| Step | Hyp | Ref
 | Expression | 
| 1 |   | grpsgrp 13157 | 
. . 3
⊢ (𝐺 ∈ Grp → 𝐺 ∈ Smgrp) | 
| 2 |   | dfgrp3.b | 
. . . . 5
⊢ 𝐵 = (Base‘𝐺) | 
| 3 |   | eqid 2196 | 
. . . . 5
⊢
(0g‘𝐺) = (0g‘𝐺) | 
| 4 | 2, 3 | grpidcl 13161 | 
. . . 4
⊢ (𝐺 ∈ Grp →
(0g‘𝐺)
∈ 𝐵) | 
| 5 |   | elex2 2779 | 
. . . 4
⊢
((0g‘𝐺) ∈ 𝐵 → ∃𝑤 𝑤 ∈ 𝐵) | 
| 6 | 4, 5 | syl 14 | 
. . 3
⊢ (𝐺 ∈ Grp → ∃𝑤 𝑤 ∈ 𝐵) | 
| 7 |   | simpl 109 | 
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐺 ∈ Grp) | 
| 8 |   | simpr 110 | 
. . . . . . . 8
⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ 𝐵) | 
| 9 | 8 | adantl 277 | 
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑦 ∈ 𝐵) | 
| 10 |   | simpl 109 | 
. . . . . . . 8
⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → 𝑥 ∈ 𝐵) | 
| 11 | 10 | adantl 277 | 
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑥 ∈ 𝐵) | 
| 12 |   | eqid 2196 | 
. . . . . . . 8
⊢
(-g‘𝐺) = (-g‘𝐺) | 
| 13 | 2, 12 | grpsubcl 13212 | 
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → (𝑦(-g‘𝐺)𝑥) ∈ 𝐵) | 
| 14 | 7, 9, 11, 13 | syl3anc 1249 | 
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑦(-g‘𝐺)𝑥) ∈ 𝐵) | 
| 15 |   | oveq1 5929 | 
. . . . . . . 8
⊢ (𝑙 = (𝑦(-g‘𝐺)𝑥) → (𝑙 + 𝑥) = ((𝑦(-g‘𝐺)𝑥) + 𝑥)) | 
| 16 | 15 | eqeq1d 2205 | 
. . . . . . 7
⊢ (𝑙 = (𝑦(-g‘𝐺)𝑥) → ((𝑙 + 𝑥) = 𝑦 ↔ ((𝑦(-g‘𝐺)𝑥) + 𝑥) = 𝑦)) | 
| 17 | 16 | adantl 277 | 
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑙 = (𝑦(-g‘𝐺)𝑥)) → ((𝑙 + 𝑥) = 𝑦 ↔ ((𝑦(-g‘𝐺)𝑥) + 𝑥) = 𝑦)) | 
| 18 |   | dfgrp3.p | 
. . . . . . . 8
⊢  + =
(+g‘𝐺) | 
| 19 | 2, 18, 12 | grpnpcan 13224 | 
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → ((𝑦(-g‘𝐺)𝑥) + 𝑥) = 𝑦) | 
| 20 | 7, 9, 11, 19 | syl3anc 1249 | 
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑦(-g‘𝐺)𝑥) + 𝑥) = 𝑦) | 
| 21 | 14, 17, 20 | rspcedvd 2874 | 
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦) | 
| 22 |   | eqid 2196 | 
. . . . . . . . 9
⊢
(invg‘𝐺) = (invg‘𝐺) | 
| 23 | 2, 22 | grpinvcl 13180 | 
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → ((invg‘𝐺)‘𝑥) ∈ 𝐵) | 
| 24 | 23 | adantrr 479 | 
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((invg‘𝐺)‘𝑥) ∈ 𝐵) | 
| 25 | 2, 18, 7, 24, 9 | grpcld 13146 | 
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (((invg‘𝐺)‘𝑥) + 𝑦) ∈ 𝐵) | 
| 26 |   | oveq2 5930 | 
. . . . . . . 8
⊢ (𝑟 =
(((invg‘𝐺)‘𝑥) + 𝑦) → (𝑥 + 𝑟) = (𝑥 +
(((invg‘𝐺)‘𝑥) + 𝑦))) | 
| 27 | 26 | eqeq1d 2205 | 
. . . . . . 7
⊢ (𝑟 =
(((invg‘𝐺)‘𝑥) + 𝑦) → ((𝑥 + 𝑟) = 𝑦 ↔ (𝑥 +
(((invg‘𝐺)‘𝑥) + 𝑦)) = 𝑦)) | 
