Step | Hyp | Ref
| Expression |
1 | | grpsgrp 12758 |
. . 3
⊢ (𝐺 ∈ Grp → 𝐺 ∈ Smgrp) |
2 | | dfgrp3.b |
. . . . 5
⊢ 𝐵 = (Base‘𝐺) |
3 | | eqid 2173 |
. . . . 5
⊢
(0g‘𝐺) = (0g‘𝐺) |
4 | 2, 3 | grpidcl 12761 |
. . . 4
⊢ (𝐺 ∈ Grp →
(0g‘𝐺)
∈ 𝐵) |
5 | | elex2 2749 |
. . . 4
⊢
((0g‘𝐺) ∈ 𝐵 → ∃𝑤 𝑤 ∈ 𝐵) |
6 | 4, 5 | syl 14 |
. . 3
⊢ (𝐺 ∈ Grp → ∃𝑤 𝑤 ∈ 𝐵) |
7 | | simpl 109 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐺 ∈ Grp) |
8 | | simpr 110 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ 𝐵) |
9 | 8 | adantl 277 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑦 ∈ 𝐵) |
10 | | simpl 109 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → 𝑥 ∈ 𝐵) |
11 | 10 | adantl 277 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑥 ∈ 𝐵) |
12 | | eqid 2173 |
. . . . . . . 8
⊢
(-g‘𝐺) = (-g‘𝐺) |
13 | 2, 12 | grpsubcl 12806 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → (𝑦(-g‘𝐺)𝑥) ∈ 𝐵) |
14 | 7, 9, 11, 13 | syl3anc 1236 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑦(-g‘𝐺)𝑥) ∈ 𝐵) |
15 | | oveq1 5869 |
. . . . . . . 8
⊢ (𝑙 = (𝑦(-g‘𝐺)𝑥) → (𝑙 + 𝑥) = ((𝑦(-g‘𝐺)𝑥) + 𝑥)) |
16 | 15 | eqeq1d 2182 |
. . . . . . 7
⊢ (𝑙 = (𝑦(-g‘𝐺)𝑥) → ((𝑙 + 𝑥) = 𝑦 ↔ ((𝑦(-g‘𝐺)𝑥) + 𝑥) = 𝑦)) |
17 | 16 | adantl 277 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑙 = (𝑦(-g‘𝐺)𝑥)) → ((𝑙 + 𝑥) = 𝑦 ↔ ((𝑦(-g‘𝐺)𝑥) + 𝑥) = 𝑦)) |
18 | | dfgrp3.p |
. . . . . . . 8
⊢ + =
(+g‘𝐺) |
19 | 2, 18, 12 | grpnpcan 12818 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → ((𝑦(-g‘𝐺)𝑥) + 𝑥) = 𝑦) |
20 | 7, 9, 11, 19 | syl3anc 1236 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑦(-g‘𝐺)𝑥) + 𝑥) = 𝑦) |
21 | 14, 17, 20 | rspcedvd 2843 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦) |
22 | | eqid 2173 |
. . . . . . . . 9
⊢
(invg‘𝐺) = (invg‘𝐺) |
23 | 2, 22 | grpinvcl 12778 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → ((invg‘𝐺)‘𝑥) ∈ 𝐵) |
24 | 23 | adantrr 479 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((invg‘𝐺)‘𝑥) ∈ 𝐵) |
25 | 2, 18, 7, 24, 9 | grpcld 12748 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (((invg‘𝐺)‘𝑥) + 𝑦) ∈ 𝐵) |
26 | | oveq2 5870 |
. . . . . . . 8
⊢ (𝑟 =
(((invg‘𝐺)‘𝑥) + 𝑦) → (𝑥 + 𝑟) = (𝑥 +
(((invg‘𝐺)‘𝑥) + 𝑦))) |
27 | 26 | eqeq1d 2182 |
. . . . . . 7
⊢ (𝑟 =
(((invg‘𝐺)‘𝑥) + 𝑦) → ((𝑥 + 𝑟) = 𝑦 ↔ (𝑥 +
(((invg‘𝐺)‘𝑥) + 𝑦)) = 𝑦)) |
