ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rdgisucinc GIF version

Theorem rdgisucinc 6376
Description: Value of the recursive definition generator at a successor.

This can be thought of as a generalization of oasuc 6455 and omsuc 6463. (Contributed by Jim Kingdon, 29-Aug-2019.)

Hypotheses
Ref Expression
rdgisuc1.1 (𝜑𝐹 Fn V)
rdgisuc1.2 (𝜑𝐴𝑉)
rdgisuc1.3 (𝜑𝐵 ∈ On)
rdgisucinc.inc (𝜑 → ∀𝑥 𝑥 ⊆ (𝐹𝑥))
Assertion
Ref Expression
rdgisucinc (𝜑 → (rec(𝐹, 𝐴)‘suc 𝐵) = (𝐹‘(rec(𝐹, 𝐴)‘𝐵)))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐴   𝑥,𝐵   𝑥,𝑉
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rdgisucinc
StepHypRef Expression
1 rdgisuc1.1 . . . 4 (𝜑𝐹 Fn V)
2 rdgisuc1.2 . . . 4 (𝜑𝐴𝑉)
3 rdgisuc1.3 . . . 4 (𝜑𝐵 ∈ On)
41, 2, 3rdgisuc1 6375 . . 3 (𝜑 → (rec(𝐹, 𝐴)‘suc 𝐵) = (𝐴 ∪ ( 𝑥𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥)) ∪ (𝐹‘(rec(𝐹, 𝐴)‘𝐵)))))
5 unass 3290 . . 3 ((𝐴 𝑥𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥))) ∪ (𝐹‘(rec(𝐹, 𝐴)‘𝐵))) = (𝐴 ∪ ( 𝑥𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥)) ∪ (𝐹‘(rec(𝐹, 𝐴)‘𝐵))))
64, 5eqtr4di 2226 . 2 (𝜑 → (rec(𝐹, 𝐴)‘suc 𝐵) = ((𝐴 𝑥𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥))) ∪ (𝐹‘(rec(𝐹, 𝐴)‘𝐵))))
7 rdgival 6373 . . . 4 ((𝐹 Fn V ∧ 𝐴𝑉𝐵 ∈ On) → (rec(𝐹, 𝐴)‘𝐵) = (𝐴 𝑥𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥))))
81, 2, 3, 7syl3anc 1238 . . 3 (𝜑 → (rec(𝐹, 𝐴)‘𝐵) = (𝐴 𝑥𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥))))
98uneq1d 3286 . 2 (𝜑 → ((rec(𝐹, 𝐴)‘𝐵) ∪ (𝐹‘(rec(𝐹, 𝐴)‘𝐵))) = ((𝐴 𝑥𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥))) ∪ (𝐹‘(rec(𝐹, 𝐴)‘𝐵))))
10 rdgexggg 6368 . . . . 5 ((𝐹 Fn V ∧ 𝐴𝑉𝐵 ∈ On) → (rec(𝐹, 𝐴)‘𝐵) ∈ V)
111, 2, 3, 10syl3anc 1238 . . . 4 (𝜑 → (rec(𝐹, 𝐴)‘𝐵) ∈ V)
12 rdgisucinc.inc . . . 4 (𝜑 → ∀𝑥 𝑥 ⊆ (𝐹𝑥))
13 id 19 . . . . . 6 (𝑥 = (rec(𝐹, 𝐴)‘𝐵) → 𝑥 = (rec(𝐹, 𝐴)‘𝐵))
14 fveq2 5507 . . . . . 6 (𝑥 = (rec(𝐹, 𝐴)‘𝐵) → (𝐹𝑥) = (𝐹‘(rec(𝐹, 𝐴)‘𝐵)))
1513, 14sseq12d 3184 . . . . 5 (𝑥 = (rec(𝐹, 𝐴)‘𝐵) → (𝑥 ⊆ (𝐹𝑥) ↔ (rec(𝐹, 𝐴)‘𝐵) ⊆ (𝐹‘(rec(𝐹, 𝐴)‘𝐵))))
1615spcgv 2822 . . . 4 ((rec(𝐹, 𝐴)‘𝐵) ∈ V → (∀𝑥 𝑥 ⊆ (𝐹𝑥) → (rec(𝐹, 𝐴)‘𝐵) ⊆ (𝐹‘(rec(𝐹, 𝐴)‘𝐵))))
1711, 12, 16sylc 62 . . 3 (𝜑 → (rec(𝐹, 𝐴)‘𝐵) ⊆ (𝐹‘(rec(𝐹, 𝐴)‘𝐵)))
18 ssequn1 3303 . . 3 ((rec(𝐹, 𝐴)‘𝐵) ⊆ (𝐹‘(rec(𝐹, 𝐴)‘𝐵)) ↔ ((rec(𝐹, 𝐴)‘𝐵) ∪ (𝐹‘(rec(𝐹, 𝐴)‘𝐵))) = (𝐹‘(rec(𝐹, 𝐴)‘𝐵)))
1917, 18sylib 122 . 2 (𝜑 → ((rec(𝐹, 𝐴)‘𝐵) ∪ (𝐹‘(rec(𝐹, 𝐴)‘𝐵))) = (𝐹‘(rec(𝐹, 𝐴)‘𝐵)))
206, 9, 193eqtr2d 2214 1 (𝜑 → (rec(𝐹, 𝐴)‘suc 𝐵) = (𝐹‘(rec(𝐹, 𝐴)‘𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1351   = wceq 1353  wcel 2146  Vcvv 2735  cun 3125  wss 3127   ciun 3882  Oncon0 4357  suc csuc 4359   Fn wfn 5203  cfv 5208  reccrdg 6360
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-ral 2458  df-rex 2459  df-reu 2460  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-tr 4097  df-id 4287  df-iord 4360  df-on 4362  df-suc 4365  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-recs 6296  df-irdg 6361
This theorem is referenced by:  frecrdg  6399
  Copyright terms: Public domain W3C validator