Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nnmul1com Structured version   Visualization version   GIF version

Theorem nnmul1com 39247
Description: Multiplication with 1 is commutative for natural numbers, without ax-mulcom 10594. Since (𝐴 · 1) is 𝐴 by ax-1rid 10600, this is equivalent to remulid2 39332 for natural numbers, but using fewer axioms (avoiding ax-resscn 10587, ax-addass 10595, ax-mulass 10596, ax-rnegex 10601, ax-pre-lttri 10604, ax-pre-lttrn 10605, ax-pre-ltadd 10606). (Contributed by SN, 5-Feb-2024.)
Assertion
Ref Expression
nnmul1com (𝐴 ∈ ℕ → (1 · 𝐴) = (𝐴 · 1))

Proof of Theorem nnmul1com
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7157 . . . 4 (𝑥 = 1 → (1 · 𝑥) = (1 · 1))
2 id 22 . . . 4 (𝑥 = 1 → 𝑥 = 1)
31, 2eqeq12d 2836 . . 3 (𝑥 = 1 → ((1 · 𝑥) = 𝑥 ↔ (1 · 1) = 1))
4 oveq2 7157 . . . 4 (𝑥 = 𝑦 → (1 · 𝑥) = (1 · 𝑦))
5 id 22 . . . 4 (𝑥 = 𝑦𝑥 = 𝑦)
64, 5eqeq12d 2836 . . 3 (𝑥 = 𝑦 → ((1 · 𝑥) = 𝑥 ↔ (1 · 𝑦) = 𝑦))
7 oveq2 7157 . . . 4 (𝑥 = (𝑦 + 1) → (1 · 𝑥) = (1 · (𝑦 + 1)))
8 id 22 . . . 4 (𝑥 = (𝑦 + 1) → 𝑥 = (𝑦 + 1))
97, 8eqeq12d 2836 . . 3 (𝑥 = (𝑦 + 1) → ((1 · 𝑥) = 𝑥 ↔ (1 · (𝑦 + 1)) = (𝑦 + 1)))
10 oveq2 7157 . . . 4 (𝑥 = 𝐴 → (1 · 𝑥) = (1 · 𝐴))
11 id 22 . . . 4 (𝑥 = 𝐴𝑥 = 𝐴)
1210, 11eqeq12d 2836 . . 3 (𝑥 = 𝐴 → ((1 · 𝑥) = 𝑥 ↔ (1 · 𝐴) = 𝐴))
13 1t1e1ALT 39238 . . 3 (1 · 1) = 1
14 1cnd 10629 . . . . . 6 ((𝑦 ∈ ℕ ∧ (1 · 𝑦) = 𝑦) → 1 ∈ ℂ)
15 simpl 485 . . . . . . 7 ((𝑦 ∈ ℕ ∧ (1 · 𝑦) = 𝑦) → 𝑦 ∈ ℕ)
1615nncnd 11647 . . . . . 6 ((𝑦 ∈ ℕ ∧ (1 · 𝑦) = 𝑦) → 𝑦 ∈ ℂ)
1714, 16, 14adddid 10658 . . . . 5 ((𝑦 ∈ ℕ ∧ (1 · 𝑦) = 𝑦) → (1 · (𝑦 + 1)) = ((1 · 𝑦) + (1 · 1)))
18 simpr 487 . . . . . 6 ((𝑦 ∈ ℕ ∧ (1 · 𝑦) = 𝑦) → (1 · 𝑦) = 𝑦)
1913a1i 11 . . . . . 6 ((𝑦 ∈ ℕ ∧ (1 · 𝑦) = 𝑦) → (1 · 1) = 1)
2018, 19oveq12d 7167 . . . . 5 ((𝑦 ∈ ℕ ∧ (1 · 𝑦) = 𝑦) → ((1 · 𝑦) + (1 · 1)) = (𝑦 + 1))
2117, 20eqtrd 2855 . . . 4 ((𝑦 ∈ ℕ ∧ (1 · 𝑦) = 𝑦) → (1 · (𝑦 + 1)) = (𝑦 + 1))
2221ex 415 . . 3 (𝑦 ∈ ℕ → ((1 · 𝑦) = 𝑦 → (1 · (𝑦 + 1)) = (𝑦 + 1)))
233, 6, 9, 12, 13, 22nnind 11649 . 2 (𝐴 ∈ ℕ → (1 · 𝐴) = 𝐴)
24 nnre 11638 . . 3 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
25 ax-1rid 10600 . . 3 (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴)
2624, 25syl 17 . 2 (𝐴 ∈ ℕ → (𝐴 · 1) = 𝐴)
2723, 26eqtr4d 2858 1 (𝐴 ∈ ℕ → (1 · 𝐴) = (𝐴 · 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1536  wcel 2113  (class class class)co 7149  cr 10529  1c1 10531   + caddc 10533   · cmul 10535  cn 11631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323  ax-un 7454  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rrecex 10602  ax-cnre 10603
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-ral 3142  df-rex 3143  df-reu 3144  df-rab 3146  df-v 3493  df-sbc 3769  df-csb 3877  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-pss 3947  df-nul 4285  df-if 4461  df-pw 4534  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7152  df-om 7574  df-wrecs 7940  df-recs 8001  df-rdg 8039  df-nn 11632
This theorem is referenced by:  nnmulcom  39248
  Copyright terms: Public domain W3C validator