| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dif20el | Structured version Visualization version GIF version | ||
| Description: An ordinal greater than one is greater than zero. (Contributed by Mario Carneiro, 25-May-2015.) |
| Ref | Expression |
|---|---|
| dif20el | ⊢ (𝐴 ∈ (On ∖ 2o) → ∅ ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ondif2 8417 | . . 3 ⊢ (𝐴 ∈ (On ∖ 2o) ↔ (𝐴 ∈ On ∧ 1o ∈ 𝐴)) | |
| 2 | 1 | simprbi 496 | . 2 ⊢ (𝐴 ∈ (On ∖ 2o) → 1o ∈ 𝐴) |
| 3 | 0lt1o 8419 | . . 3 ⊢ ∅ ∈ 1o | |
| 4 | eldifi 4078 | . . . 4 ⊢ (𝐴 ∈ (On ∖ 2o) → 𝐴 ∈ On) | |
| 5 | ontr1 6353 | . . . 4 ⊢ (𝐴 ∈ On → ((∅ ∈ 1o ∧ 1o ∈ 𝐴) → ∅ ∈ 𝐴)) | |
| 6 | 4, 5 | syl 17 | . . 3 ⊢ (𝐴 ∈ (On ∖ 2o) → ((∅ ∈ 1o ∧ 1o ∈ 𝐴) → ∅ ∈ 𝐴)) |
| 7 | 3, 6 | mpani 696 | . 2 ⊢ (𝐴 ∈ (On ∖ 2o) → (1o ∈ 𝐴 → ∅ ∈ 𝐴)) |
| 8 | 2, 7 | mpd 15 | 1 ⊢ (𝐴 ∈ (On ∖ 2o) → ∅ ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 ∖ cdif 3894 ∅c0 4280 Oncon0 6306 1oc1o 8378 2oc2o 8379 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-tr 5197 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-ord 6309 df-on 6310 df-suc 6312 df-1o 8385 df-2o 8386 |
| This theorem is referenced by: oeordi 8502 oeworde 8508 oelimcl 8515 oeeulem 8516 oeeui 8517 cantnfresb 43427 |
| Copyright terms: Public domain | W3C validator |