 𝑀) + (𝐴 mod 𝑀))))
2120rexbidv 2498 . . 3 ((𝐴 mod 𝑀) = 𝐵 → (∃𝑘 ∈ ℤ 𝐴 = ((𝑘 · 𝑀) + 𝐵) ↔ ∃𝑘 ∈ ℤ 𝐴 = ((𝑘 · 𝑀) + (𝐴 mod 𝑀))))
2217, 21syl5ibrcom 157 . 2 (𝜑 → ((𝐴 mod 𝑀) = 𝐵 → ∃𝑘 ∈ ℤ 𝐴 = ((𝑘 · 𝑀) + 𝐵)))
23 oveq1 5929 . . . . . 6 (𝐴 = ((𝑘 · 𝑀) + 𝐵) → (𝐴 mod 𝑀) = (((𝑘 · 𝑀) + 𝐵) mod 𝑀))
2423adantl 277 . . . . 5 (((𝜑𝑘 ∈ ℤ) ∧ 𝐴 = ((𝑘 · 𝑀) + 𝐵)) → (𝐴 mod 𝑀) = (((𝑘 · 𝑀) + 𝐵) mod 𝑀))
25 simplr 528 . . . . . 6 (((𝜑𝑘 ∈ ℤ) ∧ 𝐴 = ((𝑘 · 𝑀) + 𝐵)) → 𝑘 ∈ ℤ)
264ad2antrr 488 . . . . . 6 (((𝜑𝑘 ∈ ℤ) ∧ 𝐴 = ((𝑘 · 𝑀) + 𝐵)) → 𝑀 ∈ ℚ)
27 modqmuladd.bq . . . . . . 7 (𝜑𝐵 ∈ ℚ)
2827ad2antrr 488 . . . . . 6 (((𝜑𝑘 ∈ ℤ) ∧ 𝐴 = ((𝑘 · 𝑀) + 𝐵)) → 𝐵 ∈ ℚ)
29 modqmuladd.b . . . . . . 7 (𝜑𝐵 ∈ (0[,)𝑀))
3029ad2antrr 488 . . . . . 6 (((𝜑𝑘 ∈ ℤ) ∧ 𝐴 = ((𝑘 · 𝑀) + 𝐵)) → 𝐵 ∈ (0[,)𝑀))
31 mulqaddmodid 10456 . . . . . 6 (((𝑘 ∈ ℤ ∧ 𝑀 ∈ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ∈ (0[,)𝑀))) → (((𝑘 · 𝑀) + 𝐵) mod 𝑀) = 𝐵)
3225, 26, 28, 30, 31syl22anc 1250 . . . . 5 (((𝜑𝑘 ∈ ℤ) ∧ 𝐴 = ((𝑘 · 𝑀) + 𝐵)) → (((𝑘 · 𝑀) + 𝐵) mod 𝑀) = 𝐵)
3324, 32eqtrd 2229 . . . 4 (((𝜑𝑘 ∈ ℤ) ∧ 𝐴 = ((𝑘 · 𝑀) + 𝐵)) → (𝐴 mod 𝑀) = 𝐵)
3433ex 115 . . 3 ((𝜑𝑘 ∈ ℤ) → (𝐴 = ((𝑘 · 𝑀) + 𝐵) → (𝐴 mod 𝑀) = 𝐵))
3534rexlimdva 2614 . 2 (𝜑 → (∃𝑘 ∈ ℤ 𝐴 = ((𝑘 · 𝑀) + 𝐵) → (𝐴 mod 𝑀) = 𝐵))
3622, 35impbid 129 1 (𝜑 → ((𝐴 mod 𝑀) = 𝐵 ↔ ∃𝑘 ∈ ℤ 𝐴 = ((𝑘 · 𝑀) + 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  wne 2367  wrex 2476   class class class wbr 4033  cfv 5258  (class class class)co 5922  0cc0 7879   + caddc 7882   · cmul 7884   < clt 8061   / cdiv 8699  cz 9326  cq 9693  [,)cico 9965  cfl 10358   mod cmo 10414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-po 4331  df-iso 4332  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-n0 9250  df-z 9327  df-q 9694  df-rp 9729  df-ico 9969  df-fl 10360  df-mod 10415
This theorem is referenced by:  modqmuladdim  10459
  Copyright terms: Public domain W3C validator