| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rdgisucinc | GIF version | ||
| Description: Value of the recursive
definition generator at a successor.
This can be thought of as a generalization of oasuc 6522 and omsuc 6530. (Contributed by Jim Kingdon, 29-Aug-2019.) |
| Ref | Expression |
|---|---|
| rdgisuc1.1 | ⊢ (𝜑 → 𝐹 Fn V) |
| rdgisuc1.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| rdgisuc1.3 | ⊢ (𝜑 → 𝐵 ∈ On) |
| rdgisucinc.inc | ⊢ (𝜑 → ∀𝑥 𝑥 ⊆ (𝐹‘𝑥)) |
| Ref | Expression |
|---|---|
| rdgisucinc | ⊢ (𝜑 → (rec(𝐹, 𝐴)‘suc 𝐵) = (𝐹‘(rec(𝐹, 𝐴)‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rdgisuc1.1 | . . . 4 ⊢ (𝜑 → 𝐹 Fn V) | |
| 2 | rdgisuc1.2 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 3 | rdgisuc1.3 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ On) | |
| 4 | 1, 2, 3 | rdgisuc1 6442 | . . 3 ⊢ (𝜑 → (rec(𝐹, 𝐴)‘suc 𝐵) = (𝐴 ∪ (∪ 𝑥 ∈ 𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥)) ∪ (𝐹‘(rec(𝐹, 𝐴)‘𝐵))))) |
| 5 | unass 3320 | . . 3 ⊢ ((𝐴 ∪ ∪ 𝑥 ∈ 𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥))) ∪ (𝐹‘(rec(𝐹, 𝐴)‘𝐵))) = (𝐴 ∪ (∪ 𝑥 ∈ 𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥)) ∪ (𝐹‘(rec(𝐹, 𝐴)‘𝐵)))) | |
| 6 | 4, 5 | eqtr4di 2247 | . 2 ⊢ (𝜑 → (rec(𝐹, 𝐴)‘suc 𝐵) = ((𝐴 ∪ ∪ 𝑥 ∈ 𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥))) ∪ (𝐹‘(rec(𝐹, 𝐴)‘𝐵)))) |
| 7 | rdgival 6440 | . . . 4 ⊢ ((𝐹 Fn V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On) → (rec(𝐹, 𝐴)‘𝐵) = (𝐴 ∪ ∪ 𝑥 ∈ 𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥)))) | |
| 8 | 1, 2, 3, 7 | syl3anc 1249 | . . 3 ⊢ (𝜑 → (rec(𝐹, 𝐴)‘𝐵) = (𝐴 ∪ ∪ 𝑥 ∈ 𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥)))) |
| 9 | 8 | uneq1d 3316 | . 2 ⊢ (𝜑 → ((rec(𝐹, 𝐴)‘𝐵) ∪ (𝐹‘(rec(𝐹, 𝐴)‘𝐵))) = ((𝐴 ∪ ∪ 𝑥 ∈ 𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥))) ∪ (𝐹‘(rec(𝐹, 𝐴)‘𝐵)))) |
| 10 | rdgexggg 6435 | . . . . 5 ⊢ ((𝐹 Fn V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On) → (rec(𝐹, 𝐴)‘𝐵) ∈ V) | |
| 11 | 1, 2, 3, 10 | syl3anc 1249 | . . . 4 ⊢ (𝜑 → (rec(𝐹, 𝐴)‘𝐵) ∈ V) |
| 12 | rdgisucinc.inc | . . . 4 ⊢ (𝜑 → ∀𝑥 𝑥 ⊆ (𝐹‘𝑥)) | |
| 13 | id 19 | . . . . . 6 ⊢ (𝑥 = (rec(𝐹, 𝐴)‘𝐵) → 𝑥 = (rec(𝐹, 𝐴)‘𝐵)) | |
| 14 | fveq2 5558 | . . . . . 6 ⊢ (𝑥 = (rec(𝐹, 𝐴)‘𝐵) → (𝐹‘𝑥) = (𝐹‘(rec(𝐹, 𝐴)‘𝐵))) | |
| 15 | 13, 14 | sseq12d 3214 | . . . . 5 ⊢ (𝑥 = (rec(𝐹, 𝐴)‘𝐵) → (𝑥 ⊆ (𝐹‘𝑥) ↔ (rec(𝐹, 𝐴)‘𝐵) ⊆ (𝐹‘(rec(𝐹, 𝐴)‘𝐵)))) |
| 16 | 15 | spcgv 2851 | . . . 4 ⊢ ((rec(𝐹, 𝐴)‘𝐵) ∈ V → (∀𝑥 𝑥 ⊆ (𝐹‘𝑥) → (rec(𝐹, 𝐴)‘𝐵) ⊆ (𝐹‘(rec(𝐹, 𝐴)‘𝐵)))) |
| 17 | 11, 12, 16 | sylc 62 | . . 3 ⊢ (𝜑 → (rec(𝐹, 𝐴)‘𝐵) ⊆ (𝐹‘(rec(𝐹, 𝐴)‘𝐵))) |
| 18 | ssequn1 3333 | . . 3 ⊢ ((rec(𝐹, 𝐴)‘𝐵) ⊆ (𝐹‘(rec(𝐹, 𝐴)‘𝐵)) ↔ ((rec(𝐹, 𝐴)‘𝐵) ∪ (𝐹‘(rec(𝐹, 𝐴)‘𝐵))) = (𝐹‘(rec(𝐹, 𝐴)‘𝐵))) | |
| 19 | 17, 18 | sylib 122 | . 2 ⊢ (𝜑 → ((rec(𝐹, 𝐴)‘𝐵) ∪ (𝐹‘(rec(𝐹, 𝐴)‘𝐵))) = (𝐹‘(rec(𝐹, 𝐴)‘𝐵))) |
| 20 | 6, 9, 19 | 3eqtr2d 2235 | 1 ⊢ (𝜑 → (rec(𝐹, 𝐴)‘suc 𝐵) = (𝐹‘(rec(𝐹, 𝐴)‘𝐵))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1362 = wceq 1364 ∈ wcel 2167 Vcvv 2763 ∪ cun 3155 ⊆ wss 3157 ∪ ciun 3916 Oncon0 4398 suc csuc 4400 Fn wfn 5253 ‘cfv 5258 reccrdg 6427 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-iord 4401 df-on 4403 df-suc 4406 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-recs 6363 df-irdg 6428 |
| This theorem is referenced by: frecrdg 6466 |
| Copyright terms: Public domain | W3C validator |