| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fzfig | GIF version | ||
| Description: A finite interval of integers is finite. (Contributed by Jim Kingdon, 19-May-2020.) |
| Ref | Expression |
|---|---|
| fzfig | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluz 9731 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ≥‘𝑀) ↔ 𝑀 ≤ 𝑁)) | |
| 2 | eqid 2229 | . . . . . . 7 ⊢ frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) | |
| 3 | 2 | frechashgf1o 10645 | . . . . . 6 ⊢ frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0):ω–1-1-onto→ℕ0 |
| 4 | peano2uz 9774 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 1) ∈ (ℤ≥‘𝑀)) | |
| 5 | uznn0sub 9750 | . . . . . . 7 ⊢ ((𝑁 + 1) ∈ (ℤ≥‘𝑀) → ((𝑁 + 1) − 𝑀) ∈ ℕ0) | |
| 6 | 4, 5 | syl 14 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ((𝑁 + 1) − 𝑀) ∈ ℕ0) |
| 7 | f1ocnvdm 5904 | . . . . . 6 ⊢ ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0):ω–1-1-onto→ℕ0 ∧ ((𝑁 + 1) − 𝑀) ∈ ℕ0) → (◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘((𝑁 + 1) − 𝑀)) ∈ ω) | |
| 8 | 3, 6, 7 | sylancr 414 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘((𝑁 + 1) − 𝑀)) ∈ ω) |
| 9 | nnfi 7030 | . . . . 5 ⊢ ((◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘((𝑁 + 1) − 𝑀)) ∈ ω → (◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘((𝑁 + 1) − 𝑀)) ∈ Fin) | |
| 10 | 8, 9 | syl 14 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘((𝑁 + 1) − 𝑀)) ∈ Fin) |
| 11 | 2 | frecfzen2 10644 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀...𝑁) ≈ (◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘((𝑁 + 1) − 𝑀))) |
| 12 | enfii 7032 | . . . 4 ⊢ (((◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘((𝑁 + 1) − 𝑀)) ∈ Fin ∧ (𝑀...𝑁) ≈ (◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘((𝑁 + 1) − 𝑀))) → (𝑀...𝑁) ∈ Fin) | |
| 13 | 10, 11, 12 | syl2anc 411 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀...𝑁) ∈ Fin) |
| 14 | 1, 13 | biimtrrdi 164 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ≤ 𝑁 → (𝑀...𝑁) ∈ Fin)) |
| 15 | zltnle 9488 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁 < 𝑀 ↔ ¬ 𝑀 ≤ 𝑁)) | |
| 16 | 15 | ancoms 268 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 𝑀 ↔ ¬ 𝑀 ≤ 𝑁)) |
| 17 | fzn 10234 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 𝑀 ↔ (𝑀...𝑁) = ∅)) | |
| 18 | 16, 17 | bitr3d 190 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ 𝑀 ≤ 𝑁 ↔ (𝑀...𝑁) = ∅)) |
| 19 | 0fin 7042 | . . . 4 ⊢ ∅ ∈ Fin | |
| 20 | eleq1 2292 | . . . 4 ⊢ ((𝑀...𝑁) = ∅ → ((𝑀...𝑁) ∈ Fin ↔ ∅ ∈ Fin)) | |
| 21 | 19, 20 | mpbiri 168 | . . 3 ⊢ ((𝑀...𝑁) = ∅ → (𝑀...𝑁) ∈ Fin) |
| 22 | 18, 21 | biimtrdi 163 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ 𝑀 ≤ 𝑁 → (𝑀...𝑁) ∈ Fin)) |
| 23 | zdcle 9519 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑀 ≤ 𝑁) | |
| 24 | df-dc 840 | . . 3 ⊢ (DECID 𝑀 ≤ 𝑁 ↔ (𝑀 ≤ 𝑁 ∨ ¬ 𝑀 ≤ 𝑁)) | |
| 25 | 23, 24 | sylib 122 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ≤ 𝑁 ∨ ¬ 𝑀 ≤ 𝑁)) |
| 26 | 14, 22, 25 | mpjaod 723 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) ∈ Fin) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 713 DECID wdc 839 = wceq 1395 ∈ wcel 2200 ∅c0 3491 class class class wbr 4082 ↦ cmpt 4144 ωcom 4681 ◡ccnv 4717 –1-1-onto→wf1o 5316 ‘cfv 5317 (class class class)co 6000 freccfrec 6534 ≈ cen 6883 Fincfn 6885 0cc0 7995 1c1 7996 + caddc 7998 < clt 8177 ≤ cle 8178 − cmin 8313 ℕ0cn0 9365 ℤcz 9442 ℤ≥cuz 9718 ...cfz 10200 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-0id 8103 ax-rnegex 8104 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-apti 8110 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-iord 4456 df-on 4458 df-ilim 4459 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-recs 6449 df-frec 6535 df-1o 6560 df-er 6678 df-en 6886 df-fin 6888 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-inn 9107 df-n0 9366 df-z 9443 df-uz 9719 df-fz 10201 |
| This theorem is referenced by: fzfigd 10648 fzofig 10649 isfinite4im 11009 phibnd 12734 |
| Copyright terms: Public domain | W3C validator |