MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dif20el Structured version   Visualization version   GIF version

Theorem dif20el 8515
Description: An ordinal greater than one is greater than zero. (Contributed by Mario Carneiro, 25-May-2015.)
Assertion
Ref Expression
dif20el (𝐴 ∈ (On ∖ 2o) → ∅ ∈ 𝐴)

Proof of Theorem dif20el
StepHypRef Expression
1 ondif2 8512 . . 3 (𝐴 ∈ (On ∖ 2o) ↔ (𝐴 ∈ On ∧ 1o𝐴))
21simprbi 496 . 2 (𝐴 ∈ (On ∖ 2o) → 1o𝐴)
3 0lt1o 8514 . . 3 ∅ ∈ 1o
4 eldifi 4106 . . . 4 (𝐴 ∈ (On ∖ 2o) → 𝐴 ∈ On)
5 ontr1 6399 . . . 4 (𝐴 ∈ On → ((∅ ∈ 1o ∧ 1o𝐴) → ∅ ∈ 𝐴))
64, 5syl 17 . . 3 (𝐴 ∈ (On ∖ 2o) → ((∅ ∈ 1o ∧ 1o𝐴) → ∅ ∈ 𝐴))
73, 6mpani 696 . 2 (𝐴 ∈ (On ∖ 2o) → (1o𝐴 → ∅ ∈ 𝐴))
82, 7mpd 15 1 (𝐴 ∈ (On ∖ 2o) → ∅ ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  cdif 3923  c0 4308  Oncon0 6352  1oc1o 8471  2oc2o 8472
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-tr 5230  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-ord 6355  df-on 6356  df-suc 6358  df-1o 8478  df-2o 8479
This theorem is referenced by:  oeordi  8597  oeworde  8603  oelimcl  8610  oeeulem  8611  oeeui  8612  cantnfresb  43295
  Copyright terms: Public domain W3C validator