ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzm1 GIF version

Theorem fzm1 10166
Description: Choices for an element of a finite interval of integers. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
fzm1 (𝑁 ∈ (ℤ𝑀) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ (𝑀...(𝑁 − 1)) ∨ 𝐾 = 𝑁)))

Proof of Theorem fzm1
StepHypRef Expression
1 oveq1 5925 . . . . . . 7 (𝑁 = 𝑀 → (𝑁...𝑁) = (𝑀...𝑁))
21eleq2d 2263 . . . . . 6 (𝑁 = 𝑀 → (𝐾 ∈ (𝑁...𝑁) ↔ 𝐾 ∈ (𝑀...𝑁)))
3 elfz1eq 10101 . . . . . 6 (𝐾 ∈ (𝑁...𝑁) → 𝐾 = 𝑁)
42, 3biimtrrdi 164 . . . . 5 (𝑁 = 𝑀 → (𝐾 ∈ (𝑀...𝑁) → 𝐾 = 𝑁))
5 olc 712 . . . . 5 (𝐾 = 𝑁 → (𝐾 ∈ (𝑀...(𝑁 − 1)) ∨ 𝐾 = 𝑁))
64, 5syl6 33 . . . 4 (𝑁 = 𝑀 → (𝐾 ∈ (𝑀...𝑁) → (𝐾 ∈ (𝑀...(𝑁 − 1)) ∨ 𝐾 = 𝑁)))
76adantl 277 . . 3 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑁 = 𝑀) → (𝐾 ∈ (𝑀...𝑁) → (𝐾 ∈ (𝑀...(𝑁 − 1)) ∨ 𝐾 = 𝑁)))
8 noel 3450 . . . . . 6 ¬ 𝐾 ∈ ∅
9 eluzelz 9601 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
109adantr 276 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑁 = 𝑀) → 𝑁 ∈ ℤ)
1110zred 9439 . . . . . . . . . 10 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑁 = 𝑀) → 𝑁 ∈ ℝ)
1211ltm1d 8951 . . . . . . . . 9 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑁 = 𝑀) → (𝑁 − 1) < 𝑁)
13 breq2 4033 . . . . . . . . . 10 (𝑁 = 𝑀 → ((𝑁 − 1) < 𝑁 ↔ (𝑁 − 1) < 𝑀))
1413adantl 277 . . . . . . . . 9 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑁 = 𝑀) → ((𝑁 − 1) < 𝑁 ↔ (𝑁 − 1) < 𝑀))
1512, 14mpbid 147 . . . . . . . 8 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑁 = 𝑀) → (𝑁 − 1) < 𝑀)
16 eluzel2 9597 . . . . . . . . . 10 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
1716adantr 276 . . . . . . . . 9 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑁 = 𝑀) → 𝑀 ∈ ℤ)
18 1zzd 9344 . . . . . . . . . 10 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑁 = 𝑀) → 1 ∈ ℤ)
1910, 18zsubcld 9444 . . . . . . . . 9 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑁 = 𝑀) → (𝑁 − 1) ∈ ℤ)
20 fzn 10108 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) → ((𝑁 − 1) < 𝑀 ↔ (𝑀...(𝑁 − 1)) = ∅))
2117, 19, 20syl2anc 411 . . . . . . . 8 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑁 = 𝑀) → ((𝑁 − 1) < 𝑀 ↔ (𝑀...(𝑁 − 1)) = ∅))
2215, 21mpbid 147 . . . . . . 7 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑁 = 𝑀) → (𝑀...(𝑁 − 1)) = ∅)
2322eleq2d 2263 . . . . . 6 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑁 = 𝑀) → (𝐾 ∈ (𝑀...(𝑁 − 1)) ↔ 𝐾 ∈ ∅))
248, 23mtbiri 676 . . . . 5 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑁 = 𝑀) → ¬ 𝐾 ∈ (𝑀...(𝑁 − 1)))
2524pm2.21d 620 . . . 4 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑁 = 𝑀) → (𝐾 ∈ (𝑀...(𝑁 − 1)) → 𝐾 ∈ (𝑀...𝑁)))
