Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nnmul1com Structured version   Visualization version   GIF version

Theorem nnmul1com 42284
Description: Multiplication with 1 is commutative for natural numbers, without ax-mulcom 11216. Since (𝐴 · 1) is 𝐴 by ax-1rid 11222, this is equivalent to remullid 42439 for natural numbers, but using fewer axioms (avoiding ax-resscn 11209, ax-addass 11217, ax-mulass 11218, ax-rnegex 11223, ax-pre-lttri 11226, ax-pre-lttrn 11227, ax-pre-ltadd 11228). (Contributed by SN, 5-Feb-2024.)
Assertion
Ref Expression
nnmul1com (𝐴 ∈ ℕ → (1 · 𝐴) = (𝐴 · 1))

Proof of Theorem nnmul1com
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7438 . . . 4 (𝑥 = 1 → (1 · 𝑥) = (1 · 1))
2 id 22 . . . 4 (𝑥 = 1 → 𝑥 = 1)
31, 2eqeq12d 2750 . . 3 (𝑥 = 1 → ((1 · 𝑥) = 𝑥 ↔ (1 · 1) = 1))
4 oveq2 7438 . . . 4 (𝑥 = 𝑦 → (1 · 𝑥) = (1 · 𝑦))
5 id 22 . . . 4 (𝑥 = 𝑦𝑥 = 𝑦)
64, 5eqeq12d 2750 . . 3 (𝑥 = 𝑦 → ((1 · 𝑥) = 𝑥 ↔ (1 · 𝑦) = 𝑦))
7 oveq2 7438 . . . 4 (𝑥 = (𝑦 + 1) → (1 · 𝑥) = (1 · (𝑦 + 1)))
8 id 22 . . . 4 (𝑥 = (𝑦 + 1) → 𝑥 = (𝑦 + 1))
97, 8eqeq12d 2750 . . 3 (𝑥 = (𝑦 + 1) → ((1 · 𝑥) = 𝑥 ↔ (1 · (𝑦 + 1)) = (𝑦 + 1)))
10 oveq2 7438 . . . 4 (𝑥 = 𝐴 → (1 · 𝑥) = (1 · 𝐴))
11 id 22 . . . 4 (𝑥 = 𝐴𝑥 = 𝐴)
1210, 11eqeq12d 2750 . . 3 (𝑥 = 𝐴 → ((1 · 𝑥) = 𝑥 ↔ (1 · 𝐴) = 𝐴))
13 1t1e1ALT 42274 . . 3 (1 · 1) = 1
14 1cnd 11253 . . . . . 6 ((𝑦 ∈ ℕ ∧ (1 · 𝑦) = 𝑦) → 1 ∈ ℂ)
15 simpl 482 . . . . . . 7 ((𝑦 ∈ ℕ ∧ (1 · 𝑦) = 𝑦) → 𝑦 ∈ ℕ)
1615nncnd 12279 . . . . . 6 ((𝑦 ∈ ℕ ∧ (1 · 𝑦) = 𝑦) → 𝑦 ∈ ℂ)
1714, 16, 14adddid 11282 . . . . 5 ((𝑦 ∈ ℕ ∧ (1 · 𝑦) = 𝑦) → (1 · (𝑦 + 1)) = ((1 · 𝑦) + (1 · 1)))
18 simpr 484 . . . . . 6 ((𝑦 ∈ ℕ ∧ (1 · 𝑦) = 𝑦) → (1 · 𝑦) = 𝑦)
1913a1i 11 . . . . . 6 ((𝑦 ∈ ℕ ∧ (1 · 𝑦) = 𝑦) → (1 · 1) = 1)
2018, 19oveq12d 7448 . . . . 5 ((𝑦 ∈ ℕ ∧ (1 · 𝑦) = 𝑦) → ((1 · 𝑦) + (1 · 1)) = (𝑦 + 1))
2117, 20eqtrd 2774 . . . 4 ((𝑦 ∈ ℕ ∧ (1 · 𝑦) = 𝑦) → (1 · (𝑦 + 1)) = (𝑦 + 1))
2221ex 412 . . 3 (𝑦 ∈ ℕ → ((1 · 𝑦) = 𝑦 → (1 · (𝑦 + 1)) = (𝑦 + 1)))
233, 6, 9, 12, 13, 22nnind 12281 . 2 (𝐴 ∈ ℕ → (1 · 𝐴) = 𝐴)
24 nnre 12270 . . 3 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
25 ax-1rid 11222 . . 3 (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴)
2624, 25syl 17 . 2 (𝐴 ∈ ℕ → (𝐴 · 1) = 𝐴)
2723, 26eqtr4d 2777 1 (𝐴 ∈ ℕ → (1 · 𝐴) = (𝐴 · 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1536  wcel 2105  (class class class)co 7430  cr 11151  1c1 11153   + caddc 11155   · cmul 11157  cn 12263
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pr 5437  ax-un 7753  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rrecex 11224  ax-cnre 11225
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-ov 7433  df-om 7887  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-nn 12264
This theorem is referenced by:  nnmulcom  42285
  Copyright terms: Public domain W3C validator