![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > distopon | GIF version |
Description: The discrete topology on a set 𝐴, with base set. (Contributed by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
distopon | ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ (TopOn‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | distop 13456 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ Top) | |
2 | unipw 4216 | . . . 4 ⊢ ∪ 𝒫 𝐴 = 𝐴 | |
3 | 2 | eqcomi 2181 | . . 3 ⊢ 𝐴 = ∪ 𝒫 𝐴 |
4 | 3 | a1i 9 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 = ∪ 𝒫 𝐴) |
5 | istopon 13382 | . 2 ⊢ (𝒫 𝐴 ∈ (TopOn‘𝐴) ↔ (𝒫 𝐴 ∈ Top ∧ 𝐴 = ∪ 𝒫 𝐴)) | |
6 | 1, 4, 5 | sylanbrc 417 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ (TopOn‘𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∈ wcel 2148 𝒫 cpw 3575 ∪ cuni 3809 ‘cfv 5215 Topctop 13366 TopOnctopon 13379 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4120 ax-pow 4173 ax-pr 4208 ax-un 4432 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2739 df-sbc 2963 df-un 3133 df-in 3135 df-ss 3142 df-pw 3577 df-sn 3598 df-pr 3599 df-op 3601 df-uni 3810 df-br 4003 df-opab 4064 df-mpt 4065 df-id 4292 df-xp 4631 df-rel 4632 df-cnv 4633 df-co 4634 df-dm 4635 df-iota 5177 df-fun 5217 df-fv 5223 df-top 13367 df-topon 13380 |
This theorem is referenced by: sn0topon 13459 cndis 13612 txdis1cn 13649 |
Copyright terms: Public domain | W3C validator |