ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3t2e6 GIF version

Theorem 3t2e6 8876
Description: 3 times 2 equals 6. (Contributed by NM, 2-Aug-2004.)
Assertion
Ref Expression
3t2e6 (3 · 2) = 6

Proof of Theorem 3t2e6
StepHypRef Expression
1 3cn 8795 . . 3 3 ∈ ℂ
21times2i 8851 . 2 (3 · 2) = (3 + 3)
3 3p3e6 8862 . 2 (3 + 3) = 6
42, 3eqtri 2160 1 (3 · 2) = 6
Colors of variables: wff set class
Syntax hints:   = wceq 1331  (class class class)co 5774   + caddc 7623   · cmul 7625  2c2 8771  3c3 8772  6c6 8775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-1rid 7727  ax-cnre 7731
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-un 3075  df-in 3077  df-ss 3084  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-iota 5088  df-fv 5131  df-ov 5777  df-2 8779  df-3 8780  df-4 8781  df-5 8782  df-6 8783
This theorem is referenced by:  3t3e9  8877  8th4div3  8939  halfpm6th  8940  halfthird  9324  fac3  10478  sin01bnd  11464  3lcm2e6woprm  11767  3lcm2e6  11838  sincos6thpi  12923  pigt3  12925
  Copyright terms: Public domain W3C validator