| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dif20el | Structured version Visualization version GIF version | ||
| Description: An ordinal greater than one is greater than zero. (Contributed by Mario Carneiro, 25-May-2015.) |
| Ref | Expression |
|---|---|
| dif20el | ⊢ (𝐴 ∈ (On ∖ 2o) → ∅ ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ondif2 8443 | . . 3 ⊢ (𝐴 ∈ (On ∖ 2o) ↔ (𝐴 ∈ On ∧ 1o ∈ 𝐴)) | |
| 2 | 1 | simprbi 496 | . 2 ⊢ (𝐴 ∈ (On ∖ 2o) → 1o ∈ 𝐴) |
| 3 | 0lt1o 8445 | . . 3 ⊢ ∅ ∈ 1o | |
| 4 | eldifi 4090 | . . . 4 ⊢ (𝐴 ∈ (On ∖ 2o) → 𝐴 ∈ On) | |
| 5 | ontr1 6367 | . . . 4 ⊢ (𝐴 ∈ On → ((∅ ∈ 1o ∧ 1o ∈ 𝐴) → ∅ ∈ 𝐴)) | |
| 6 | 4, 5 | syl 17 | . . 3 ⊢ (𝐴 ∈ (On ∖ 2o) → ((∅ ∈ 1o ∧ 1o ∈ 𝐴) → ∅ ∈ 𝐴)) |
| 7 | 3, 6 | mpani 696 | . 2 ⊢ (𝐴 ∈ (On ∖ 2o) → (1o ∈ 𝐴 → ∅ ∈ 𝐴)) |
| 8 | 2, 7 | mpd 15 | 1 ⊢ (𝐴 ∈ (On ∖ 2o) → ∅ ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∖ cdif 3908 ∅c0 4292 Oncon0 6320 1oc1o 8404 2oc2o 8405 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-tr 5210 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-ord 6323 df-on 6324 df-suc 6326 df-1o 8411 df-2o 8412 |
| This theorem is referenced by: oeordi 8528 oeworde 8534 oelimcl 8541 oeeulem 8542 oeeui 8543 cantnfresb 43286 |
| Copyright terms: Public domain | W3C validator |