ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfgrp3m GIF version

Theorem dfgrp3m 12974
Description: Alternate definition of a group as semigroup (with at least one element) which is also a quasigroup, i.e. a magma in which solutions 𝑥 and 𝑦 of the equations (𝑎 + 𝑥) = 𝑏 and (𝑥 + 𝑎) = 𝑏 exist. Theorem 3.2 of [Bruck] p. 28. (Contributed by AV, 28-Aug-2021.)
Hypotheses
Ref Expression
dfgrp3.b 𝐵 = (Base‘𝐺)
dfgrp3.p + = (+g𝐺)
Assertion
Ref Expression
dfgrp3m (𝐺 ∈ Grp ↔ (𝐺 ∈ Smgrp ∧ ∃𝑤 𝑤𝐵 ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)))
Distinct variable groups:   𝐵,𝑙,𝑟,𝑤,𝑥,𝑦   𝐺,𝑙,𝑟,𝑤,𝑥,𝑦   + ,𝑙,𝑟,𝑤,𝑥,𝑦

Proof of Theorem dfgrp3m
Dummy variables 𝑎 𝑖 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grpsgrp 12906 . . 3 (𝐺 ∈ Grp → 𝐺 ∈ Smgrp)
2 dfgrp3.b . . . . 5 𝐵 = (Base‘𝐺)
3 eqid 2177 . . . . 5 (0g𝐺) = (0g𝐺)
42, 3grpidcl 12909 . . . 4 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝐵)
5 elex2 2755 . . . 4 ((0g𝐺) ∈ 𝐵 → ∃𝑤 𝑤𝐵)
64, 5syl 14 . . 3 (𝐺 ∈ Grp → ∃𝑤 𝑤𝐵)
7 simpl 109 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → 𝐺 ∈ Grp)
8 simpr 110 . . . . . . . 8 ((𝑥𝐵𝑦𝐵) → 𝑦𝐵)
98adantl 277 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → 𝑦𝐵)
10 simpl 109 . . . . . . . 8 ((𝑥𝐵𝑦𝐵) → 𝑥𝐵)
1110adantl 277 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → 𝑥𝐵)
12 eqid 2177 . . . . . . . 8 (-g𝐺) = (-g𝐺)
132, 12grpsubcl 12955 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑦𝐵𝑥𝐵) → (𝑦(-g𝐺)𝑥) ∈ 𝐵)
147, 9, 11, 13syl3anc 1238 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → (𝑦(-g𝐺)𝑥) ∈ 𝐵)
15 oveq1 5884 . . . . . . . 8 (𝑙 = (𝑦(-g𝐺)𝑥) → (𝑙 + 𝑥) = ((𝑦(-g𝐺)𝑥) + 𝑥))
1615eqeq1d 2186 . . . . . . 7 (𝑙 = (𝑦(-g𝐺)𝑥) → ((𝑙 + 𝑥) = 𝑦 ↔ ((𝑦(-g𝐺)𝑥) + 𝑥) = 𝑦))
1716adantl 277 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑙 = (𝑦(-g𝐺)𝑥)) → ((𝑙 + 𝑥) = 𝑦 ↔ ((𝑦(-g𝐺)𝑥) + 𝑥) = 𝑦))
18 dfgrp3.p . . . . . . . 8 + = (+g𝐺)
192, 18, 12grpnpcan 12967 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑦𝐵𝑥𝐵) → ((𝑦(-g𝐺)𝑥) + 𝑥) = 𝑦)
207, 9, 11, 19syl3anc 1238 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → ((𝑦(-g𝐺)𝑥) + 𝑥) = 𝑦)
2114, 17, 20rspcedvd 2849 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → ∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦)
22 eqid 2177 . . . . . . . . 9 (invg𝐺) = (invg𝐺)
232, 22grpinvcl 12926 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → ((invg𝐺)‘𝑥) ∈ 𝐵)
2423adantrr 479 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → ((invg𝐺)‘𝑥) ∈ 𝐵)
252, 18, 7, 24, 9grpcld 12895 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → (((invg𝐺)‘𝑥) + 𝑦) ∈ 𝐵)
26 oveq2 5885 . . . . . . . 8 (𝑟 = (((invg𝐺)‘𝑥) + 𝑦) → (𝑥 + 𝑟) = (𝑥 + (((invg𝐺)‘𝑥) + 𝑦)))
2726eqeq1d 2186 . . . . . . 7 (𝑟 = (((invg𝐺)‘𝑥) + 𝑦) → ((𝑥 + 𝑟) = 𝑦 ↔ (𝑥 + (((invg𝐺)‘𝑥) + 𝑦)) = 𝑦))
