| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rdgisucinc | GIF version | ||
| Description: Value of the recursive
definition generator at a successor.
This can be thought of as a generalization of oasuc 6580 and omsuc 6588. (Contributed by Jim Kingdon, 29-Aug-2019.) |
| Ref | Expression |
|---|---|
| rdgisuc1.1 | ⊢ (𝜑 → 𝐹 Fn V) |
| rdgisuc1.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| rdgisuc1.3 | ⊢ (𝜑 → 𝐵 ∈ On) |
| rdgisucinc.inc | ⊢ (𝜑 → ∀𝑥 𝑥 ⊆ (𝐹‘𝑥)) |
| Ref | Expression |
|---|---|
| rdgisucinc | ⊢ (𝜑 → (rec(𝐹, 𝐴)‘suc 𝐵) = (𝐹‘(rec(𝐹, 𝐴)‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rdgisuc1.1 | . . . 4 ⊢ (𝜑 → 𝐹 Fn V) | |
| 2 | rdgisuc1.2 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 3 | rdgisuc1.3 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ On) | |
| 4 | 1, 2, 3 | rdgisuc1 6500 | . . 3 ⊢ (𝜑 → (rec(𝐹, 𝐴)‘suc 𝐵) = (𝐴 ∪ (∪ 𝑥 ∈ 𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥)) ∪ (𝐹‘(rec(𝐹, 𝐴)‘𝐵))))) |
| 5 | unass 3341 | . . 3 ⊢ ((𝐴 ∪ ∪ 𝑥 ∈ 𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥))) ∪ (𝐹‘(rec(𝐹, 𝐴)‘𝐵))) = (𝐴 ∪ (∪ 𝑥 ∈ 𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥)) ∪ (𝐹‘(rec(𝐹, 𝐴)‘𝐵)))) | |
| 6 | 4, 5 | eqtr4di 2260 | . 2 ⊢ (𝜑 → (rec(𝐹, 𝐴)‘suc 𝐵) = ((𝐴 ∪ ∪ 𝑥 ∈ 𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥))) ∪ (𝐹‘(rec(𝐹, 𝐴)‘𝐵)))) |
| 7 | rdgival 6498 | . . . 4 ⊢ ((𝐹 Fn V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On) → (rec(𝐹, 𝐴)‘𝐵) = (𝐴 ∪ ∪ 𝑥 ∈ 𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥)))) | |
| 8 | 1, 2, 3, 7 | syl3anc 1252 | . . 3 ⊢ (𝜑 → (rec(𝐹, 𝐴)‘𝐵) = (𝐴 ∪ ∪ 𝑥 ∈ 𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥)))) |
| 9 | 8 | uneq1d 3337 | . 2 ⊢ (𝜑 → ((rec(𝐹, 𝐴)‘𝐵) ∪ (𝐹‘(rec(𝐹, 𝐴)‘𝐵))) = ((𝐴 ∪ ∪ 𝑥 ∈ 𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥))) ∪ (𝐹‘(rec(𝐹, 𝐴)‘𝐵)))) |
| 10 | rdgexggg 6493 | . . . . 5 ⊢ ((𝐹 Fn V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On) → (rec(𝐹, 𝐴)‘𝐵) ∈ V) | |
| 11 | 1, 2, 3, 10 | syl3anc 1252 | . . . 4 ⊢ (𝜑 → (rec(𝐹, 𝐴)‘𝐵) ∈ V) |
| 12 | rdgisucinc.inc | . . . 4 ⊢ (𝜑 → ∀𝑥 𝑥 ⊆ (𝐹‘𝑥)) | |
| 13 | id 19 | . . . . . 6 ⊢ (𝑥 = (rec(𝐹, 𝐴)‘𝐵) → 𝑥 = (rec(𝐹, 𝐴)‘𝐵)) | |
| 14 | fveq2 5603 | . . . . . 6 ⊢ (𝑥 = (rec(𝐹, 𝐴)‘𝐵) → (𝐹‘𝑥) = (𝐹‘(rec(𝐹, 𝐴)‘𝐵))) | |
| 15 | 13, 14 | sseq12d 3235 | . . . . 5 ⊢ (𝑥 = (rec(𝐹, 𝐴)‘𝐵) → (𝑥 ⊆ (𝐹‘𝑥) ↔ (rec(𝐹, 𝐴)‘𝐵) ⊆ (𝐹‘(rec(𝐹, 𝐴)‘𝐵)))) |
| 16 | 15 | spcgv 2870 | . . . 4 ⊢ ((rec(𝐹, 𝐴)‘𝐵) ∈ V → (∀𝑥 𝑥 ⊆ (𝐹‘𝑥) → (rec(𝐹, 𝐴)‘𝐵) ⊆ (𝐹‘(rec(𝐹, 𝐴)‘𝐵)))) |
| 17 | 11, 12, 16 | sylc 62 | . . 3 ⊢ (𝜑 → (rec(𝐹, 𝐴)‘𝐵) ⊆ (𝐹‘(rec(𝐹, 𝐴)‘𝐵))) |
| 18 | ssequn1 3354 | . . 3 ⊢ ((rec(𝐹, 𝐴)‘𝐵) ⊆ (𝐹‘(rec(𝐹, 𝐴)‘𝐵)) ↔ ((rec(𝐹, 𝐴)‘𝐵) ∪ (𝐹‘(rec(𝐹, 𝐴)‘𝐵))) = (𝐹‘(rec(𝐹, 𝐴)‘𝐵))) | |
| 19 | 17, 18 | sylib 122 | . 2 ⊢ (𝜑 → ((rec(𝐹, 𝐴)‘𝐵) ∪ (𝐹‘(rec(𝐹, 𝐴)‘𝐵))) = (𝐹‘(rec(𝐹, 𝐴)‘𝐵))) |
| 20 | 6, 9, 19 | 3eqtr2d 2248 | 1 ⊢ (𝜑 → (rec(𝐹, 𝐴)‘suc 𝐵) = (𝐹‘(rec(𝐹, 𝐴)‘𝐵))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1373 = wceq 1375 ∈ wcel 2180 Vcvv 2779 ∪ cun 3175 ⊆ wss 3177 ∪ ciun 3944 Oncon0 4431 suc csuc 4433 Fn wfn 5289 ‘cfv 5294 reccrdg 6485 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-ral 2493 df-rex 2494 df-reu 2495 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-tr 4162 df-id 4361 df-iord 4434 df-on 4436 df-suc 4439 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-recs 6421 df-irdg 6486 |
| This theorem is referenced by: frecrdg 6524 |
| Copyright terms: Public domain | W3C validator |