![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fzfig | GIF version |
Description: A finite interval of integers is finite. (Contributed by Jim Kingdon, 19-May-2020.) |
Ref | Expression |
---|---|
fzfig | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluz 8927 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ≥‘𝑀) ↔ 𝑀 ≤ 𝑁)) | |
2 | eqid 2083 | . . . . . . 7 ⊢ frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) | |
3 | 2 | frechashgf1o 9724 | . . . . . 6 ⊢ frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0):ω–1-1-onto→ℕ0 |
4 | peano2uz 8966 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 1) ∈ (ℤ≥‘𝑀)) | |
5 | uznn0sub 8945 | . . . . . . 7 ⊢ ((𝑁 + 1) ∈ (ℤ≥‘𝑀) → ((𝑁 + 1) − 𝑀) ∈ ℕ0) | |
6 | 4, 5 | syl 14 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ((𝑁 + 1) − 𝑀) ∈ ℕ0) |
7 | f1ocnvdm 5500 | . . . . . 6 ⊢ ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0):ω–1-1-onto→ℕ0 ∧ ((𝑁 + 1) − 𝑀) ∈ ℕ0) → (◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘((𝑁 + 1) − 𝑀)) ∈ ω) | |
8 | 3, 6, 7 | sylancr 405 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘((𝑁 + 1) − 𝑀)) ∈ ω) |
9 | nnfi 6518 | . . . . 5 ⊢ ((◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘((𝑁 + 1) − 𝑀)) ∈ ω → (◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘((𝑁 + 1) − 𝑀)) ∈ Fin) | |
10 | 8, 9 | syl 14 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘((𝑁 + 1) − 𝑀)) ∈ Fin) |
11 | 2 | frecfzen2 9723 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀...𝑁) ≈ (◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘((𝑁 + 1) − 𝑀))) |
12 | enfii 6520 | . . . 4 ⊢ (((◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘((𝑁 + 1) − 𝑀)) ∈ Fin ∧ (𝑀...𝑁) ≈ (◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘((𝑁 + 1) − 𝑀))) → (𝑀...𝑁) ∈ Fin) | |
13 | 10, 11, 12 | syl2anc 403 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀...𝑁) ∈ Fin) |
14 | 1, 13 | syl6bir 162 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ≤ 𝑁 → (𝑀...𝑁) ∈ Fin)) |
15 | zltnle 8692 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁 < 𝑀 ↔ ¬ 𝑀 ≤ 𝑁)) | |
16 | 15 | ancoms 264 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 𝑀 ↔ ¬ 𝑀 ≤ 𝑁)) |
17 | fzn 9351 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 𝑀 ↔ (𝑀...𝑁) = ∅)) | |
18 | 16, 17 | bitr3d 188 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ 𝑀 ≤ 𝑁 ↔ (𝑀...𝑁) = ∅)) |
19 | 0fin 6530 | . . . 4 ⊢ ∅ ∈ Fin | |
20 | eleq1 2145 | . . . 4 ⊢ ((𝑀...𝑁) = ∅ → ((𝑀...𝑁) ∈ Fin ↔ ∅ ∈ Fin)) | |
21 | 19, 20 | mpbiri 166 | . . 3 ⊢ ((𝑀...𝑁) = ∅ → (𝑀...𝑁) ∈ Fin) |
22 | 18, 21 | syl6bi 161 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ 𝑀 ≤ 𝑁 → (𝑀...𝑁) ∈ Fin)) |
23 | zdcle 8719 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑀 ≤ 𝑁) | |
24 | df-dc 777 | . . 3 ⊢ (DECID 𝑀 ≤ 𝑁 ↔ (𝑀 ≤ 𝑁 ∨ ¬ 𝑀 ≤ 𝑁)) | |
25 | 23, 24 | sylib 120 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ≤ 𝑁 ∨ ¬ 𝑀 ≤ 𝑁)) |
26 | 14, 22, 25 | mpjaod 671 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) ∈ Fin) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 102 ↔ wb 103 ∨ wo 662 DECID wdc 776 = wceq 1285 ∈ wcel 1434 ∅c0 3269 class class class wbr 3811 ↦ cmpt 3865 ωcom 4368 ◡ccnv 4400 –1-1-onto→wf1o 4968 ‘cfv 4969 (class class class)co 5591 freccfrec 6087 ≈ cen 6385 Fincfn 6387 0cc0 7253 1c1 7254 + caddc 7256 < clt 7425 ≤ cle 7426 − cmin 7556 ℕ0cn0 8565 ℤcz 8646 ℤ≥cuz 8914 ...cfz 9319 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-coll 3919 ax-sep 3922 ax-nul 3930 ax-pow 3974 ax-pr 4000 ax-un 4224 ax-setind 4316 ax-iinf 4366 ax-cnex 7339 ax-resscn 7340 ax-1cn 7341 ax-1re 7342 ax-icn 7343 ax-addcl 7344 ax-addrcl 7345 ax-mulcl 7346 ax-addcom 7348 ax-addass 7350 ax-distr 7352 ax-i2m1 7353 ax-0lt1 7354 ax-0id 7356 ax-rnegex 7357 ax-cnre 7359 ax-pre-ltirr 7360 ax-pre-ltwlin 7361 ax-pre-lttrn 7362 ax-pre-apti 7363 ax-pre-ltadd 7364 |
This theorem depends on definitions: df-bi 115 df-dc 777 df-3or 921 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1688 df-eu 1946 df-mo 1947 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ne 2250 df-nel 2345 df-ral 2358 df-rex 2359 df-reu 2360 df-rab 2362 df-v 2614 df-sbc 2827 df-csb 2920 df-dif 2986 df-un 2988 df-in 2990 df-ss 2997 df-nul 3270 df-pw 3408 df-sn 3428 df-pr 3429 df-op 3431 df-uni 3628 df-int 3663 df-iun 3706 df-br 3812 df-opab 3866 df-mpt 3867 df-tr 3902 df-id 4084 df-iord 4157 df-on 4159 df-ilim 4160 df-suc 4162 df-iom 4369 df-xp 4407 df-rel 4408 df-cnv 4409 df-co 4410 df-dm 4411 df-rn 4412 df-res 4413 df-ima 4414 df-iota 4934 df-fun 4971 df-fn 4972 df-f 4973 df-f1 4974 df-fo 4975 df-f1o 4976 df-fv 4977 df-riota 5547 df-ov 5594 df-oprab 5595 df-mpt2 5596 df-1st 5846 df-2nd 5847 df-recs 6002 df-frec 6088 df-1o 6113 df-er 6222 df-en 6388 df-fin 6390 df-pnf 7427 df-mnf 7428 df-xr 7429 df-ltxr 7430 df-le 7431 df-sub 7558 df-neg 7559 df-inn 8317 df-n0 8566 df-z 8647 df-uz 8915 df-fz 9320 |
This theorem is referenced by: fzfigd 9727 fzofig 9728 isfinite4im 10036 phibnd 10973 |
Copyright terms: Public domain | W3C validator |