![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > tposeqi | GIF version |
Description: Equality theorem for transposition. (Contributed by Mario Carneiro, 10-Sep-2015.) |
Ref | Expression |
---|---|
tposeqi.1 | ⊢ 𝐹 = 𝐺 |
Ref | Expression |
---|---|
tposeqi | ⊢ tpos 𝐹 = tpos 𝐺 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tposeqi.1 | . 2 ⊢ 𝐹 = 𝐺 | |
2 | tposeq 6098 | . 2 ⊢ (𝐹 = 𝐺 → tpos 𝐹 = tpos 𝐺) | |
3 | 1, 2 | ax-mp 7 | 1 ⊢ tpos 𝐹 = tpos 𝐺 |
Colors of variables: wff set class |
Syntax hints: = wceq 1314 tpos ctpos 6095 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-14 1475 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 ax-sep 4006 ax-pow 4058 ax-pr 4091 |
This theorem depends on definitions: df-bi 116 df-3an 947 df-tru 1317 df-nf 1420 df-sb 1719 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-ral 2395 df-rex 2396 df-v 2659 df-un 3041 df-in 3043 df-ss 3050 df-pw 3478 df-sn 3499 df-pr 3500 df-op 3502 df-br 3896 df-opab 3950 df-mpt 3951 df-xp 4505 df-rel 4506 df-cnv 4507 df-co 4508 df-dm 4509 df-res 4511 df-tpos 6096 |
This theorem is referenced by: tposoprab 6131 |
Copyright terms: Public domain | W3C validator |