ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modqmuladd GIF version

Theorem modqmuladd 10359
Description: Decomposition of an integer into a multiple of a modulus and a remainder. (Contributed by Jim Kingdon, 23-Oct-2021.)
Hypotheses
Ref Expression
modqmuladd.a (𝜑𝐴 ∈ ℤ)
modqmuladd.bq (𝜑𝐵 ∈ ℚ)
modqmuladd.b (𝜑𝐵 ∈ (0[,)𝑀))
modqmuladd.m (𝜑𝑀 ∈ ℚ)
modqmuladd.mgt0 (𝜑 → 0 < 𝑀)
Assertion
Ref Expression
modqmuladd (𝜑 → ((𝐴 mod 𝑀) = 𝐵 ↔ ∃𝑘 ∈ ℤ 𝐴 = ((𝑘 · 𝑀) + 𝐵)))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝑀   𝜑,𝑘

Proof of Theorem modqmuladd
StepHypRef Expression
1 modqmuladd.a . . . . . . 7 (𝜑𝐴 ∈ ℤ)
2 zq 9620 . . . . . . 7 (𝐴 ∈ ℤ → 𝐴 ∈ ℚ)
31, 2syl 14 . . . . . 6 (𝜑𝐴 ∈ ℚ)
4 modqmuladd.m . . . . . 6 (𝜑𝑀 ∈ ℚ)
5 modqmuladd.mgt0 . . . . . . 7 (𝜑 → 0 < 𝑀)
65gt0ne0d 8463 . . . . . 6 (𝜑𝑀 ≠ 0)
7 qdivcl 9637 . . . . . 6 ((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 𝑀 ≠ 0) → (𝐴 / 𝑀) ∈ ℚ)
83, 4, 6, 7syl3anc 1238 . . . . 5 (𝜑 → (𝐴 / 𝑀) ∈ ℚ)
98flqcld 10270 . . . 4 (𝜑 → (⌊‘(𝐴 / 𝑀)) ∈ ℤ)
10 oveq1 5877 . . . . . . 7 (𝑘 = (⌊‘(𝐴 / 𝑀)) → (𝑘 · 𝑀) = ((⌊‘(𝐴 / 𝑀)) · 𝑀))
1110oveq1d 5885 . . . . . 6 (𝑘 = (⌊‘(𝐴 / 𝑀)) → ((𝑘 · 𝑀) + (𝐴 mod 𝑀)) = (((⌊‘(𝐴 / 𝑀)) · 𝑀) + (𝐴 mod 𝑀)))
1211eqeq2d 2189 . . . . 5 (𝑘 = (⌊‘(𝐴 / 𝑀)) → (𝐴 = ((𝑘 · 𝑀) + (𝐴 mod 𝑀)) ↔ 𝐴 = (((⌊‘(𝐴 / 𝑀)) · 𝑀) + (𝐴 mod 𝑀))))
1312adantl 277 . . . 4 ((𝜑𝑘 = (⌊‘(𝐴 / 𝑀))) → (𝐴 = ((𝑘 · 𝑀) + (𝐴 mod 𝑀)) ↔ 𝐴 = (((⌊‘(𝐴 / 𝑀)) · 𝑀) + (𝐴 mod 𝑀))))
14 flqpmodeq 10320 . . . . . 6 ((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) → (((⌊‘(𝐴 / 𝑀)) · 𝑀) + (𝐴 mod 𝑀)) = 𝐴)
153, 4, 5, 14syl3anc 1238 . . . . 5 (𝜑 → (((⌊‘(𝐴 / 𝑀)) · 𝑀) + (𝐴 mod 𝑀)) = 𝐴)
1615eqcomd 2183 . . . 4 (𝜑𝐴 = (((⌊‘(𝐴 / 𝑀)) · 𝑀) + (𝐴 mod 𝑀)))
179, 13, 16rspcedvd 2847 . . 3 (𝜑 → ∃𝑘 ∈ ℤ 𝐴 = ((𝑘 · 𝑀) + (𝐴 mod 𝑀)))
18 oveq2 5878 . . . . . 6 (𝐵 = (𝐴 mod 𝑀) → ((𝑘 · 𝑀) + 𝐵) = ((𝑘 · 𝑀) + (𝐴 mod 𝑀)))
1918eqeq2d 2189 . . . . 5 (𝐵 = (𝐴 mod 𝑀) → (𝐴 = ((𝑘 · 𝑀) + 𝐵) ↔ 𝐴 = ((𝑘 · 𝑀) + (𝐴 mod 𝑀))))
2019eqcoms 2180 . . . 4 ((𝐴 mod 𝑀) = 𝐵 → (𝐴 = ((𝑘 · 𝑀) + 𝐵) ↔ 𝐴 = ((𝑘 · 𝑀) + (𝐴 mod 𝑀))))
2120rexbidv 2478 . . 3 ((𝐴 mod 𝑀) = 𝐵 → (∃𝑘 ∈ ℤ 𝐴 = ((𝑘 · 𝑀) + 𝐵) ↔ ∃𝑘 ∈ ℤ 𝐴 = ((𝑘 · 𝑀) + (𝐴 mod 𝑀))))
2217, 21syl5ibrcom 157 . 2 (𝜑 → ((𝐴 mod 𝑀) = 𝐵 → ∃𝑘 ∈ ℤ 𝐴 = ((𝑘 · 𝑀) + 𝐵)))
23 oveq1 5877 . . . . . 6 (𝐴 = ((𝑘 · 𝑀) + 𝐵) → (𝐴 mod 𝑀) = (((𝑘 · 𝑀) + 𝐵) mod 𝑀))
2423adantl 277 . . . . 5 (((𝜑𝑘 ∈ ℤ) ∧ 𝐴 = ((𝑘 · 𝑀) + 𝐵)) → (𝐴 mod 𝑀) = (((𝑘 · 𝑀) + 𝐵) mod 𝑀))
25 simplr 528 . . . . . 6 (((𝜑𝑘 ∈ ℤ) ∧ 𝐴 = ((𝑘 · 𝑀) + 𝐵)) → 𝑘 ∈ ℤ)
