ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzfig GIF version

Theorem fzfig 10525
Description: A finite interval of integers is finite. (Contributed by Jim Kingdon, 19-May-2020.)
Assertion
Ref Expression
fzfig ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) ∈ Fin)

Proof of Theorem fzfig
StepHypRef Expression
1 eluz 9617 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ𝑀) ↔ 𝑀𝑁))
2 eqid 2196 . . . . . . 7 frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
32frechashgf1o 10523 . . . . . 6 frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0):ω–1-1-onto→ℕ0
4 peano2uz 9660 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → (𝑁 + 1) ∈ (ℤ𝑀))
5 uznn0sub 9636 . . . . . . 7 ((𝑁 + 1) ∈ (ℤ𝑀) → ((𝑁 + 1) − 𝑀) ∈ ℕ0)
64, 5syl 14 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → ((𝑁 + 1) − 𝑀) ∈ ℕ0)
7 f1ocnvdm 5829 . . . . . 6 ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0):ω–1-1-onto→ℕ0 ∧ ((𝑁 + 1) − 𝑀) ∈ ℕ0) → (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘((𝑁 + 1) − 𝑀)) ∈ ω)
83, 6, 7sylancr 414 . . . . 5 (𝑁 ∈ (ℤ𝑀) → (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘((𝑁 + 1) − 𝑀)) ∈ ω)
9 nnfi 6935 . . . . 5 ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘((𝑁 + 1) − 𝑀)) ∈ ω → (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘((𝑁 + 1) − 𝑀)) ∈ Fin)
108, 9syl 14 . . . 4 (𝑁 ∈ (ℤ𝑀) → (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘((𝑁 + 1) − 𝑀)) ∈ Fin)
112frecfzen2 10522 . . . 4 (𝑁 ∈ (ℤ𝑀) → (𝑀...𝑁) ≈ (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘((𝑁 + 1) − 𝑀)))
12 enfii 6937 . . . 4 (((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘((𝑁 + 1) − 𝑀)) ∈ Fin ∧ (𝑀...𝑁) ≈ (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘((𝑁 + 1) − 𝑀))) → (𝑀...𝑁) ∈ Fin)
1310, 11, 12syl2anc 411 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝑀...𝑁) ∈ Fin)
141, 13biimtrrdi 164 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 → (𝑀...𝑁) ∈ Fin))
15 zltnle 9375 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁 < 𝑀 ↔ ¬ 𝑀𝑁))
1615ancoms 268 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 𝑀 ↔ ¬ 𝑀𝑁))
17 fzn 10120 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 𝑀 ↔ (𝑀...𝑁) = ∅))
1816, 17bitr3d 190 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ 𝑀𝑁 ↔ (𝑀...𝑁) = ∅))
19 0fin 6947 . . . 4 ∅ ∈ Fin
20 eleq1 2259 . . . 4 ((𝑀...𝑁) = ∅ → ((𝑀...𝑁) ∈ Fin ↔ ∅ ∈ Fin))
2119, 20mpbiri 168 . . 3 ((𝑀...𝑁) = ∅ → (𝑀...𝑁) ∈ Fin)
2218, 21biimtrdi 163 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ 𝑀𝑁 → (𝑀...𝑁) ∈ Fin))
23 zdcle 9405 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑀𝑁)
24 df-dc 836 . . 3 (DECID 𝑀𝑁 ↔ (𝑀𝑁 ∨ ¬ 𝑀𝑁))
2523, 24sylib 122 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ∨ ¬ 𝑀𝑁))
2614, 22, 25mpjaod 719 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) ∈ Fin)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  DECID wdc 835   = wceq 1364  wcel 2167  c0 3451   class class class wbr 4034  cmpt 4095  ωcom 4627  ccnv 4663  1-1-ontowf1o 5258  cfv 5259  (class class class)co 5923  freccfrec 6450  cen 6799  Fincfn 6801  0cc0 7882  1c1 7883   + caddc 7885   < clt 8064  cle 8065  cmin 8200  0cn0 9252  cz 9329  cuz 9604  ...cfz 10086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7973  ax-resscn 7974  ax-1cn 7975  ax-1re 7976  ax-icn 7977  ax-addcl 7978  ax-addrcl 7979  ax-mulcl 7980  ax-addcom 7982  ax-addass 7984  ax-distr 7986  ax-i2m1 7987  ax-0lt1 7988  ax-0id 7990  ax-rnegex 7991  ax-cnre 7993  ax-pre-ltirr 7994  ax-pre-ltwlin 7995  ax-pre-lttrn 7996  ax-pre-apti 7997  ax-pre-ltadd 7998
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5878  df-ov 5926  df-oprab 5927  df-mpo 5928  df-1st 6200  df-2nd 6201  df-recs 6365  df-frec 6451  df-1o 6476  df-er 6594  df-en 6802  df-fin 6804  df-pnf 8066  df-mnf 8067  df-xr 8068  df-ltxr 8069  df-le 8070  df-sub 8202  df-neg 8203  df-inn 8994  df-n0 9253  df-z 9330  df-uz 9605  df-fz 10087
This theorem is referenced by:  fzfigd  10526  fzofig  10527  isfinite4im  10887  phibnd  12396
  Copyright terms: Public domain W3C validator