![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rdgisucinc | GIF version |
Description: Value of the recursive
definition generator at a successor.
This can be thought of as a generalization of oasuc 6517 and omsuc 6525. (Contributed by Jim Kingdon, 29-Aug-2019.) |
Ref | Expression |
---|---|
rdgisuc1.1 | ⊢ (𝜑 → 𝐹 Fn V) |
rdgisuc1.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
rdgisuc1.3 | ⊢ (𝜑 → 𝐵 ∈ On) |
rdgisucinc.inc | ⊢ (𝜑 → ∀𝑥 𝑥 ⊆ (𝐹‘𝑥)) |
Ref | Expression |
---|---|
rdgisucinc | ⊢ (𝜑 → (rec(𝐹, 𝐴)‘suc 𝐵) = (𝐹‘(rec(𝐹, 𝐴)‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rdgisuc1.1 | . . . 4 ⊢ (𝜑 → 𝐹 Fn V) | |
2 | rdgisuc1.2 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
3 | rdgisuc1.3 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ On) | |
4 | 1, 2, 3 | rdgisuc1 6437 | . . 3 ⊢ (𝜑 → (rec(𝐹, 𝐴)‘suc 𝐵) = (𝐴 ∪ (∪ 𝑥 ∈ 𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥)) ∪ (𝐹‘(rec(𝐹, 𝐴)‘𝐵))))) |
5 | unass 3316 | . . 3 ⊢ ((𝐴 ∪ ∪ 𝑥 ∈ 𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥))) ∪ (𝐹‘(rec(𝐹, 𝐴)‘𝐵))) = (𝐴 ∪ (∪ 𝑥 ∈ 𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥)) ∪ (𝐹‘(rec(𝐹, 𝐴)‘𝐵)))) | |
6 | 4, 5 | eqtr4di 2244 | . 2 ⊢ (𝜑 → (rec(𝐹, 𝐴)‘suc 𝐵) = ((𝐴 ∪ ∪ 𝑥 ∈ 𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥))) ∪ (𝐹‘(rec(𝐹, 𝐴)‘𝐵)))) |
7 | rdgival 6435 | . . . 4 ⊢ ((𝐹 Fn V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On) → (rec(𝐹, 𝐴)‘𝐵) = (𝐴 ∪ ∪ 𝑥 ∈ 𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥)))) | |
8 | 1, 2, 3, 7 | syl3anc 1249 | . . 3 ⊢ (𝜑 → (rec(𝐹, 𝐴)‘𝐵) = (𝐴 ∪ ∪ 𝑥 ∈ 𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥)))) |
9 | 8 | uneq1d 3312 | . 2 ⊢ (𝜑 → ((rec(𝐹, 𝐴)‘𝐵) ∪ (𝐹‘(rec(𝐹, 𝐴)‘𝐵))) = ((𝐴 ∪ ∪ 𝑥 ∈ 𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥))) ∪ (𝐹‘(rec(𝐹, 𝐴)‘𝐵)))) |
10 | rdgexggg 6430 | . . . . 5 ⊢ ((𝐹 Fn V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On) → (rec(𝐹, 𝐴)‘𝐵) ∈ V) | |
11 | 1, 2, 3, 10 | syl3anc 1249 | . . . 4 ⊢ (𝜑 → (rec(𝐹, 𝐴)‘𝐵) ∈ V) |
12 | rdgisucinc.inc | . . . 4 ⊢ (𝜑 → ∀𝑥 𝑥 ⊆ (𝐹‘𝑥)) | |
13 | id 19 | . . . . . 6 ⊢ (𝑥 = (rec(𝐹, 𝐴)‘𝐵) → 𝑥 = (rec(𝐹, 𝐴)‘𝐵)) | |
14 | fveq2 5554 | . . . . . 6 ⊢ (𝑥 = (rec(𝐹, 𝐴)‘𝐵) → (𝐹‘𝑥) = (𝐹‘(rec(𝐹, 𝐴)‘𝐵))) | |
15 | 13, 14 | sseq12d 3210 | . . . . 5 ⊢ (𝑥 = (rec(𝐹, 𝐴)‘𝐵) → (𝑥 ⊆ (𝐹‘𝑥) ↔ (rec(𝐹, 𝐴)‘𝐵) ⊆ (𝐹‘(rec(𝐹, 𝐴)‘𝐵)))) |
16 | 15 | spcgv 2847 | . . . 4 ⊢ ((rec(𝐹, 𝐴)‘𝐵) ∈ V → (∀𝑥 𝑥 ⊆ (𝐹‘𝑥) → (rec(𝐹, 𝐴)‘𝐵) ⊆ (𝐹‘(rec(𝐹, 𝐴)‘𝐵)))) |
17 | 11, 12, 16 | sylc 62 | . . 3 ⊢ (𝜑 → (rec(𝐹, 𝐴)‘𝐵) ⊆ (𝐹‘(rec(𝐹, 𝐴)‘𝐵))) |
18 | ssequn1 3329 | . . 3 ⊢ ((rec(𝐹, 𝐴)‘𝐵) ⊆ (𝐹‘(rec(𝐹, 𝐴)‘𝐵)) ↔ ((rec(𝐹, 𝐴)‘𝐵) ∪ (𝐹‘(rec(𝐹, 𝐴)‘𝐵))) = (𝐹‘(rec(𝐹, 𝐴)‘𝐵))) | |
19 | 17, 18 | sylib 122 | . 2 ⊢ (𝜑 → ((rec(𝐹, 𝐴)‘𝐵) ∪ (𝐹‘(rec(𝐹, 𝐴)‘𝐵))) = (𝐹‘(rec(𝐹, 𝐴)‘𝐵))) |
20 | 6, 9, 19 | 3eqtr2d 2232 | 1 ⊢ (𝜑 → (rec(𝐹, 𝐴)‘suc 𝐵) = (𝐹‘(rec(𝐹, 𝐴)‘𝐵))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1362 = wceq 1364 ∈ wcel 2164 Vcvv 2760 ∪ cun 3151 ⊆ wss 3153 ∪ ciun 3912 Oncon0 4394 suc csuc 4396 Fn wfn 5249 ‘cfv 5254 reccrdg 6422 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-id 4324 df-iord 4397 df-on 4399 df-suc 4402 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-recs 6358 df-irdg 6423 |
This theorem is referenced by: frecrdg 6461 |
Copyright terms: Public domain | W3C validator |