MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dif20el Structured version   Visualization version   GIF version

Theorem dif20el 8335
Description: An ordinal greater than one is greater than zero. (Contributed by Mario Carneiro, 25-May-2015.)
Assertion
Ref Expression
dif20el (𝐴 ∈ (On ∖ 2o) → ∅ ∈ 𝐴)

Proof of Theorem dif20el
StepHypRef Expression
1 ondif2 8332 . . 3 (𝐴 ∈ (On ∖ 2o) ↔ (𝐴 ∈ On ∧ 1o𝐴))
21simprbi 497 . 2 (𝐴 ∈ (On ∖ 2o) → 1o𝐴)
3 0lt1o 8334 . . 3 ∅ ∈ 1o
4 eldifi 4061 . . . 4 (𝐴 ∈ (On ∖ 2o) → 𝐴 ∈ On)
5 ontr1 6312 . . . 4 (𝐴 ∈ On → ((∅ ∈ 1o ∧ 1o𝐴) → ∅ ∈ 𝐴))
64, 5syl 17 . . 3 (𝐴 ∈ (On ∖ 2o) → ((∅ ∈ 1o ∧ 1o𝐴) → ∅ ∈ 𝐴))
73, 6mpani 693 . 2 (𝐴 ∈ (On ∖ 2o) → (1o𝐴 → ∅ ∈ 𝐴))
82, 7mpd 15 1 (𝐴 ∈ (On ∖ 2o) → ∅ ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2106  cdif 3884  c0 4256  Oncon0 6266  1oc1o 8290  2oc2o 8291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-11 2154  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-tr 5192  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-ord 6269  df-on 6270  df-suc 6272  df-1o 8297  df-2o 8298
This theorem is referenced by:  oeordi  8418  oeworde  8424  oelimcl  8431  oeeulem  8432  oeeui  8433
  Copyright terms: Public domain W3C validator