![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nnmul1com | Structured version Visualization version GIF version |
Description: Multiplication with 1 is commutative for natural numbers, without ax-mulcom 11248. Since (𝐴 · 1) is 𝐴 by ax-1rid 11254, this is equivalent to remullid 42409 for natural numbers, but using fewer axioms (avoiding ax-resscn 11241, ax-addass 11249, ax-mulass 11250, ax-rnegex 11255, ax-pre-lttri 11258, ax-pre-lttrn 11259, ax-pre-ltadd 11260). (Contributed by SN, 5-Feb-2024.) |
Ref | Expression |
---|---|
nnmul1com | ⊢ (𝐴 ∈ ℕ → (1 · 𝐴) = (𝐴 · 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7456 | . . . 4 ⊢ (𝑥 = 1 → (1 · 𝑥) = (1 · 1)) | |
2 | id 22 | . . . 4 ⊢ (𝑥 = 1 → 𝑥 = 1) | |
3 | 1, 2 | eqeq12d 2756 | . . 3 ⊢ (𝑥 = 1 → ((1 · 𝑥) = 𝑥 ↔ (1 · 1) = 1)) |
4 | oveq2 7456 | . . . 4 ⊢ (𝑥 = 𝑦 → (1 · 𝑥) = (1 · 𝑦)) | |
5 | id 22 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝑥 = 𝑦) | |
6 | 4, 5 | eqeq12d 2756 | . . 3 ⊢ (𝑥 = 𝑦 → ((1 · 𝑥) = 𝑥 ↔ (1 · 𝑦) = 𝑦)) |
7 | oveq2 7456 | . . . 4 ⊢ (𝑥 = (𝑦 + 1) → (1 · 𝑥) = (1 · (𝑦 + 1))) | |
8 | id 22 | . . . 4 ⊢ (𝑥 = (𝑦 + 1) → 𝑥 = (𝑦 + 1)) | |
9 | 7, 8 | eqeq12d 2756 | . . 3 ⊢ (𝑥 = (𝑦 + 1) → ((1 · 𝑥) = 𝑥 ↔ (1 · (𝑦 + 1)) = (𝑦 + 1))) |
10 | oveq2 7456 | . . . 4 ⊢ (𝑥 = 𝐴 → (1 · 𝑥) = (1 · 𝐴)) | |
11 | id 22 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
12 | 10, 11 | eqeq12d 2756 | . . 3 ⊢ (𝑥 = 𝐴 → ((1 · 𝑥) = 𝑥 ↔ (1 · 𝐴) = 𝐴)) |
13 | 1t1e1ALT 42250 | . . 3 ⊢ (1 · 1) = 1 | |
14 | 1cnd 11285 | . . . . . 6 ⊢ ((𝑦 ∈ ℕ ∧ (1 · 𝑦) = 𝑦) → 1 ∈ ℂ) | |
15 | simpl 482 | . . . . . . 7 ⊢ ((𝑦 ∈ ℕ ∧ (1 · 𝑦) = 𝑦) → 𝑦 ∈ ℕ) | |
16 | 15 | nncnd 12309 | . . . . . 6 ⊢ ((𝑦 ∈ ℕ ∧ (1 · 𝑦) = 𝑦) → 𝑦 ∈ ℂ) |
17 | 14, 16, 14 | adddid 11314 | . . . . 5 ⊢ ((𝑦 ∈ ℕ ∧ (1 · 𝑦) = 𝑦) → (1 · (𝑦 + 1)) = ((1 · 𝑦) + (1 · 1))) |
18 | simpr 484 | . . . . . 6 ⊢ ((𝑦 ∈ ℕ ∧ (1 · 𝑦) = 𝑦) → (1 · 𝑦) = 𝑦) | |
19 | 13 | a1i 11 | . . . . . 6 ⊢ ((𝑦 ∈ ℕ ∧ (1 · 𝑦) = 𝑦) → (1 · 1) = 1) |
20 | 18, 19 | oveq12d 7466 | . . . . 5 ⊢ ((𝑦 ∈ ℕ ∧ (1 · 𝑦) = 𝑦) → ((1 · 𝑦) + (1 · 1)) = (𝑦 + 1)) |
21 | 17, 20 | eqtrd 2780 | . . . 4 ⊢ ((𝑦 ∈ ℕ ∧ (1 · 𝑦) = 𝑦) → (1 · (𝑦 + 1)) = (𝑦 + 1)) |
22 | 21 | ex 412 | . . 3 ⊢ (𝑦 ∈ ℕ → ((1 · 𝑦) = 𝑦 → (1 · (𝑦 + 1)) = (𝑦 + 1))) |
23 | 3, 6, 9, 12, 13, 22 | nnind 12311 | . 2 ⊢ (𝐴 ∈ ℕ → (1 · 𝐴) = 𝐴) |
24 | nnre 12300 | . . 3 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℝ) | |
25 | ax-1rid 11254 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴) | |
26 | 24, 25 | syl 17 | . 2 ⊢ (𝐴 ∈ ℕ → (𝐴 · 1) = 𝐴) |
27 | 23, 26 | eqtr4d 2783 | 1 ⊢ (𝐴 ∈ ℕ → (1 · 𝐴) = (𝐴 · 1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 (class class class)co 7448 ℝcr 11183 1c1 11185 + caddc 11187 · cmul 11189 ℕcn 12293 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rrecex 11256 ax-cnre 11257 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-nn 12294 |
This theorem is referenced by: nnmulcom 42261 |
Copyright terms: Public domain | W3C validator |