Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nnmul1com Structured version   Visualization version   GIF version

Theorem nnmul1com 42266
Description: Multiplication with 1 is commutative for natural numbers, without ax-mulcom 11139. Since (𝐴 · 1) is 𝐴 by ax-1rid 11145, this is equivalent to remullid 42429 for natural numbers, but using fewer axioms (avoiding ax-resscn 11132, ax-addass 11140, ax-mulass 11141, ax-rnegex 11146, ax-pre-lttri 11149, ax-pre-lttrn 11150, ax-pre-ltadd 11151). (Contributed by SN, 5-Feb-2024.)
Assertion
Ref Expression
nnmul1com (𝐴 ∈ ℕ → (1 · 𝐴) = (𝐴 · 1))

Proof of Theorem nnmul1com
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7398 . . . 4 (𝑥 = 1 → (1 · 𝑥) = (1 · 1))
2 id 22 . . . 4 (𝑥 = 1 → 𝑥 = 1)
31, 2eqeq12d 2746 . . 3 (𝑥 = 1 → ((1 · 𝑥) = 𝑥 ↔ (1 · 1) = 1))
4 oveq2 7398 . . . 4 (𝑥 = 𝑦 → (1 · 𝑥) = (1 · 𝑦))
5 id 22 . . . 4 (𝑥 = 𝑦𝑥 = 𝑦)
64, 5eqeq12d 2746 . . 3 (𝑥 = 𝑦 → ((1 · 𝑥) = 𝑥 ↔ (1 · 𝑦) = 𝑦))
7 oveq2 7398 . . . 4 (𝑥 = (𝑦 + 1) → (1 · 𝑥) = (1 · (𝑦 + 1)))
8 id 22 . . . 4 (𝑥 = (𝑦 + 1) → 𝑥 = (𝑦 + 1))
97, 8eqeq12d 2746 . . 3 (𝑥 = (𝑦 + 1) → ((1 · 𝑥) = 𝑥 ↔ (1 · (𝑦 + 1)) = (𝑦 + 1)))
10 oveq2 7398 . . . 4 (𝑥 = 𝐴 → (1 · 𝑥) = (1 · 𝐴))
11 id 22 . . . 4 (𝑥 = 𝐴𝑥 = 𝐴)
1210, 11eqeq12d 2746 . . 3 (𝑥 = 𝐴 → ((1 · 𝑥) = 𝑥 ↔ (1 · 𝐴) = 𝐴))
13 1t1e1ALT 42250 . . 3 (1 · 1) = 1
14 1cnd 11176 . . . . . 6 ((𝑦 ∈ ℕ ∧ (1 · 𝑦) = 𝑦) → 1 ∈ ℂ)
15 simpl 482 . . . . . . 7 ((𝑦 ∈ ℕ ∧ (1 · 𝑦) = 𝑦) → 𝑦 ∈ ℕ)
1615nncnd 12209 . . . . . 6 ((𝑦 ∈ ℕ ∧ (1 · 𝑦) = 𝑦) → 𝑦 ∈ ℂ)
1714, 16, 14adddid 11205 . . . . 5 ((𝑦 ∈ ℕ ∧ (1 · 𝑦) = 𝑦) → (1 · (𝑦 + 1)) = ((1 · 𝑦) + (1 · 1)))
18 simpr 484 . . . . . 6 ((𝑦 ∈ ℕ ∧ (1 · 𝑦) = 𝑦) → (1 · 𝑦) = 𝑦)
1913a1i 11 . . . . . 6 ((𝑦 ∈ ℕ ∧ (1 · 𝑦) = 𝑦) → (1 · 1) = 1)
2018, 19oveq12d 7408 . . . . 5 ((𝑦 ∈ ℕ ∧ (1 · 𝑦) = 𝑦) → ((1 · 𝑦) + (1 · 1)) = (𝑦 + 1))
2117, 20eqtrd 2765 . . . 4 ((𝑦 ∈ ℕ ∧ (1 · 𝑦) = 𝑦) → (1 · (𝑦 + 1)) = (𝑦 + 1))
2221ex 412 . . 3 (𝑦 ∈ ℕ → ((1 · 𝑦) = 𝑦 → (1 · (𝑦 + 1)) = (𝑦 + 1)))
233, 6, 9, 12, 13, 22nnind 12211 . 2 (𝐴 ∈ ℕ → (1 · 𝐴) = 𝐴)
24 nnre 12200 . . 3 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
25 ax-1rid 11145 . . 3 (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴)
2624, 25syl 17 . 2 (𝐴 ∈ ℕ → (𝐴 · 1) = 𝐴)
2723, 26eqtr4d 2768 1 (𝐴 ∈ ℕ → (1 · 𝐴) = (𝐴 · 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  (class class class)co 7390  cr 11074  1c1 11076   + caddc 11078   · cmul 11080  cn 12193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rrecex 11147  ax-cnre 11148
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-nn 12194
This theorem is referenced by:  nnmulcom  42267
  Copyright terms: Public domain W3C validator