Step | Hyp | Ref
| Expression |
1 | | findcard.4 |
. 2
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) |
2 | | isfi 8719 |
. . 3
⊢ (𝑥 ∈ Fin ↔ ∃𝑤 ∈ ω 𝑥 ≈ 𝑤) |
3 | | breq2 5074 |
. . . . . . . 8
⊢ (𝑤 = ∅ → (𝑥 ≈ 𝑤 ↔ 𝑥 ≈ ∅)) |
4 | 3 | imbi1d 341 |
. . . . . . 7
⊢ (𝑤 = ∅ → ((𝑥 ≈ 𝑤 → 𝜑) ↔ (𝑥 ≈ ∅ → 𝜑))) |
5 | 4 | albidv 1924 |
. . . . . 6
⊢ (𝑤 = ∅ → (∀𝑥(𝑥 ≈ 𝑤 → 𝜑) ↔ ∀𝑥(𝑥 ≈ ∅ → 𝜑))) |
6 | | breq2 5074 |
. . . . . . . 8
⊢ (𝑤 = 𝑣 → (𝑥 ≈ 𝑤 ↔ 𝑥 ≈ 𝑣)) |
7 | 6 | imbi1d 341 |
. . . . . . 7
⊢ (𝑤 = 𝑣 → ((𝑥 ≈ 𝑤 → 𝜑) ↔ (𝑥 ≈ 𝑣 → 𝜑))) |
8 | 7 | albidv 1924 |
. . . . . 6
⊢ (𝑤 = 𝑣 → (∀𝑥(𝑥 ≈ 𝑤 → 𝜑) ↔ ∀𝑥(𝑥 ≈ 𝑣 → 𝜑))) |
9 | | breq2 5074 |
. . . . . . . 8
⊢ (𝑤 = suc 𝑣 → (𝑥 ≈ 𝑤 ↔ 𝑥 ≈ suc 𝑣)) |
10 | 9 | imbi1d 341 |
. . . . . . 7
⊢ (𝑤 = suc 𝑣 → ((𝑥 ≈ 𝑤 → 𝜑) ↔ (𝑥 ≈ suc 𝑣 → 𝜑))) |
11 | 10 | albidv 1924 |
. . . . . 6
⊢ (𝑤 = suc 𝑣 → (∀𝑥(𝑥 ≈ 𝑤 → 𝜑) ↔ ∀𝑥(𝑥 ≈ suc 𝑣 → 𝜑))) |
12 | | en0 8758 |
. . . . . . . 8
⊢ (𝑥 ≈ ∅ ↔ 𝑥 = ∅) |
13 | | findcard.5 |
. . . . . . . . 9
⊢ 𝜓 |
14 | | findcard.1 |
. . . . . . . . 9
⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) |
15 | 13, 14 | mpbiri 257 |
. . . . . . . 8
⊢ (𝑥 = ∅ → 𝜑) |
16 | 12, 15 | sylbi 216 |
. . . . . . 7
⊢ (𝑥 ≈ ∅ → 𝜑) |
17 | 16 | ax-gen 1799 |
. . . . . 6
⊢
∀𝑥(𝑥 ≈ ∅ → 𝜑) |
18 | | peano2 7711 |
. . . . . . . . . . . . 13
⊢ (𝑣 ∈ ω → suc 𝑣 ∈
ω) |
19 | | breq2 5074 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = suc 𝑣 → (𝑦 ≈ 𝑤 ↔ 𝑦 ≈ suc 𝑣)) |
20 | 19 | rspcev 3552 |
. . . . . . . . . . . . 13
⊢ ((suc
𝑣 ∈ ω ∧
𝑦 ≈ suc 𝑣) → ∃𝑤 ∈ ω 𝑦 ≈ 𝑤) |
21 | 18, 20 | sylan 579 |
. . . . . . . . . . . 12
⊢ ((𝑣 ∈ ω ∧ 𝑦 ≈ suc 𝑣) → ∃𝑤 ∈ ω 𝑦 ≈ 𝑤) |
22 | | isfi 8719 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ Fin ↔ ∃𝑤 ∈ ω 𝑦 ≈ 𝑤) |
23 | 21, 22 | sylibr 233 |
. . . . . . . . . . 11
⊢ ((𝑣 ∈ ω ∧ 𝑦 ≈ suc 𝑣) → 𝑦 ∈ Fin) |
24 | 23 | 3adant2 1129 |
. . . . . . . . . 10
⊢ ((𝑣 ∈ ω ∧
∀𝑥(𝑥 ≈ 𝑣 → 𝜑) ∧ 𝑦 ≈ suc 𝑣) → 𝑦 ∈ Fin) |
25 | | dif1en 8907 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑣 ∈ ω ∧ 𝑦 ≈ suc 𝑣 ∧ 𝑧 ∈ 𝑦) → (𝑦 ∖ {𝑧}) ≈ 𝑣) |
26 | 25 | 3expa 1116 |
. . . . . . . . . . . . . . 15
⊢ (((𝑣 ∈ ω ∧ 𝑦 ≈ suc 𝑣) ∧ 𝑧 ∈ 𝑦) → (𝑦 ∖ {𝑧}) ≈ 𝑣) |
27 | | vex 3426 |
. . . . . . . . . . . . . . . . 17
⊢ 𝑦 ∈ V |
