Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nnmul1com Structured version   Visualization version   GIF version

Theorem nnmul1com 40222
Description: Multiplication with 1 is commutative for natural numbers, without ax-mulcom 10866. Since (𝐴 · 1) is 𝐴 by ax-1rid 10872, this is equivalent to remulid2 40336 for natural numbers, but using fewer axioms (avoiding ax-resscn 10859, ax-addass 10867, ax-mulass 10868, ax-rnegex 10873, ax-pre-lttri 10876, ax-pre-lttrn 10877, ax-pre-ltadd 10878). (Contributed by SN, 5-Feb-2024.)
Assertion
Ref Expression
nnmul1com (𝐴 ∈ ℕ → (1 · 𝐴) = (𝐴 · 1))

Proof of Theorem nnmul1com
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7263 . . . 4 (𝑥 = 1 → (1 · 𝑥) = (1 · 1))
2 id 22 . . . 4 (𝑥 = 1 → 𝑥 = 1)
31, 2eqeq12d 2754 . . 3 (𝑥 = 1 → ((1 · 𝑥) = 𝑥 ↔ (1 · 1) = 1))
4 oveq2 7263 . . . 4 (𝑥 = 𝑦 → (1 · 𝑥) = (1 · 𝑦))
5 id 22 . . . 4 (𝑥 = 𝑦𝑥 = 𝑦)
64, 5eqeq12d 2754 . . 3 (𝑥 = 𝑦 → ((1 · 𝑥) = 𝑥 ↔ (1 · 𝑦) = 𝑦))
7 oveq2 7263 . . . 4 (𝑥 = (𝑦 + 1) → (1 · 𝑥) = (1 · (𝑦 + 1)))
8 id 22 . . . 4 (𝑥 = (𝑦 + 1) → 𝑥 = (𝑦 + 1))
97, 8eqeq12d 2754 . . 3 (𝑥 = (𝑦 + 1) → ((1 · 𝑥) = 𝑥 ↔ (1 · (𝑦 + 1)) = (𝑦 + 1)))
10 oveq2 7263 . . . 4 (𝑥 = 𝐴 → (1 · 𝑥) = (1 · 𝐴))
11 id 22 . . . 4 (𝑥 = 𝐴𝑥 = 𝐴)
1210, 11eqeq12d 2754 . . 3 (𝑥 = 𝐴 → ((1 · 𝑥) = 𝑥 ↔ (1 · 𝐴) = 𝐴))
13 1t1e1ALT 40213 . . 3 (1 · 1) = 1
14 1cnd 10901 . . . . . 6 ((𝑦 ∈ ℕ ∧ (1 · 𝑦) = 𝑦) → 1 ∈ ℂ)
15 simpl 482 . . . . . . 7 ((𝑦 ∈ ℕ ∧ (1 · 𝑦) = 𝑦) → 𝑦 ∈ ℕ)
1615nncnd 11919 . . . . . 6 ((𝑦 ∈ ℕ ∧ (1 · 𝑦) = 𝑦) → 𝑦 ∈ ℂ)
1714, 16, 14adddid 10930 . . . . 5 ((𝑦 ∈ ℕ ∧ (1 · 𝑦) = 𝑦) → (1 · (𝑦 + 1)) = ((1 · 𝑦) + (1 · 1)))
18 simpr 484 . . . . . 6 ((𝑦 ∈ ℕ ∧ (1 · 𝑦) = 𝑦) → (1 · 𝑦) = 𝑦)
1913a1i 11 . . . . . 6 ((𝑦 ∈ ℕ ∧ (1 · 𝑦) = 𝑦) → (1 · 1) = 1)
2018, 19oveq12d 7273 . . . . 5 ((𝑦 ∈ ℕ ∧ (1 · 𝑦) = 𝑦) → ((1 · 𝑦) + (1 · 1)) = (𝑦 + 1))
2117, 20eqtrd 2778 . . . 4 ((𝑦 ∈ ℕ ∧ (1 · 𝑦) = 𝑦) → (1 · (𝑦 + 1)) = (𝑦 + 1))
2221ex 412 . . 3 (𝑦 ∈ ℕ → ((1 · 𝑦) = 𝑦 → (1 · (𝑦 + 1)) = (𝑦 + 1)))
233, 6, 9, 12, 13, 22nnind 11921 . 2 (𝐴 ∈ ℕ → (1 · 𝐴) = 𝐴)
24 nnre 11910 . . 3 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
25 ax-1rid 10872 . . 3 (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴)
2624, 25syl 17 . 2 (𝐴 ∈ ℕ → (𝐴 · 1) = 𝐴)
2723, 26eqtr4d 2781 1 (𝐴 ∈ ℕ → (1 · 𝐴) = (𝐴 · 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  (class class class)co 7255  cr 10801  1c1 10803   + caddc 10805   · cmul 10807  cn 11903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rrecex 10874  ax-cnre 10875
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-nn 11904
This theorem is referenced by:  nnmulcom  40223
  Copyright terms: Public domain W3C validator