| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dif20el | Structured version Visualization version GIF version | ||
| Description: An ordinal greater than one is greater than zero. (Contributed by Mario Carneiro, 25-May-2015.) |
| Ref | Expression |
|---|---|
| dif20el | ⊢ (𝐴 ∈ (On ∖ 2o) → ∅ ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ondif2 8469 | . . 3 ⊢ (𝐴 ∈ (On ∖ 2o) ↔ (𝐴 ∈ On ∧ 1o ∈ 𝐴)) | |
| 2 | 1 | simprbi 496 | . 2 ⊢ (𝐴 ∈ (On ∖ 2o) → 1o ∈ 𝐴) |
| 3 | 0lt1o 8471 | . . 3 ⊢ ∅ ∈ 1o | |
| 4 | eldifi 4097 | . . . 4 ⊢ (𝐴 ∈ (On ∖ 2o) → 𝐴 ∈ On) | |
| 5 | ontr1 6382 | . . . 4 ⊢ (𝐴 ∈ On → ((∅ ∈ 1o ∧ 1o ∈ 𝐴) → ∅ ∈ 𝐴)) | |
| 6 | 4, 5 | syl 17 | . . 3 ⊢ (𝐴 ∈ (On ∖ 2o) → ((∅ ∈ 1o ∧ 1o ∈ 𝐴) → ∅ ∈ 𝐴)) |
| 7 | 3, 6 | mpani 696 | . 2 ⊢ (𝐴 ∈ (On ∖ 2o) → (1o ∈ 𝐴 → ∅ ∈ 𝐴)) |
| 8 | 2, 7 | mpd 15 | 1 ⊢ (𝐴 ∈ (On ∖ 2o) → ∅ ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∖ cdif 3914 ∅c0 4299 Oncon0 6335 1oc1o 8430 2oc2o 8431 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-tr 5218 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-ord 6338 df-on 6339 df-suc 6341 df-1o 8437 df-2o 8438 |
| This theorem is referenced by: oeordi 8554 oeworde 8560 oelimcl 8567 oeeulem 8568 oeeui 8569 cantnfresb 43320 |
| Copyright terms: Public domain | W3C validator |