28 | 27 | difexi 5247 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∖ {𝑧}) ∈ V |
29 | | breq1 5073 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = (𝑦 ∖ {𝑧}) → (𝑥 ≈ 𝑣 ↔ (𝑦 ∖ {𝑧}) ≈ 𝑣)) |
30 | | findcard.2 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = (𝑦 ∖ {𝑧}) → (𝜑 ↔ 𝜒)) |
31 | 29, 30 | imbi12d 344 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = (𝑦 ∖ {𝑧}) → ((𝑥 ≈ 𝑣 → 𝜑) ↔ ((𝑦 ∖ {𝑧}) ≈ 𝑣 → 𝜒))) |
32 | 28, 31 | spcv 3534 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑥(𝑥 ≈ 𝑣 → 𝜑) → ((𝑦 ∖ {𝑧}) ≈ 𝑣 → 𝜒)) |
33 | 26, 32 | syl5com 31 |
. . . . . . . . . . . . . 14
⊢ (((𝑣 ∈ ω ∧ 𝑦 ≈ suc 𝑣) ∧ 𝑧 ∈ 𝑦) → (∀𝑥(𝑥 ≈ 𝑣 → 𝜑) → 𝜒)) |
34 | 33 | ralrimdva 3112 |
. . . . . . . . . . . . 13
⊢ ((𝑣 ∈ ω ∧ 𝑦 ≈ suc 𝑣) → (∀𝑥(𝑥 ≈ 𝑣 → 𝜑) → ∀𝑧 ∈ 𝑦 𝜒)) |
35 | 34 | imp 406 |
. . . . . . . . . . . 12
⊢ (((𝑣 ∈ ω ∧ 𝑦 ≈ suc 𝑣) ∧ ∀𝑥(𝑥 ≈ 𝑣 → 𝜑)) → ∀𝑧 ∈ 𝑦 𝜒) |
36 | 35 | an32s 648 |
. . . . . . . . . . 11
⊢ (((𝑣 ∈ ω ∧
∀𝑥(𝑥 ≈ 𝑣 → 𝜑)) ∧ 𝑦 ≈ suc 𝑣) → ∀𝑧 ∈ 𝑦 𝜒) |
37 | 36 | 3impa 1108 |
. . . . . . . . . 10
⊢ ((𝑣 ∈ ω ∧
∀𝑥(𝑥 ≈ 𝑣 → 𝜑) ∧ 𝑦 ≈ suc 𝑣) → ∀𝑧 ∈ 𝑦 𝜒) |
38 | | findcard.6 |
. . . . . . . . . 10
⊢ (𝑦 ∈ Fin →
(∀𝑧 ∈ 𝑦 𝜒 → 𝜃)) |
39 | 24, 37, 38 | sylc 65 |
. . . . . . . . 9
⊢ ((𝑣 ∈ ω ∧
∀𝑥(𝑥 ≈ 𝑣 → 𝜑) ∧ 𝑦 ≈ suc 𝑣) → 𝜃) |
40 | 39 | 3exp 1117 |
. . . . . . . 8
⊢ (𝑣 ∈ ω →
(∀𝑥(𝑥 ≈ 𝑣 → 𝜑) → (𝑦 ≈ suc 𝑣 → 𝜃))) |
41 | 40 | alrimdv 1933 |
. . . . . . 7
⊢ (𝑣 ∈ ω →
(∀𝑥(𝑥 ≈ 𝑣 → 𝜑) → ∀𝑦(𝑦 ≈ suc 𝑣 → 𝜃))) |
42 | | breq1 5073 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (𝑥 ≈ suc 𝑣 ↔ 𝑦 ≈ suc 𝑣)) |
43 | | findcard.3 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜃)) |
44 | 42, 43 | imbi12d 344 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → ((𝑥 ≈ suc 𝑣 → 𝜑) ↔ (𝑦 ≈ suc 𝑣 → 𝜃))) |
45 | 44 | cbvalvw 2040 |
. . . . . . 7
⊢
(∀𝑥(𝑥 ≈ suc 𝑣 → 𝜑) ↔ ∀𝑦(𝑦 ≈ suc 𝑣 → 𝜃)) |
46 | 41, 45 | syl6ibr 251 |
. . . . . 6
⊢ (𝑣 ∈ ω →
(∀𝑥(𝑥 ≈ 𝑣 → 𝜑) → ∀𝑥(𝑥 ≈ suc 𝑣 → 𝜑))) |
47 | 5, 8, 11, 17, 46 | finds1 7722 |
. . . . 5
⊢ (𝑤 ∈ ω →
∀𝑥(𝑥 ≈ 𝑤 → 𝜑)) |
48 | 47 | 19.21bi 2184 |
. . . 4
⊢ (𝑤 ∈ ω → (𝑥 ≈ 𝑤 → 𝜑)) |
49 | 48 | rexlimiv 3208 |
. . 3
⊢
(∃𝑤 ∈
ω 𝑥 ≈ 𝑤 → 𝜑) |
50 | 2, 49 | sylbi 216 |
. 2
⊢ (𝑥 ∈ Fin → 𝜑) |
51 | 1, 50 | vtoclga 3503 |
1
⊢ (𝐴 ∈ Fin → 𝜏) |