Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fzfig | GIF version |
Description: A finite interval of integers is finite. (Contributed by Jim Kingdon, 19-May-2020.) |
Ref | Expression |
---|---|
fzfig | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluz 9500 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ≥‘𝑀) ↔ 𝑀 ≤ 𝑁)) | |
2 | eqid 2170 | . . . . . . 7 ⊢ frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) | |
3 | 2 | frechashgf1o 10384 | . . . . . 6 ⊢ frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0):ω–1-1-onto→ℕ0 |
4 | peano2uz 9542 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 1) ∈ (ℤ≥‘𝑀)) | |
5 | uznn0sub 9518 | . . . . . . 7 ⊢ ((𝑁 + 1) ∈ (ℤ≥‘𝑀) → ((𝑁 + 1) − 𝑀) ∈ ℕ0) | |
6 | 4, 5 | syl 14 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ((𝑁 + 1) − 𝑀) ∈ ℕ0) |
7 | f1ocnvdm 5760 | . . . . . 6 ⊢ ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0):ω–1-1-onto→ℕ0 ∧ ((𝑁 + 1) − 𝑀) ∈ ℕ0) → (◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘((𝑁 + 1) − 𝑀)) ∈ ω) | |
8 | 3, 6, 7 | sylancr 412 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘((𝑁 + 1) − 𝑀)) ∈ ω) |
9 | nnfi 6850 | . . . . 5 ⊢ ((◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘((𝑁 + 1) − 𝑀)) ∈ ω → (◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘((𝑁 + 1) − 𝑀)) ∈ Fin) | |
10 | 8, 9 | syl 14 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘((𝑁 + 1) − 𝑀)) ∈ Fin) |
11 | 2 | frecfzen2 10383 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀...𝑁) ≈ (◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘((𝑁 + 1) − 𝑀))) |
12 | enfii 6852 | . . . 4 ⊢ (((◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘((𝑁 + 1) − 𝑀)) ∈ Fin ∧ (𝑀...𝑁) ≈ (◡frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘((𝑁 + 1) − 𝑀))) → (𝑀...𝑁) ∈ Fin) | |
13 | 10, 11, 12 | syl2anc 409 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀...𝑁) ∈ Fin) |
14 | 1, 13 | syl6bir 163 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ≤ 𝑁 → (𝑀...𝑁) ∈ Fin)) |
15 | zltnle 9258 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁 < 𝑀 ↔ ¬ 𝑀 ≤ 𝑁)) | |
16 | 15 | ancoms 266 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 𝑀 ↔ ¬ 𝑀 ≤ 𝑁)) |
17 | fzn 9998 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 𝑀 ↔ (𝑀...𝑁) = ∅)) | |
18 | 16, 17 | bitr3d 189 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ 𝑀 ≤ 𝑁 ↔ (𝑀...𝑁) = ∅)) |
19 | 0fin 6862 | . . . 4 ⊢ ∅ ∈ Fin | |
20 | eleq1 2233 | . . . 4 ⊢ ((𝑀...𝑁) = ∅ → ((𝑀...𝑁) ∈ Fin ↔ ∅ ∈ Fin)) | |
21 | 19, 20 | mpbiri 167 | . . 3 ⊢ ((𝑀...𝑁) = ∅ → (𝑀...𝑁) ∈ Fin) |
22 | 18, 21 | syl6bi 162 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ 𝑀 ≤ 𝑁 → (𝑀...𝑁) ∈ Fin)) |
23 | zdcle 9288 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑀 ≤ 𝑁) | |
24 | df-dc 830 | . . 3 ⊢ (DECID 𝑀 ≤ 𝑁 ↔ (𝑀 ≤ 𝑁 ∨ ¬ 𝑀 ≤ 𝑁)) | |
25 | 23, 24 | sylib 121 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ≤ 𝑁 ∨ ¬ 𝑀 ≤ 𝑁)) |
26 | 14, 22, 25 | mpjaod 713 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) ∈ Fin) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 ∨ wo 703 DECID wdc 829 = wceq 1348 ∈ wcel 2141 ∅c0 3414 class class class wbr 3989 ↦ cmpt 4050 ωcom 4574 ◡ccnv 4610 –1-1-onto→wf1o 5197 ‘cfv 5198 (class class class)co 5853 freccfrec 6369 ≈ cen 6716 Fincfn 6718 0cc0 7774 1c1 7775 + caddc 7777 < clt 7954 ≤ cle 7955 − cmin 8090 ℕ0cn0 9135 ℤcz 9212 ℤ≥cuz 9487 ...cfz 9965 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-ilim 4354 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-frec 6370 df-1o 6395 df-er 6513 df-en 6719 df-fin 6721 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-inn 8879 df-n0 9136 df-z 9213 df-uz 9488 df-fz 9966 |
This theorem is referenced by: fzfigd 10387 fzofig 10388 isfinite4im 10727 phibnd 12171 |
Copyright terms: Public domain | W3C validator |