Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > distopon | GIF version |
Description: The discrete topology on a set 𝐴, with base set. (Contributed by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
distopon | ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ (TopOn‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | distop 12445 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ Top) | |
2 | unipw 4176 | . . . 4 ⊢ ∪ 𝒫 𝐴 = 𝐴 | |
3 | 2 | eqcomi 2161 | . . 3 ⊢ 𝐴 = ∪ 𝒫 𝐴 |
4 | 3 | a1i 9 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 = ∪ 𝒫 𝐴) |
5 | istopon 12371 | . 2 ⊢ (𝒫 𝐴 ∈ (TopOn‘𝐴) ↔ (𝒫 𝐴 ∈ Top ∧ 𝐴 = ∪ 𝒫 𝐴)) | |
6 | 1, 4, 5 | sylanbrc 414 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ (TopOn‘𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1335 ∈ wcel 2128 𝒫 cpw 3543 ∪ cuni 3772 ‘cfv 5167 Topctop 12355 TopOnctopon 12368 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4134 ax-pr 4168 ax-un 4392 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-rab 2444 df-v 2714 df-sbc 2938 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-mpt 4027 df-id 4252 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-iota 5132 df-fun 5169 df-fv 5175 df-top 12356 df-topon 12369 |
This theorem is referenced by: sn0topon 12448 cndis 12601 txdis1cn 12638 |
Copyright terms: Public domain | W3C validator |