| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nnmul1com | Structured version Visualization version GIF version | ||
| Description: Multiplication with 1 is commutative for natural numbers, without ax-mulcom 11132. Since (𝐴 · 1) is 𝐴 by ax-1rid 11138, this is equivalent to remullid 42422 for natural numbers, but using fewer axioms (avoiding ax-resscn 11125, ax-addass 11133, ax-mulass 11134, ax-rnegex 11139, ax-pre-lttri 11142, ax-pre-lttrn 11143, ax-pre-ltadd 11144). (Contributed by SN, 5-Feb-2024.) |
| Ref | Expression |
|---|---|
| nnmul1com | ⊢ (𝐴 ∈ ℕ → (1 · 𝐴) = (𝐴 · 1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 7395 | . . . 4 ⊢ (𝑥 = 1 → (1 · 𝑥) = (1 · 1)) | |
| 2 | id 22 | . . . 4 ⊢ (𝑥 = 1 → 𝑥 = 1) | |
| 3 | 1, 2 | eqeq12d 2745 | . . 3 ⊢ (𝑥 = 1 → ((1 · 𝑥) = 𝑥 ↔ (1 · 1) = 1)) |
| 4 | oveq2 7395 | . . . 4 ⊢ (𝑥 = 𝑦 → (1 · 𝑥) = (1 · 𝑦)) | |
| 5 | id 22 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝑥 = 𝑦) | |
| 6 | 4, 5 | eqeq12d 2745 | . . 3 ⊢ (𝑥 = 𝑦 → ((1 · 𝑥) = 𝑥 ↔ (1 · 𝑦) = 𝑦)) |
| 7 | oveq2 7395 | . . . 4 ⊢ (𝑥 = (𝑦 + 1) → (1 · 𝑥) = (1 · (𝑦 + 1))) | |
| 8 | id 22 | . . . 4 ⊢ (𝑥 = (𝑦 + 1) → 𝑥 = (𝑦 + 1)) | |
| 9 | 7, 8 | eqeq12d 2745 | . . 3 ⊢ (𝑥 = (𝑦 + 1) → ((1 · 𝑥) = 𝑥 ↔ (1 · (𝑦 + 1)) = (𝑦 + 1))) |
| 10 | oveq2 7395 | . . . 4 ⊢ (𝑥 = 𝐴 → (1 · 𝑥) = (1 · 𝐴)) | |
| 11 | id 22 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
| 12 | 10, 11 | eqeq12d 2745 | . . 3 ⊢ (𝑥 = 𝐴 → ((1 · 𝑥) = 𝑥 ↔ (1 · 𝐴) = 𝐴)) |
| 13 | 1t1e1ALT 42243 | . . 3 ⊢ (1 · 1) = 1 | |
| 14 | 1cnd 11169 | . . . . . 6 ⊢ ((𝑦 ∈ ℕ ∧ (1 · 𝑦) = 𝑦) → 1 ∈ ℂ) | |
| 15 | simpl 482 | . . . . . . 7 ⊢ ((𝑦 ∈ ℕ ∧ (1 · 𝑦) = 𝑦) → 𝑦 ∈ ℕ) | |
| 16 | 15 | nncnd 12202 | . . . . . 6 ⊢ ((𝑦 ∈ ℕ ∧ (1 · 𝑦) = 𝑦) → 𝑦 ∈ ℂ) |
| 17 | 14, 16, 14 | adddid 11198 | . . . . 5 ⊢ ((𝑦 ∈ ℕ ∧ (1 · 𝑦) = 𝑦) → (1 · (𝑦 + 1)) = ((1 · 𝑦) + (1 · 1))) |
| 18 | simpr 484 | . . . . . 6 ⊢ ((𝑦 ∈ ℕ ∧ (1 · 𝑦) = 𝑦) → (1 · 𝑦) = 𝑦) | |
| 19 | 13 | a1i 11 | . . . . . 6 ⊢ ((𝑦 ∈ ℕ ∧ (1 · 𝑦) = 𝑦) → (1 · 1) = 1) |
| 20 | 18, 19 | oveq12d 7405 | . . . . 5 ⊢ ((𝑦 ∈ ℕ ∧ (1 · 𝑦) = 𝑦) → ((1 · 𝑦) + (1 · 1)) = (𝑦 + 1)) |
| 21 | 17, 20 | eqtrd 2764 | . . . 4 ⊢ ((𝑦 ∈ ℕ ∧ (1 · 𝑦) = 𝑦) → (1 · (𝑦 + 1)) = (𝑦 + 1)) |
| 22 | 21 | ex 412 | . . 3 ⊢ (𝑦 ∈ ℕ → ((1 · 𝑦) = 𝑦 → (1 · (𝑦 + 1)) = (𝑦 + 1))) |
| 23 | 3, 6, 9, 12, 13, 22 | nnind 12204 | . 2 ⊢ (𝐴 ∈ ℕ → (1 · 𝐴) = 𝐴) |
| 24 | nnre 12193 | . . 3 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℝ) | |
| 25 | ax-1rid 11138 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴) | |
| 26 | 24, 25 | syl 17 | . 2 ⊢ (𝐴 ∈ ℕ → (𝐴 · 1) = 𝐴) |
| 27 | 23, 26 | eqtr4d 2767 | 1 ⊢ (𝐴 ∈ ℕ → (1 · 𝐴) = (𝐴 · 1)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 (class class class)co 7387 ℝcr 11067 1c1 11069 + caddc 11071 · cmul 11073 ℕcn 12186 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rrecex 11140 ax-cnre 11141 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-nn 12187 |
| This theorem is referenced by: nnmulcom 42260 |
| Copyright terms: Public domain | W3C validator |