| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nnmul1com | Structured version Visualization version GIF version | ||
| Description: Multiplication with 1 is commutative for natural numbers, without ax-mulcom 11079. Since (𝐴 · 1) is 𝐴 by ax-1rid 11085, this is equivalent to remullid 42555 for natural numbers, but using fewer axioms (avoiding ax-resscn 11072, ax-addass 11080, ax-mulass 11081, ax-rnegex 11086, ax-pre-lttri 11089, ax-pre-lttrn 11090, ax-pre-ltadd 11091). (Contributed by SN, 5-Feb-2024.) |
| Ref | Expression |
|---|---|
| nnmul1com | ⊢ (𝐴 ∈ ℕ → (1 · 𝐴) = (𝐴 · 1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 7362 | . . . 4 ⊢ (𝑥 = 1 → (1 · 𝑥) = (1 · 1)) | |
| 2 | id 22 | . . . 4 ⊢ (𝑥 = 1 → 𝑥 = 1) | |
| 3 | 1, 2 | eqeq12d 2749 | . . 3 ⊢ (𝑥 = 1 → ((1 · 𝑥) = 𝑥 ↔ (1 · 1) = 1)) |
| 4 | oveq2 7362 | . . . 4 ⊢ (𝑥 = 𝑦 → (1 · 𝑥) = (1 · 𝑦)) | |
| 5 | id 22 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝑥 = 𝑦) | |
| 6 | 4, 5 | eqeq12d 2749 | . . 3 ⊢ (𝑥 = 𝑦 → ((1 · 𝑥) = 𝑥 ↔ (1 · 𝑦) = 𝑦)) |
| 7 | oveq2 7362 | . . . 4 ⊢ (𝑥 = (𝑦 + 1) → (1 · 𝑥) = (1 · (𝑦 + 1))) | |
| 8 | id 22 | . . . 4 ⊢ (𝑥 = (𝑦 + 1) → 𝑥 = (𝑦 + 1)) | |
| 9 | 7, 8 | eqeq12d 2749 | . . 3 ⊢ (𝑥 = (𝑦 + 1) → ((1 · 𝑥) = 𝑥 ↔ (1 · (𝑦 + 1)) = (𝑦 + 1))) |
| 10 | oveq2 7362 | . . . 4 ⊢ (𝑥 = 𝐴 → (1 · 𝑥) = (1 · 𝐴)) | |
| 11 | id 22 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
| 12 | 10, 11 | eqeq12d 2749 | . . 3 ⊢ (𝑥 = 𝐴 → ((1 · 𝑥) = 𝑥 ↔ (1 · 𝐴) = 𝐴)) |
| 13 | 1t1e1ALT 42376 | . . 3 ⊢ (1 · 1) = 1 | |
| 14 | 1cnd 11116 | . . . . . 6 ⊢ ((𝑦 ∈ ℕ ∧ (1 · 𝑦) = 𝑦) → 1 ∈ ℂ) | |
| 15 | simpl 482 | . . . . . . 7 ⊢ ((𝑦 ∈ ℕ ∧ (1 · 𝑦) = 𝑦) → 𝑦 ∈ ℕ) | |
| 16 | 15 | nncnd 12150 | . . . . . 6 ⊢ ((𝑦 ∈ ℕ ∧ (1 · 𝑦) = 𝑦) → 𝑦 ∈ ℂ) |
| 17 | 14, 16, 14 | adddid 11145 | . . . . 5 ⊢ ((𝑦 ∈ ℕ ∧ (1 · 𝑦) = 𝑦) → (1 · (𝑦 + 1)) = ((1 · 𝑦) + (1 · 1))) |
| 18 | simpr 484 | . . . . . 6 ⊢ ((𝑦 ∈ ℕ ∧ (1 · 𝑦) = 𝑦) → (1 · 𝑦) = 𝑦) | |
| 19 | 13 | a1i 11 | . . . . . 6 ⊢ ((𝑦 ∈ ℕ ∧ (1 · 𝑦) = 𝑦) → (1 · 1) = 1) |
| 20 | 18, 19 | oveq12d 7372 | . . . . 5 ⊢ ((𝑦 ∈ ℕ ∧ (1 · 𝑦) = 𝑦) → ((1 · 𝑦) + (1 · 1)) = (𝑦 + 1)) |
| 21 | 17, 20 | eqtrd 2768 | . . . 4 ⊢ ((𝑦 ∈ ℕ ∧ (1 · 𝑦) = 𝑦) → (1 · (𝑦 + 1)) = (𝑦 + 1)) |
| 22 | 21 | ex 412 | . . 3 ⊢ (𝑦 ∈ ℕ → ((1 · 𝑦) = 𝑦 → (1 · (𝑦 + 1)) = (𝑦 + 1))) |
| 23 | 3, 6, 9, 12, 13, 22 | nnind 12152 | . 2 ⊢ (𝐴 ∈ ℕ → (1 · 𝐴) = 𝐴) |
| 24 | nnre 12141 | . . 3 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℝ) | |
| 25 | ax-1rid 11085 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴) | |
| 26 | 24, 25 | syl 17 | . 2 ⊢ (𝐴 ∈ ℕ → (𝐴 · 1) = 𝐴) |
| 27 | 23, 26 | eqtr4d 2771 | 1 ⊢ (𝐴 ∈ ℕ → (1 · 𝐴) = (𝐴 · 1)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 (class class class)co 7354 ℝcr 11014 1c1 11016 + caddc 11018 · cmul 11020 ℕcn 12134 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7676 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rrecex 11087 ax-cnre 11088 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-ov 7357 df-om 7805 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-nn 12135 |
| This theorem is referenced by: nnmulcom 42393 |
| Copyright terms: Public domain | W3C validator |