2827adantl 277 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑟 = (((invg𝐺)‘𝑥) + 𝑦)) → ((𝑥 + 𝑟) = 𝑦 ↔ (𝑥 + (((invg𝐺)‘𝑥) + 𝑦)) = 𝑦))
292, 18, 3, 22grprinv 12928 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → (𝑥 + ((invg𝐺)‘𝑥)) = (0g𝐺))
3029adantrr 479 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 + ((invg𝐺)‘𝑥)) = (0g𝐺))
3130oveq1d 5892 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → ((𝑥 + ((invg𝐺)‘𝑥)) + 𝑦) = ((0g𝐺) + 𝑦))
322, 18grpass 12891 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑥𝐵 ∧ ((invg𝐺)‘𝑥) ∈ 𝐵𝑦𝐵)) → ((𝑥 + ((invg𝐺)‘𝑥)) + 𝑦) = (𝑥 + (((invg𝐺)‘𝑥) + 𝑦)))
337, 11, 24, 9, 32syl13anc 1240 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → ((𝑥 + ((invg𝐺)‘𝑥)) + 𝑦) = (𝑥 + (((invg𝐺)‘𝑥) + 𝑦)))
34 grpmnd 12889 . . . . . . . 8 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
352, 18, 3mndlid 12841 . . . . . . . 8 ((𝐺 ∈ Mnd ∧ 𝑦𝐵) → ((0g𝐺) + 𝑦) = 𝑦)
3634, 8, 35syl2an 289 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → ((0g𝐺) + 𝑦) = 𝑦)
3731, 33, 363eqtr3d 2218 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 + (((invg𝐺)‘𝑥) + 𝑦)) = 𝑦)
3825, 28, 37rspcedvd 2849 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)
3921, 38jca 306 . . . 4 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦))
4039ralrimivva 2559 . . 3 (𝐺 ∈ Grp → ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦))
411, 6, 403jca 1177 . 2 (𝐺 ∈ Grp → (𝐺 ∈ Smgrp ∧ ∃𝑤 𝑤𝐵 ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)))
42 simp1 997 . . 3 ((𝐺 ∈ Smgrp ∧ ∃𝑤 𝑤𝐵 ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) → 𝐺 ∈ Smgrp)
432, 18dfgrp3mlem 12973 . . 3 ((𝐺 ∈ Smgrp ∧ ∃𝑤 𝑤𝐵 ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) → ∃𝑢𝐵𝑎𝐵 ((𝑢 + 𝑎) = 𝑎 ∧ ∃𝑖𝐵 (𝑖 + 𝑎) = 𝑢))
442, 18dfgrp2 12907 . . 3 (𝐺 ∈ Grp ↔ (𝐺 ∈ Smgrp ∧ ∃𝑢𝐵𝑎𝐵 ((𝑢 + 𝑎) = 𝑎 ∧ ∃𝑖𝐵 (𝑖 + 𝑎) = 𝑢)))
4542, 43, 44sylanbrc 417 . 2 ((𝐺 ∈ Smgrp ∧ ∃𝑤 𝑤𝐵 ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) → 𝐺 ∈ Grp)
4641, 45impbii 126 1 (𝐺 ∈ Grp ↔ (𝐺 ∈ Smgrp ∧ ∃𝑤 𝑤𝐵 ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  w3a 978   = wceq 1353  wex 1492  wcel 2148  wral 2455  wrex 2456  cfv 5218  (class class class)co 5877  Basecbs 12464  +gcplusg 12538  0gc0g 12710  Smgrpcsgrp 12812  Mndcmnd 12822  Grpcgrp 12882  invgcminusg 12883  -gcsg 12884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1re 7907  ax-addrcl 7910
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-inn 8922  df-2 8980  df-ndx 12467  df-slot 12468  df-base 12470  df-plusg 12551  df-0g 12712  df-mgm 12780  df-sgrp 12813  df-mnd 12823  df-grp 12885  df-minusg 12886  df-sbg 12887
This theorem is referenced by:  dfgrp3me  12975
  Copyright terms: Public domain W3C validator