![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > distopon | GIF version |
Description: The discrete topology on a set 𝐴, with base set. (Contributed by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
distopon | ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ (TopOn‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | distop 14264 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ Top) | |
2 | unipw 4247 | . . . 4 ⊢ ∪ 𝒫 𝐴 = 𝐴 | |
3 | 2 | eqcomi 2197 | . . 3 ⊢ 𝐴 = ∪ 𝒫 𝐴 |
4 | 3 | a1i 9 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 = ∪ 𝒫 𝐴) |
5 | istopon 14192 | . 2 ⊢ (𝒫 𝐴 ∈ (TopOn‘𝐴) ↔ (𝒫 𝐴 ∈ Top ∧ 𝐴 = ∪ 𝒫 𝐴)) | |
6 | 1, 4, 5 | sylanbrc 417 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ (TopOn‘𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 𝒫 cpw 3602 ∪ cuni 3836 ‘cfv 5255 Topctop 14176 TopOnctopon 14189 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2987 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-iota 5216 df-fun 5257 df-fv 5263 df-top 14177 df-topon 14190 |
This theorem is referenced by: sn0topon 14267 cndis 14420 txdis1cn 14457 |
Copyright terms: Public domain | W3C validator |