Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nnmul1com Structured version   Visualization version   GIF version

Theorem nnmul1com 39899
Description: Multiplication with 1 is commutative for natural numbers, without ax-mulcom 10681. Since (𝐴 · 1) is 𝐴 by ax-1rid 10687, this is equivalent to remulid2 40014 for natural numbers, but using fewer axioms (avoiding ax-resscn 10674, ax-addass 10682, ax-mulass 10683, ax-rnegex 10688, ax-pre-lttri 10691, ax-pre-lttrn 10692, ax-pre-ltadd 10693). (Contributed by SN, 5-Feb-2024.)
Assertion
Ref Expression
nnmul1com (𝐴 ∈ ℕ → (1 · 𝐴) = (𝐴 · 1))

Proof of Theorem nnmul1com
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7180 . . . 4 (𝑥 = 1 → (1 · 𝑥) = (1 · 1))
2 id 22 . . . 4 (𝑥 = 1 → 𝑥 = 1)
31, 2eqeq12d 2754 . . 3 (𝑥 = 1 → ((1 · 𝑥) = 𝑥 ↔ (1 · 1) = 1))
4 oveq2 7180 . . . 4 (𝑥 = 𝑦 → (1 · 𝑥) = (1 · 𝑦))
5 id 22 . . . 4 (𝑥 = 𝑦𝑥 = 𝑦)
64, 5eqeq12d 2754 . . 3 (𝑥 = 𝑦 → ((1 · 𝑥) = 𝑥 ↔ (1 · 𝑦) = 𝑦))
7 oveq2 7180 . . . 4 (𝑥 = (𝑦 + 1) → (1 · 𝑥) = (1 · (𝑦 + 1)))
8 id 22 . . . 4 (𝑥 = (𝑦 + 1) → 𝑥 = (𝑦 + 1))
97, 8eqeq12d 2754 . . 3 (𝑥 = (𝑦 + 1) → ((1 · 𝑥) = 𝑥 ↔ (1 · (𝑦 + 1)) = (𝑦 + 1)))
10 oveq2 7180 . . . 4 (𝑥 = 𝐴 → (1 · 𝑥) = (1 · 𝐴))
11 id 22 . . . 4 (𝑥 = 𝐴𝑥 = 𝐴)
1210, 11eqeq12d 2754 . . 3 (𝑥 = 𝐴 → ((1 · 𝑥) = 𝑥 ↔ (1 · 𝐴) = 𝐴))
13 1t1e1ALT 39890 . . 3 (1 · 1) = 1
14 1cnd 10716 . . . . . 6 ((𝑦 ∈ ℕ ∧ (1 · 𝑦) = 𝑦) → 1 ∈ ℂ)
15 simpl 486 . . . . . . 7 ((𝑦 ∈ ℕ ∧ (1 · 𝑦) = 𝑦) → 𝑦 ∈ ℕ)
1615nncnd 11734 . . . . . 6 ((𝑦 ∈ ℕ ∧ (1 · 𝑦) = 𝑦) → 𝑦 ∈ ℂ)
1714, 16, 14adddid 10745 . . . . 5 ((𝑦 ∈ ℕ ∧ (1 · 𝑦) = 𝑦) → (1 · (𝑦 + 1)) = ((1 · 𝑦) + (1 · 1)))
18 simpr 488 . . . . . 6 ((𝑦 ∈ ℕ ∧ (1 · 𝑦) = 𝑦) → (1 · 𝑦) = 𝑦)
1913a1i 11 . . . . . 6 ((𝑦 ∈ ℕ ∧ (1 · 𝑦) = 𝑦) → (1 · 1) = 1)
2018, 19oveq12d 7190 . . . . 5 ((𝑦 ∈ ℕ ∧ (1 · 𝑦) = 𝑦) → ((1 · 𝑦) + (1 · 1)) = (𝑦 + 1))
2117, 20eqtrd 2773 . . . 4 ((𝑦 ∈ ℕ ∧ (1 · 𝑦) = 𝑦) → (1 · (𝑦 + 1)) = (𝑦 + 1))
2221ex 416 . . 3 (𝑦 ∈ ℕ → ((1 · 𝑦) = 𝑦 → (1 · (𝑦 + 1)) = (𝑦 + 1)))
233, 6, 9, 12, 13, 22nnind 11736 . 2 (𝐴 ∈ ℕ → (1 · 𝐴) = 𝐴)
24 nnre 11725 . . 3 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
25 ax-1rid 10687 . . 3 (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴)
2624, 25syl 17 . 2 (𝐴 ∈ ℕ → (𝐴 · 1) = 𝐴)
2723, 26eqtr4d 2776 1 (𝐴 ∈ ℕ → (1 · 𝐴) = (𝐴 · 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1542  wcel 2114  (class class class)co 7172  cr 10616  1c1 10618   + caddc 10620   · cmul 10622  cn 11718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-sep 5167  ax-nul 5174  ax-pr 5296  ax-un 7481  ax-1cn 10675  ax-icn 10676  ax-addcl 10677  ax-addrcl 10678  ax-mulcl 10679  ax-mulrcl 10680  ax-distr 10684  ax-i2m1 10685  ax-1ne0 10686  ax-1rid 10687  ax-rrecex 10689  ax-cnre 10690
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-ov 7175  df-om 7602  df-wrecs 7978  df-recs 8039  df-rdg 8077  df-nn 11719
This theorem is referenced by:  nnmulcom  39900
  Copyright terms: Public domain W3C validator