ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rdgisucinc GIF version

Theorem rdgisucinc 6443
Description: Value of the recursive definition generator at a successor.

This can be thought of as a generalization of oasuc 6522 and omsuc 6530. (Contributed by Jim Kingdon, 29-Aug-2019.)

Hypotheses
Ref Expression
rdgisuc1.1 (𝜑𝐹 Fn V)
rdgisuc1.2 (𝜑𝐴𝑉)
rdgisuc1.3 (𝜑𝐵 ∈ On)
rdgisucinc.inc (𝜑 → ∀𝑥 𝑥 ⊆ (𝐹𝑥))
Assertion
Ref Expression
rdgisucinc (𝜑 → (rec(𝐹, 𝐴)‘suc 𝐵) = (𝐹‘(rec(𝐹, 𝐴)‘𝐵)))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐴   𝑥,𝐵   𝑥,𝑉
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rdgisucinc
StepHypRef Expression
1 rdgisuc1.1 . . . 4 (𝜑𝐹 Fn V)
2 rdgisuc1.2 . . . 4 (𝜑𝐴𝑉)
3 rdgisuc1.3 . . . 4 (𝜑𝐵 ∈ On)
41, 2, 3rdgisuc1 6442 . . 3 (𝜑 → (rec(𝐹, 𝐴)‘suc 𝐵) = (𝐴 ∪ ( 𝑥𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥)) ∪ (𝐹‘(rec(𝐹, 𝐴)‘𝐵)))))
5 unass 3320 . . 3 ((𝐴 𝑥𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥))) ∪ (𝐹‘(rec(𝐹, 𝐴)‘𝐵))) = (𝐴 ∪ ( 𝑥𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥)) ∪ (𝐹‘(rec(𝐹, 𝐴)‘𝐵))))
64, 5eqtr4di 2247 . 2 (𝜑 → (rec(𝐹, 𝐴)‘suc 𝐵) = ((𝐴 𝑥𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥))) ∪ (𝐹‘(rec(𝐹, 𝐴)‘𝐵))))
7 rdgival 6440 . . . 4 ((𝐹 Fn V ∧ 𝐴𝑉𝐵 ∈ On) → (rec(𝐹, 𝐴)‘𝐵) = (𝐴 𝑥𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥))))
81, 2, 3, 7syl3anc 1249 . . 3 (𝜑 → (rec(𝐹, 𝐴)‘𝐵) = (𝐴 𝑥𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥))))
98uneq1d 3316 . 2 (𝜑 → ((rec(𝐹, 𝐴)‘𝐵) ∪ (𝐹‘(rec(𝐹, 𝐴)‘𝐵))) = ((𝐴 𝑥𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥))) ∪ (𝐹‘(rec(𝐹, 𝐴)‘𝐵))))
10 rdgexggg 6435 . . . . 5 ((𝐹 Fn V ∧ 𝐴𝑉𝐵 ∈ On) → (rec(𝐹, 𝐴)‘𝐵) ∈ V)
111, 2, 3, 10syl3anc 1249 . . . 4 (𝜑 → (rec(𝐹, 𝐴)‘𝐵) ∈ V)
12 rdgisucinc.inc . . . 4 (𝜑 → ∀𝑥 𝑥 ⊆ (𝐹𝑥))
13 id 19 . . . . . 6 (𝑥 = (rec(𝐹, 𝐴)‘𝐵) → 𝑥 = (rec(𝐹, 𝐴)‘𝐵))
14 fveq2 5558 . . . . . 6 (𝑥 = (rec(𝐹, 𝐴)‘𝐵) → (𝐹𝑥) = (𝐹‘(rec(𝐹, 𝐴)‘𝐵)))
1513, 14sseq12d 3214 . . . . 5 (𝑥 = (rec(𝐹, 𝐴)‘𝐵) → (𝑥 ⊆ (𝐹𝑥) ↔ (rec(𝐹, 𝐴)‘𝐵) ⊆ (𝐹‘(rec(𝐹, 𝐴)‘𝐵))))
1615spcgv 2851 . . . 4 ((rec(𝐹, 𝐴)‘𝐵) ∈ V → (∀𝑥 𝑥 ⊆ (𝐹𝑥) → (rec(𝐹, 𝐴)‘𝐵) ⊆ (𝐹‘(rec(𝐹, 𝐴)‘𝐵))))
1711, 12, 16sylc 62 . . 3 (𝜑 → (rec(𝐹, 𝐴)‘𝐵) ⊆ (𝐹‘(rec(𝐹, 𝐴)‘𝐵)))
18 ssequn1 3333 . . 3 ((rec(𝐹, 𝐴)‘𝐵) ⊆ (𝐹‘(rec(𝐹, 𝐴)‘𝐵)) ↔ ((rec(𝐹, 𝐴)‘𝐵) ∪ (𝐹‘(rec(𝐹, 𝐴)‘𝐵))) = (𝐹‘(rec(𝐹, 𝐴)‘𝐵)))
1917, 18sylib 122 . 2 (𝜑 → ((rec(𝐹, 𝐴)‘𝐵) ∪ (𝐹‘(rec(𝐹, 𝐴)‘𝐵))) = (𝐹‘(rec(𝐹, 𝐴)‘𝐵)))
206, 9, 193eqtr2d 2235 1 (𝜑 → (rec(𝐹, 𝐴)‘suc 𝐵) = (𝐹‘(rec(𝐹, 𝐴)‘𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1362   = wceq 1364  wcel 2167  Vcvv 2763  cun 3155  wss 3157   ciun 3916  Oncon0 4398  suc csuc 4400   Fn wfn 5253  cfv 5258  reccrdg 6427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-recs 6363  df-irdg 6428
This theorem is referenced by:  frecrdg  6466
  Copyright terms: Public domain W3C validator