| 28 | 27 | adantl 277 | 
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑟 = (((invg‘𝐺)‘𝑥) + 𝑦)) → ((𝑥 + 𝑟) = 𝑦 ↔ (𝑥 +
(((invg‘𝐺)‘𝑥) + 𝑦)) = 𝑦)) | 
| 29 | 2, 18, 3, 22 | grprinv 13183 | 
. . . . . . . . 9
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → (𝑥 +
((invg‘𝐺)‘𝑥)) = (0g‘𝐺)) | 
| 30 | 29 | adantrr 479 | 
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥 +
((invg‘𝐺)‘𝑥)) = (0g‘𝐺)) | 
| 31 | 30 | oveq1d 5937 | 
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑥 +
((invg‘𝐺)‘𝑥)) + 𝑦) = ((0g‘𝐺) + 𝑦)) | 
| 32 | 2, 18 | grpass 13141 | 
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ ((invg‘𝐺)‘𝑥) ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑥 +
((invg‘𝐺)‘𝑥)) + 𝑦) = (𝑥 +
(((invg‘𝐺)‘𝑥) + 𝑦))) | 
| 33 | 7, 11, 24, 9, 32 | syl13anc 1251 | 
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑥 +
((invg‘𝐺)‘𝑥)) + 𝑦) = (𝑥 +
(((invg‘𝐺)‘𝑥) + 𝑦))) | 
| 34 |   | grpmnd 13139 | 
. . . . . . . 8
⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | 
| 35 | 2, 18, 3 | mndlid 13076 | 
. . . . . . . 8
⊢ ((𝐺 ∈ Mnd ∧ 𝑦 ∈ 𝐵) → ((0g‘𝐺) + 𝑦) = 𝑦) | 
| 36 | 34, 8, 35 | syl2an 289 | 
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((0g‘𝐺) + 𝑦) = 𝑦) | 
| 37 | 31, 33, 36 | 3eqtr3d 2237 | 
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥 +
(((invg‘𝐺)‘𝑥) + 𝑦)) = 𝑦) | 
| 38 | 25, 28, 37 | rspcedvd 2874 | 
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦) | 
| 39 | 21, 38 | jca 306 | 
. . . 4
⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) | 
| 40 | 39 | ralrimivva 2579 | 
. . 3
⊢ (𝐺 ∈ Grp → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) | 
| 41 | 1, 6, 40 | 3jca 1179 | 
. 2
⊢ (𝐺 ∈ Grp → (𝐺 ∈ Smgrp ∧ ∃𝑤 𝑤 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦))) | 
| 42 |   | simp1 999 | 
. . 3
⊢ ((𝐺 ∈ Smgrp ∧ ∃𝑤 𝑤 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) → 𝐺 ∈ Smgrp) | 
| 43 | 2, 18 | dfgrp3mlem 13230 | 
. . 3
⊢ ((𝐺 ∈ Smgrp ∧ ∃𝑤 𝑤 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) → ∃𝑢 ∈ 𝐵 ∀𝑎 ∈ 𝐵 ((𝑢 + 𝑎) = 𝑎 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑎) = 𝑢)) | 
| 44 | 2, 18 | dfgrp2 13159 | 
. . 3
⊢ (𝐺 ∈ Grp ↔ (𝐺 ∈ Smgrp ∧ ∃𝑢 ∈ 𝐵 ∀𝑎 ∈ 𝐵 ((𝑢 + 𝑎) = 𝑎 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑎) = 𝑢))) | 
| 45 | 42, 43, 44 | sylanbrc 417 | 
. 2
⊢ ((𝐺 ∈ Smgrp ∧ ∃𝑤 𝑤 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) → 𝐺 ∈ Grp) | 
| 46 | 41, 45 | impbii 126 | 
1
⊢ (𝐺 ∈ Grp ↔ (𝐺 ∈ Smgrp ∧ ∃𝑤 𝑤 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦))) |