![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dif20el | Structured version Visualization version GIF version |
Description: An ordinal greater than one is greater than zero. (Contributed by Mario Carneiro, 25-May-2015.) |
Ref | Expression |
---|---|
dif20el | ⊢ (𝐴 ∈ (On ∖ 2o) → ∅ ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ondif2 8558 | . . 3 ⊢ (𝐴 ∈ (On ∖ 2o) ↔ (𝐴 ∈ On ∧ 1o ∈ 𝐴)) | |
2 | 1 | simprbi 496 | . 2 ⊢ (𝐴 ∈ (On ∖ 2o) → 1o ∈ 𝐴) |
3 | 0lt1o 8560 | . . 3 ⊢ ∅ ∈ 1o | |
4 | eldifi 4154 | . . . 4 ⊢ (𝐴 ∈ (On ∖ 2o) → 𝐴 ∈ On) | |
5 | ontr1 6441 | . . . 4 ⊢ (𝐴 ∈ On → ((∅ ∈ 1o ∧ 1o ∈ 𝐴) → ∅ ∈ 𝐴)) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ (𝐴 ∈ (On ∖ 2o) → ((∅ ∈ 1o ∧ 1o ∈ 𝐴) → ∅ ∈ 𝐴)) |
7 | 3, 6 | mpani 695 | . 2 ⊢ (𝐴 ∈ (On ∖ 2o) → (1o ∈ 𝐴 → ∅ ∈ 𝐴)) |
8 | 2, 7 | mpd 15 | 1 ⊢ (𝐴 ∈ (On ∖ 2o) → ∅ ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∖ cdif 3973 ∅c0 4352 Oncon0 6395 1oc1o 8515 2oc2o 8516 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-tr 5284 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-ord 6398 df-on 6399 df-suc 6401 df-1o 8522 df-2o 8523 |
This theorem is referenced by: oeordi 8643 oeworde 8649 oelimcl 8656 oeeulem 8657 oeeui 8658 cantnfresb 43286 |
Copyright terms: Public domain | W3C validator |