| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nnmul1com | Structured version Visualization version GIF version | ||
| Description: Multiplication with 1 is commutative for natural numbers, without ax-mulcom 11193. Since (𝐴 · 1) is 𝐴 by ax-1rid 11199, this is equivalent to remullid 42476 for natural numbers, but using fewer axioms (avoiding ax-resscn 11186, ax-addass 11194, ax-mulass 11195, ax-rnegex 11200, ax-pre-lttri 11203, ax-pre-lttrn 11204, ax-pre-ltadd 11205). (Contributed by SN, 5-Feb-2024.) |
| Ref | Expression |
|---|---|
| nnmul1com | ⊢ (𝐴 ∈ ℕ → (1 · 𝐴) = (𝐴 · 1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 7413 | . . . 4 ⊢ (𝑥 = 1 → (1 · 𝑥) = (1 · 1)) | |
| 2 | id 22 | . . . 4 ⊢ (𝑥 = 1 → 𝑥 = 1) | |
| 3 | 1, 2 | eqeq12d 2751 | . . 3 ⊢ (𝑥 = 1 → ((1 · 𝑥) = 𝑥 ↔ (1 · 1) = 1)) |
| 4 | oveq2 7413 | . . . 4 ⊢ (𝑥 = 𝑦 → (1 · 𝑥) = (1 · 𝑦)) | |
| 5 | id 22 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝑥 = 𝑦) | |
| 6 | 4, 5 | eqeq12d 2751 | . . 3 ⊢ (𝑥 = 𝑦 → ((1 · 𝑥) = 𝑥 ↔ (1 · 𝑦) = 𝑦)) |
| 7 | oveq2 7413 | . . . 4 ⊢ (𝑥 = (𝑦 + 1) → (1 · 𝑥) = (1 · (𝑦 + 1))) | |
| 8 | id 22 | . . . 4 ⊢ (𝑥 = (𝑦 + 1) → 𝑥 = (𝑦 + 1)) | |
| 9 | 7, 8 | eqeq12d 2751 | . . 3 ⊢ (𝑥 = (𝑦 + 1) → ((1 · 𝑥) = 𝑥 ↔ (1 · (𝑦 + 1)) = (𝑦 + 1))) |
| 10 | oveq2 7413 | . . . 4 ⊢ (𝑥 = 𝐴 → (1 · 𝑥) = (1 · 𝐴)) | |
| 11 | id 22 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
| 12 | 10, 11 | eqeq12d 2751 | . . 3 ⊢ (𝑥 = 𝐴 → ((1 · 𝑥) = 𝑥 ↔ (1 · 𝐴) = 𝐴)) |
| 13 | 1t1e1ALT 42306 | . . 3 ⊢ (1 · 1) = 1 | |
| 14 | 1cnd 11230 | . . . . . 6 ⊢ ((𝑦 ∈ ℕ ∧ (1 · 𝑦) = 𝑦) → 1 ∈ ℂ) | |
| 15 | simpl 482 | . . . . . . 7 ⊢ ((𝑦 ∈ ℕ ∧ (1 · 𝑦) = 𝑦) → 𝑦 ∈ ℕ) | |
| 16 | 15 | nncnd 12256 | . . . . . 6 ⊢ ((𝑦 ∈ ℕ ∧ (1 · 𝑦) = 𝑦) → 𝑦 ∈ ℂ) |
| 17 | 14, 16, 14 | adddid 11259 | . . . . 5 ⊢ ((𝑦 ∈ ℕ ∧ (1 · 𝑦) = 𝑦) → (1 · (𝑦 + 1)) = ((1 · 𝑦) + (1 · 1))) |
| 18 | simpr 484 | . . . . . 6 ⊢ ((𝑦 ∈ ℕ ∧ (1 · 𝑦) = 𝑦) → (1 · 𝑦) = 𝑦) | |
| 19 | 13 | a1i 11 | . . . . . 6 ⊢ ((𝑦 ∈ ℕ ∧ (1 · 𝑦) = 𝑦) → (1 · 1) = 1) |
| 20 | 18, 19 | oveq12d 7423 | . . . . 5 ⊢ ((𝑦 ∈ ℕ ∧ (1 · 𝑦) = 𝑦) → ((1 · 𝑦) + (1 · 1)) = (𝑦 + 1)) |
| 21 | 17, 20 | eqtrd 2770 | . . . 4 ⊢ ((𝑦 ∈ ℕ ∧ (1 · 𝑦) = 𝑦) → (1 · (𝑦 + 1)) = (𝑦 + 1)) |
| 22 | 21 | ex 412 | . . 3 ⊢ (𝑦 ∈ ℕ → ((1 · 𝑦) = 𝑦 → (1 · (𝑦 + 1)) = (𝑦 + 1))) |
| 23 | 3, 6, 9, 12, 13, 22 | nnind 12258 | . 2 ⊢ (𝐴 ∈ ℕ → (1 · 𝐴) = 𝐴) |
| 24 | nnre 12247 | . . 3 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℝ) | |
| 25 | ax-1rid 11199 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴) | |
| 26 | 24, 25 | syl 17 | . 2 ⊢ (𝐴 ∈ ℕ → (𝐴 · 1) = 𝐴) |
| 27 | 23, 26 | eqtr4d 2773 | 1 ⊢ (𝐴 ∈ ℕ → (1 · 𝐴) = (𝐴 · 1)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 (class class class)co 7405 ℝcr 11128 1c1 11130 + caddc 11132 · cmul 11134 ℕcn 12240 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rrecex 11201 ax-cnre 11202 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-nn 12241 |
| This theorem is referenced by: nnmulcom 42322 |
| Copyright terms: Public domain | W3C validator |