ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzm1 GIF version

Theorem fzm1 10224
Description: Choices for an element of a finite interval of integers. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
fzm1 (𝑁 ∈ (ℤ𝑀) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ (𝑀...(𝑁 − 1)) ∨ 𝐾 = 𝑁)))

Proof of Theorem fzm1
StepHypRef Expression
1 oveq1 5953 . . . . . . 7 (𝑁 = 𝑀 → (𝑁...𝑁) = (𝑀...𝑁))
21eleq2d 2275 . . . . . 6 (𝑁 = 𝑀 → (𝐾 ∈ (𝑁...𝑁) ↔ 𝐾 ∈ (𝑀...𝑁)))
3 elfz1eq 10159 . . . . . 6 (𝐾 ∈ (𝑁...𝑁) → 𝐾 = 𝑁)
42, 3biimtrrdi 164 . . . . 5 (𝑁 = 𝑀 → (𝐾 ∈ (𝑀...𝑁) → 𝐾 = 𝑁))
5 olc 713 . . . . 5 (𝐾 = 𝑁 → (𝐾 ∈ (𝑀...(𝑁 − 1)) ∨ 𝐾 = 𝑁))
64, 5syl6 33 . . . 4 (𝑁 = 𝑀 → (𝐾 ∈ (𝑀...𝑁) → (𝐾 ∈ (𝑀...(𝑁 − 1)) ∨ 𝐾 = 𝑁)))
76adantl 277 . . 3 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑁 = 𝑀) → (𝐾 ∈ (𝑀...𝑁) → (𝐾 ∈ (𝑀...(𝑁 − 1)) ∨ 𝐾 = 𝑁)))
8 noel 3464 . . . . . 6 ¬ 𝐾 ∈ ∅
9 eluzelz 9659 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
109adantr 276 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑁 = 𝑀) → 𝑁 ∈ ℤ)
1110zred 9497 . . . . . . . . . 10 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑁 = 𝑀) → 𝑁 ∈ ℝ)
1211ltm1d 9007 . . . . . . . . 9 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑁 = 𝑀) → (𝑁 − 1) < 𝑁)
13 breq2 4049 . . . . . . . . . 10 (𝑁 = 𝑀 → ((𝑁 − 1) < 𝑁 ↔ (𝑁 − 1) < 𝑀))
1413adantl 277 . . . . . . . . 9 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑁 = 𝑀) → ((𝑁 − 1) < 𝑁 ↔ (𝑁 − 1) < 𝑀))
1512, 14mpbid 147 . . . . . . . 8 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑁 = 𝑀) → (𝑁 − 1) < 𝑀)
16 eluzel2 9655 . . . . . . . . . 10 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
1716adantr 276 . . . . . . . . 9 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑁 = 𝑀) → 𝑀 ∈ ℤ)
18 1zzd 9401 . . . . . . . . . 10 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑁 = 𝑀) → 1 ∈ ℤ)
1910, 18zsubcld 9502 . . . . . . . . 9 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑁 = 𝑀) → (𝑁 − 1) ∈ ℤ)
20 fzn 10166 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) → ((𝑁 − 1) < 𝑀 ↔ (𝑀...(𝑁 − 1)) = ∅))
2117, 19, 20syl2anc 411 . . . . . . . 8 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑁 = 𝑀) → ((𝑁 − 1) < 𝑀 ↔ (𝑀...(𝑁 − 1)) = ∅))
2215, 21mpbid 147 . . . . . . 7 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑁 = 𝑀) → (𝑀...(𝑁 − 1)) = ∅)
2322eleq2d 2275 . . . . . 6 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑁 = 𝑀) → (𝐾 ∈ (𝑀...(𝑁 − 1)) ↔ 𝐾 ∈ ∅))
248, 23mtbiri 677 . . . . 5 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑁 = 𝑀) → ¬ 𝐾 ∈ (𝑀...(𝑁 − 1)))
2524pm2.21d 620 . . . 4 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑁 = 𝑀) → (𝐾 ∈ (𝑀...(𝑁 − 1)) → 𝐾 ∈ (𝑀...𝑁)))
26 eluzfz2 10156 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
2726ad2antrr 488 . . . . . 6 (((𝑁 ∈ (ℤ𝑀) ∧ 𝑁 = 𝑀) ∧ 𝐾 = 𝑁) → 𝑁 ∈ (𝑀...𝑁))
28 eleq1 2268 . . . . . . 7 (𝐾 = 𝑁 → (𝐾 ∈ (𝑀...𝑁) ↔ 𝑁 ∈ (𝑀...𝑁)))
