ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  distopon GIF version

Theorem distopon 13458
Description: The discrete topology on a set 𝐴, with base set. (Contributed by Mario Carneiro, 13-Aug-2015.)
Assertion
Ref Expression
distopon (𝐴𝑉 → 𝒫 𝐴 ∈ (TopOn‘𝐴))

Proof of Theorem distopon
StepHypRef Expression
1 distop 13456 . 2 (𝐴𝑉 → 𝒫 𝐴 ∈ Top)
2 unipw 4216 . . . 4 𝒫 𝐴 = 𝐴
32eqcomi 2181 . . 3 𝐴 = 𝒫 𝐴
43a1i 9 . 2 (𝐴𝑉𝐴 = 𝒫 𝐴)
5 istopon 13382 . 2 (𝒫 𝐴 ∈ (TopOn‘𝐴) ↔ (𝒫 𝐴 ∈ Top ∧ 𝐴 = 𝒫 𝐴))
61, 4, 5sylanbrc 417 1 (𝐴𝑉 → 𝒫 𝐴 ∈ (TopOn‘𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  wcel 2148  𝒫 cpw 3575   cuni 3809  cfv 5215  Topctop 13366  TopOnctopon 13379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4120  ax-pow 4173  ax-pr 4208  ax-un 4432
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2739  df-sbc 2963  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-br 4003  df-opab 4064  df-mpt 4065  df-id 4292  df-xp 4631  df-rel 4632  df-cnv 4633  df-co 4634  df-dm 4635  df-iota 5177  df-fun 5217  df-fv 5223  df-top 13367  df-topon 13380
This theorem is referenced by:  sn0topon  13459  cndis  13612  txdis1cn  13649
  Copyright terms: Public domain W3C validator