264ad2antrr 488 . . . . . 6 (((𝜑𝑘 ∈ ℤ) ∧ 𝐴 = ((𝑘 · 𝑀) + 𝐵)) → 𝑀 ∈ ℚ)
27 modqmuladd.bq . . . . . . 7 (𝜑𝐵 ∈ ℚ)
2827ad2antrr 488 . . . . . 6 (((𝜑𝑘 ∈ ℤ) ∧ 𝐴 = ((𝑘 · 𝑀) + 𝐵)) → 𝐵 ∈ ℚ)
29 modqmuladd.b . . . . . . 7 (𝜑𝐵 ∈ (0[,)𝑀))
3029ad2antrr 488 . . . . . 6 (((𝜑𝑘 ∈ ℤ) ∧ 𝐴 = ((𝑘 · 𝑀) + 𝐵)) → 𝐵 ∈ (0[,)𝑀))
31 mulqaddmodid 10357 . . . . . 6 (((𝑘 ∈ ℤ ∧ 𝑀 ∈ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ∈ (0[,)𝑀))) → (((𝑘 · 𝑀) + 𝐵) mod 𝑀) = 𝐵)
3225, 26, 28, 30, 31syl22anc 1239 . . . . 5 (((𝜑𝑘 ∈ ℤ) ∧ 𝐴 = ((𝑘 · 𝑀) + 𝐵)) → (((𝑘 · 𝑀) + 𝐵) mod 𝑀) = 𝐵)
3324, 32eqtrd 2210 . . . 4 (((𝜑𝑘 ∈ ℤ) ∧ 𝐴 = ((𝑘 · 𝑀) + 𝐵)) → (𝐴 mod 𝑀) = 𝐵)
3433ex 115 . . 3 ((𝜑𝑘 ∈ ℤ) → (𝐴 = ((𝑘 · 𝑀) + 𝐵) → (𝐴 mod 𝑀) = 𝐵))
3534rexlimdva 2594 . 2 (𝜑 → (∃𝑘 ∈ ℤ 𝐴 = ((𝑘 · 𝑀) + 𝐵) → (𝐴 mod 𝑀) = 𝐵))
3622, 35impbid 129 1 (𝜑 → ((𝐴 mod 𝑀) = 𝐵 ↔ ∃𝑘 ∈ ℤ 𝐴 = ((𝑘 · 𝑀) + 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wcel 2148  wne 2347  wrex 2456   class class class wbr 4001  cfv 5213  (class class class)co 5870  0cc0 7806   + caddc 7809   · cmul 7811   < clt 7986   / cdiv 8623  cz 9247  cq 9613  [,)cico 9884  cfl 10261   mod cmo 10315
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4119  ax-pow 4172  ax-pr 4207  ax-un 4431  ax-setind 4534  ax-cnex 7897  ax-resscn 7898  ax-1cn 7899  ax-1re 7900  ax-icn 7901  ax-addcl 7902  ax-addrcl 7903  ax-mulcl 7904  ax-mulrcl 7905  ax-addcom 7906  ax-mulcom 7907  ax-addass 7908  ax-mulass 7909  ax-distr 7910  ax-i2m1 7911  ax-0lt1 7912  ax-1rid 7913  ax-0id 7914  ax-rnegex 7915  ax-precex 7916  ax-cnre 7917  ax-pre-ltirr 7918  ax-pre-ltwlin 7919  ax-pre-lttrn 7920  ax-pre-apti 7921  ax-pre-ltadd 7922  ax-pre-mulgt0 7923  ax-pre-mulext 7924  ax-arch 7925
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3809  df-int 3844  df-iun 3887  df-br 4002  df-opab 4063  df-mpt 4064  df-id 4291  df-po 4294  df-iso 4295  df-xp 4630  df-rel 4631  df-cnv 4632  df-co 4633  df-dm 4634  df-rn 4635  df-res 4636  df-ima 4637  df-iota 5175  df-fun 5215  df-fn 5216  df-f 5217  df-fv 5221  df-riota 5826  df-ov 5873  df-oprab 5874  df-mpo 5875  df-1st 6136  df-2nd 6137  df-pnf 7988  df-mnf 7989  df-xr 7990  df-ltxr 7991  df-le 7992  df-sub 8124  df-neg 8125  df-reap 8526  df-ap 8533  df-div 8624  df-inn 8914  df-n0 9171  df-z 9248  df-q 9614  df-rp 9648  df-ico 9888  df-fl 10263  df-mod 10316
This theorem is referenced by:  modqmuladdim  10360
  Copyright terms: Public domain W3C validator