ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzfig GIF version

Theorem fzfig 10504
Description: A finite interval of integers is finite. (Contributed by Jim Kingdon, 19-May-2020.)
Assertion
Ref Expression
fzfig ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) ∈ Fin)

Proof of Theorem fzfig
StepHypRef Expression
1 eluz 9608 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ𝑀) ↔ 𝑀𝑁))
2 eqid 2193 . . . . . . 7 frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
32frechashgf1o 10502 . . . . . 6 frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0):ω–1-1-onto→ℕ0
4 peano2uz 9651 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → (𝑁 + 1) ∈ (ℤ𝑀))
5 uznn0sub 9627 . . . . . . 7 ((𝑁 + 1) ∈ (ℤ𝑀) → ((𝑁 + 1) − 𝑀) ∈ ℕ0)
64, 5syl 14 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → ((𝑁 + 1) − 𝑀) ∈ ℕ0)
7 f1ocnvdm 5825 . . . . . 6 ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0):ω–1-1-onto→ℕ0 ∧ ((𝑁 + 1) − 𝑀) ∈ ℕ0) → (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘((𝑁 + 1) − 𝑀)) ∈ ω)
83, 6, 7sylancr 414 . . . . 5 (𝑁 ∈ (ℤ𝑀) → (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘((𝑁 + 1) − 𝑀)) ∈ ω)
9 nnfi 6930 . . . . 5 ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘((𝑁 + 1) − 𝑀)) ∈ ω → (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘((𝑁 + 1) − 𝑀)) ∈ Fin)
108, 9syl 14 . . . 4 (𝑁 ∈ (ℤ𝑀) → (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘((𝑁 + 1) − 𝑀)) ∈ Fin)
112frecfzen2 10501 . . . 4 (𝑁 ∈ (ℤ𝑀) → (𝑀...𝑁) ≈ (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘((𝑁 + 1) − 𝑀)))
12 enfii 6932 . . . 4 (((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘((𝑁 + 1) − 𝑀)) ∈ Fin ∧ (𝑀...𝑁) ≈ (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘((𝑁 + 1) − 𝑀))) → (𝑀...𝑁) ∈ Fin)
1310, 11, 12syl2anc 411 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝑀...𝑁) ∈ Fin)
141, 13biimtrrdi 164 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 → (𝑀...𝑁) ∈ Fin))
15 zltnle 9366 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁 < 𝑀 ↔ ¬ 𝑀𝑁))
1615ancoms 268 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 𝑀 ↔ ¬ 𝑀𝑁))
17 fzn 10111 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 𝑀 ↔ (𝑀...𝑁) = ∅))
1816, 17bitr3d 190 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ 𝑀𝑁 ↔ (𝑀...𝑁) = ∅))
19 0fin 6942 . . . 4 ∅ ∈ Fin
20 eleq1 2256 . . . 4 ((𝑀...𝑁) = ∅ → ((𝑀...𝑁) ∈ Fin ↔ ∅ ∈ Fin))
2119, 20mpbiri 168 . . 3 ((𝑀...𝑁) = ∅ → (𝑀...𝑁) ∈ Fin)
2218, 21biimtrdi 163 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ 𝑀𝑁 → (𝑀...𝑁) ∈ Fin))
23 zdcle 9396 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑀𝑁)
24 df-dc 836 . . 3 (DECID 𝑀𝑁 ↔ (𝑀𝑁 ∨ ¬ 𝑀𝑁))
2523, 24sylib 122 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ∨ ¬ 𝑀𝑁))
2614, 22, 25mpjaod 719 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) ∈ Fin)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  DECID wdc 835   = wceq 1364  wcel 2164  c0 3447   class class class wbr 4030  cmpt 4091  ωcom 4623  ccnv 4659  1-1-ontowf1o 5254  cfv 5255  (class class class)co 5919  freccfrec 6445  cen 6794  Fincfn 6796  0cc0 7874  1c1 7875   + caddc 7877   < clt 8056  cle 8057  cmin 8192  0cn0 9243  cz 9320  cuz 9595  ...cfz 10077
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-frec 6446  df-1o 6471  df-er 6589  df-en 6797  df-fin 6799  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-inn 8985  df-n0 9244  df-z 9321  df-uz 9596  df-fz 10078
This theorem is referenced by:  fzfigd  10505  fzofig  10506  isfinite4im  10866  phibnd  12358
  Copyright terms: Public domain W3C validator