2928adantl 277 . . . . . 6 (((𝑁 ∈ (ℤ𝑀) ∧ 𝑁 = 𝑀) ∧ 𝐾 = 𝑁) → (𝐾 ∈ (𝑀...𝑁) ↔ 𝑁 ∈ (𝑀...𝑁)))
3027, 29mpbird 167 . . . . 5 (((𝑁 ∈ (ℤ𝑀) ∧ 𝑁 = 𝑀) ∧ 𝐾 = 𝑁) → 𝐾 ∈ (𝑀...𝑁))
3130ex 115 . . . 4 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑁 = 𝑀) → (𝐾 = 𝑁𝐾 ∈ (𝑀...𝑁)))
3225, 31jaod 719 . . 3 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑁 = 𝑀) → ((𝐾 ∈ (𝑀...(𝑁 − 1)) ∨ 𝐾 = 𝑁) → 𝐾 ∈ (𝑀...𝑁)))
337, 32impbid 129 . 2 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑁 = 𝑀) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ (𝑀...(𝑁 − 1)) ∨ 𝐾 = 𝑁)))
34 elfzp1 10196 . . . 4 ((𝑁 − 1) ∈ (ℤ𝑀) → (𝐾 ∈ (𝑀...((𝑁 − 1) + 1)) ↔ (𝐾 ∈ (𝑀...(𝑁 − 1)) ∨ 𝐾 = ((𝑁 − 1) + 1))))
3534adantl 277 . . 3 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → (𝐾 ∈ (𝑀...((𝑁 − 1) + 1)) ↔ (𝐾 ∈ (𝑀...(𝑁 − 1)) ∨ 𝐾 = ((𝑁 − 1) + 1))))
369adantr 276 . . . . . . 7 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → 𝑁 ∈ ℤ)
3736zcnd 9498 . . . . . 6 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → 𝑁 ∈ ℂ)
38 npcan1 8452 . . . . . 6 (𝑁 ∈ ℂ → ((𝑁 − 1) + 1) = 𝑁)
3937, 38syl 14 . . . . 5 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → ((𝑁 − 1) + 1) = 𝑁)
4039oveq2d 5962 . . . 4 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → (𝑀...((𝑁 − 1) + 1)) = (𝑀...𝑁))
4140eleq2d 2275 . . 3 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → (𝐾 ∈ (𝑀...((𝑁 − 1) + 1)) ↔ 𝐾 ∈ (𝑀...𝑁)))
4239eqeq2d 2217 . . . 4 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → (𝐾 = ((𝑁 − 1) + 1) ↔ 𝐾 = 𝑁))
4342orbi2d 792 . . 3 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → ((𝐾 ∈ (𝑀...(𝑁 − 1)) ∨ 𝐾 = ((𝑁 − 1) + 1)) ↔ (𝐾 ∈ (𝑀...(𝑁 − 1)) ∨ 𝐾 = 𝑁)))
4435, 41, 433bitr3d 218 . 2 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ (𝑀...(𝑁 − 1)) ∨ 𝐾 = 𝑁)))
45 uzm1 9681 . 2 (𝑁 ∈ (ℤ𝑀) → (𝑁 = 𝑀 ∨ (𝑁 − 1) ∈ (ℤ𝑀)))
4633, 44, 45mpjaodan 800 1 (𝑁 ∈ (ℤ𝑀) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ (𝑀...(𝑁 − 1)) ∨ 𝐾 = 𝑁)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 710   = wceq 1373  wcel 2176  c0 3460   class class class wbr 4045  cfv 5272  (class class class)co 5946  cc 7925  1c1 7928   + caddc 7930   < clt 8109  cmin 8245  cz 9374  cuz 9650  ...cfz 10132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-addcom 8027  ax-addass 8029  ax-distr 8031  ax-i2m1 8032  ax-0lt1 8033  ax-0id 8035  ax-rnegex 8036  ax-cnre 8038  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-lttrn 8041  ax-pre-apti 8042  ax-pre-ltadd 8043
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4046  df-opab 4107  df-mpt 4108  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-fv 5280  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-sub 8247  df-neg 8248  df-inn 9039  df-n0 9298  df-z 9375  df-uz 9651  df-fz 10133
This theorem is referenced by:  bcpasc  10913  phibndlem  12571  lgsdir2lem2  15539
  Copyright terms: Public domain W3C validator