26 eluzfz2 10098 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
2726ad2antrr 488 . . . . . 6 (((𝑁 ∈ (ℤ𝑀) ∧ 𝑁 = 𝑀) ∧ 𝐾 = 𝑁) → 𝑁 ∈ (𝑀...𝑁))
28 eleq1 2256 . . . . . . 7 (𝐾 = 𝑁 → (𝐾 ∈ (𝑀...𝑁) ↔ 𝑁 ∈ (𝑀...𝑁)))
2928adantl 277 . . . . . 6 (((𝑁 ∈ (ℤ𝑀) ∧ 𝑁 = 𝑀) ∧ 𝐾 = 𝑁) → (𝐾 ∈ (𝑀...𝑁) ↔ 𝑁 ∈ (𝑀...𝑁)))
3027, 29mpbird 167 . . . . 5 (((𝑁 ∈ (ℤ𝑀) ∧ 𝑁 = 𝑀) ∧ 𝐾 = 𝑁) → 𝐾 ∈ (𝑀...𝑁))
3130ex 115 . . . 4 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑁 = 𝑀) → (𝐾 = 𝑁𝐾 ∈ (𝑀...𝑁)))
3225, 31jaod 718 . . 3 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑁 = 𝑀) → ((𝐾 ∈ (𝑀...(𝑁 − 1)) ∨ 𝐾 = 𝑁) → 𝐾 ∈ (𝑀...𝑁)))
337, 32impbid 129 . 2 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑁 = 𝑀) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ (𝑀...(𝑁 − 1)) ∨ 𝐾 = 𝑁)))
34 elfzp1 10138 . . . 4 ((𝑁 − 1) ∈ (ℤ𝑀) → (𝐾 ∈ (𝑀...((𝑁 − 1) + 1)) ↔ (𝐾 ∈ (𝑀...(𝑁 − 1)) ∨ 𝐾 = ((𝑁 − 1) + 1))))
3534adantl 277 . . 3 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → (𝐾 ∈ (𝑀...((𝑁 − 1) + 1)) ↔ (𝐾 ∈ (𝑀...(𝑁 − 1)) ∨ 𝐾 = ((𝑁 − 1) + 1))))
369adantr 276 . . . . . . 7 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → 𝑁 ∈ ℤ)
3736zcnd 9440 . . . . . 6 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → 𝑁 ∈ ℂ)
38 npcan1 8397 . . . . . 6 (𝑁 ∈ ℂ → ((𝑁 − 1) + 1) = 𝑁)
3937, 38syl 14 . . . . 5 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → ((𝑁 − 1) + 1) = 𝑁)
4039oveq2d 5934 . . . 4 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → (𝑀...((𝑁 − 1) + 1)) = (𝑀...𝑁))
4140eleq2d 2263 . . 3 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → (𝐾 ∈ (𝑀...((𝑁 − 1) + 1)) ↔ 𝐾 ∈ (𝑀...𝑁)))
4239eqeq2d 2205 . . . 4 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → (𝐾 = ((𝑁 − 1) + 1) ↔ 𝐾 = 𝑁))
4342orbi2d 791 . . 3 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → ((𝐾 ∈ (𝑀...(𝑁 − 1)) ∨ 𝐾 = ((𝑁 − 1) + 1)) ↔ (𝐾 ∈ (𝑀...(𝑁 − 1)) ∨ 𝐾 = 𝑁)))
4435, 41, 433bitr3d 218 . 2 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ (𝑀...(𝑁 − 1)) ∨ 𝐾 = 𝑁)))
45 uzm1 9623 . 2 (𝑁 ∈ (ℤ𝑀) → (𝑁 = 𝑀 ∨ (𝑁 − 1) ∈ (ℤ𝑀)))
4633, 44, 45mpjaodan 799 1 (𝑁 ∈ (ℤ𝑀) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ (𝑀...(𝑁 − 1)) ∨ 𝐾 = 𝑁)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 709   = wceq 1364  wcel 2164  c0 3446   class class class wbr 4029  cfv 5254  (class class class)co 5918  cc 7870  1c1 7873   + caddc 7875   < clt 8054  cmin 8190  cz 9317  cuz 9592  ...cfz 10074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-n0 9241  df-z 9318  df-uz 9593  df-fz 10075
This theorem is referenced by:  bcpasc  10837  phibndlem  12354  lgsdir2lem2  15145
  Copyright terms: Public domain W3C validator