| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nnmul1com | Structured version Visualization version GIF version | ||
| Description: Multiplication with 1 is commutative for natural numbers, without ax-mulcom 11070. Since (𝐴 · 1) is 𝐴 by ax-1rid 11076, this is equivalent to remullid 42473 for natural numbers, but using fewer axioms (avoiding ax-resscn 11063, ax-addass 11071, ax-mulass 11072, ax-rnegex 11077, ax-pre-lttri 11080, ax-pre-lttrn 11081, ax-pre-ltadd 11082). (Contributed by SN, 5-Feb-2024.) |
| Ref | Expression |
|---|---|
| nnmul1com | ⊢ (𝐴 ∈ ℕ → (1 · 𝐴) = (𝐴 · 1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 7354 | . . . 4 ⊢ (𝑥 = 1 → (1 · 𝑥) = (1 · 1)) | |
| 2 | id 22 | . . . 4 ⊢ (𝑥 = 1 → 𝑥 = 1) | |
| 3 | 1, 2 | eqeq12d 2747 | . . 3 ⊢ (𝑥 = 1 → ((1 · 𝑥) = 𝑥 ↔ (1 · 1) = 1)) |
| 4 | oveq2 7354 | . . . 4 ⊢ (𝑥 = 𝑦 → (1 · 𝑥) = (1 · 𝑦)) | |
| 5 | id 22 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝑥 = 𝑦) | |
| 6 | 4, 5 | eqeq12d 2747 | . . 3 ⊢ (𝑥 = 𝑦 → ((1 · 𝑥) = 𝑥 ↔ (1 · 𝑦) = 𝑦)) |
| 7 | oveq2 7354 | . . . 4 ⊢ (𝑥 = (𝑦 + 1) → (1 · 𝑥) = (1 · (𝑦 + 1))) | |
| 8 | id 22 | . . . 4 ⊢ (𝑥 = (𝑦 + 1) → 𝑥 = (𝑦 + 1)) | |
| 9 | 7, 8 | eqeq12d 2747 | . . 3 ⊢ (𝑥 = (𝑦 + 1) → ((1 · 𝑥) = 𝑥 ↔ (1 · (𝑦 + 1)) = (𝑦 + 1))) |
| 10 | oveq2 7354 | . . . 4 ⊢ (𝑥 = 𝐴 → (1 · 𝑥) = (1 · 𝐴)) | |
| 11 | id 22 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
| 12 | 10, 11 | eqeq12d 2747 | . . 3 ⊢ (𝑥 = 𝐴 → ((1 · 𝑥) = 𝑥 ↔ (1 · 𝐴) = 𝐴)) |
| 13 | 1t1e1ALT 42294 | . . 3 ⊢ (1 · 1) = 1 | |
| 14 | 1cnd 11107 | . . . . . 6 ⊢ ((𝑦 ∈ ℕ ∧ (1 · 𝑦) = 𝑦) → 1 ∈ ℂ) | |
| 15 | simpl 482 | . . . . . . 7 ⊢ ((𝑦 ∈ ℕ ∧ (1 · 𝑦) = 𝑦) → 𝑦 ∈ ℕ) | |
| 16 | 15 | nncnd 12141 | . . . . . 6 ⊢ ((𝑦 ∈ ℕ ∧ (1 · 𝑦) = 𝑦) → 𝑦 ∈ ℂ) |
| 17 | 14, 16, 14 | adddid 11136 | . . . . 5 ⊢ ((𝑦 ∈ ℕ ∧ (1 · 𝑦) = 𝑦) → (1 · (𝑦 + 1)) = ((1 · 𝑦) + (1 · 1))) |
| 18 | simpr 484 | . . . . . 6 ⊢ ((𝑦 ∈ ℕ ∧ (1 · 𝑦) = 𝑦) → (1 · 𝑦) = 𝑦) | |
| 19 | 13 | a1i 11 | . . . . . 6 ⊢ ((𝑦 ∈ ℕ ∧ (1 · 𝑦) = 𝑦) → (1 · 1) = 1) |
| 20 | 18, 19 | oveq12d 7364 | . . . . 5 ⊢ ((𝑦 ∈ ℕ ∧ (1 · 𝑦) = 𝑦) → ((1 · 𝑦) + (1 · 1)) = (𝑦 + 1)) |
| 21 | 17, 20 | eqtrd 2766 | . . . 4 ⊢ ((𝑦 ∈ ℕ ∧ (1 · 𝑦) = 𝑦) → (1 · (𝑦 + 1)) = (𝑦 + 1)) |
| 22 | 21 | ex 412 | . . 3 ⊢ (𝑦 ∈ ℕ → ((1 · 𝑦) = 𝑦 → (1 · (𝑦 + 1)) = (𝑦 + 1))) |
| 23 | 3, 6, 9, 12, 13, 22 | nnind 12143 | . 2 ⊢ (𝐴 ∈ ℕ → (1 · 𝐴) = 𝐴) |
| 24 | nnre 12132 | . . 3 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℝ) | |
| 25 | ax-1rid 11076 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴) | |
| 26 | 24, 25 | syl 17 | . 2 ⊢ (𝐴 ∈ ℕ → (𝐴 · 1) = 𝐴) |
| 27 | 23, 26 | eqtr4d 2769 | 1 ⊢ (𝐴 ∈ ℕ → (1 · 𝐴) = (𝐴 · 1)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 (class class class)co 7346 ℝcr 11005 1c1 11007 + caddc 11009 · cmul 11011 ℕcn 12125 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rrecex 11078 ax-cnre 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-nn 12126 |
| This theorem is referenced by: nnmulcom 42311 |
| Copyright terms: Public domain | W3C validator |