28 | 27 | adantl 277 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑟 = (((invg‘𝐺)‘𝑥) + 𝑦)) → ((𝑥 + 𝑟) = 𝑦 ↔ (𝑥 +
(((invg‘𝐺)‘𝑥) + 𝑦)) = 𝑦)) |
29 | 2, 18, 3, 22 | grprinv 12780 |
. . . . . . . . 9
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → (𝑥 +
((invg‘𝐺)‘𝑥)) = (0g‘𝐺)) |
30 | 29 | adantrr 479 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥 +
((invg‘𝐺)‘𝑥)) = (0g‘𝐺)) |
31 | 30 | oveq1d 5877 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑥 +
((invg‘𝐺)‘𝑥)) + 𝑦) = ((0g‘𝐺) + 𝑦)) |
32 | 2, 18 | grpass 12744 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ ((invg‘𝐺)‘𝑥) ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑥 +
((invg‘𝐺)‘𝑥)) + 𝑦) = (𝑥 +
(((invg‘𝐺)‘𝑥) + 𝑦))) |
33 | 7, 11, 24, 9, 32 | syl13anc 1238 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑥 +
((invg‘𝐺)‘𝑥)) + 𝑦) = (𝑥 +
(((invg‘𝐺)‘𝑥) + 𝑦))) |
34 | | grpmnd 12742 |
. . . . . . . 8
⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) |
35 | 2, 18, 3 | mndlid 12698 |
. . . . . . . 8
⊢ ((𝐺 ∈ Mnd ∧ 𝑦 ∈ 𝐵) → ((0g‘𝐺) + 𝑦) = 𝑦) |
36 | 34, 8, 35 | syl2an 289 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((0g‘𝐺) + 𝑦) = 𝑦) |
37 | 31, 33, 36 | 3eqtr3d 2214 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥 +
(((invg‘𝐺)‘𝑥) + 𝑦)) = 𝑦) |
38 | 25, 28, 37 | rspcedvd 2843 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦) |
39 | 21, 38 | jca 306 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) |
40 | 39 | ralrimivva 2555 |
. . 3
⊢ (𝐺 ∈ Grp → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) |
41 | 1, 6, 40 | 3jca 1175 |
. 2
⊢ (𝐺 ∈ Grp → (𝐺 ∈ Smgrp ∧ ∃𝑤 𝑤 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦))) |
42 | | simp1 995 |
. . 3
⊢ ((𝐺 ∈ Smgrp ∧ ∃𝑤 𝑤 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) → 𝐺 ∈ Smgrp) |
43 | 2, 18 | dfgrp3mlem 12824 |
. . 3
⊢ ((𝐺 ∈ Smgrp ∧ ∃𝑤 𝑤 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) → ∃𝑢 ∈ 𝐵 ∀𝑎 ∈ 𝐵 ((𝑢 + 𝑎) = 𝑎 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑎) = 𝑢)) |
44 | 2, 18 | dfgrp2 12759 |
. . 3
⊢ (𝐺 ∈ Grp ↔ (𝐺 ∈ Smgrp ∧ ∃𝑢 ∈ 𝐵 ∀𝑎 ∈ 𝐵 ((𝑢 + 𝑎) = 𝑎 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑎) = 𝑢))) |
45 | 42, 43, 44 | sylanbrc 417 |
. 2
⊢ ((𝐺 ∈ Smgrp ∧ ∃𝑤 𝑤 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) → 𝐺 ∈ Grp) |
46 | 41, 45 | impbii 126 |
1
⊢ (𝐺 ∈ Grp ↔ (𝐺 ∈ Smgrp ∧ ∃𝑤 𝑤 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦))) |