![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1t1e1 | Structured version Visualization version GIF version |
Description: 1 times 1 equals 1. (Contributed by David A. Wheeler, 7-Jul-2016.) |
Ref | Expression |
---|---|
1t1e1 | ⊢ (1 · 1) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 11210 | . 2 ⊢ 1 ∈ ℂ | |
2 | 1 | mulridi 11262 | 1 ⊢ (1 · 1) = 1 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1536 (class class class)co 7430 1c1 11153 · cmul 11157 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-mulcl 11214 ax-mulcom 11216 ax-mulass 11218 ax-distr 11219 ax-1rid 11222 ax-cnre 11225 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-iota 6515 df-fv 6570 df-ov 7433 |
This theorem is referenced by: neg1mulneg1e1 12476 addltmul 12499 1exp 14128 expge1 14136 mulexp 14138 mulexpz 14139 expaddz 14143 m1expeven 14146 sqrecii 14218 i4 14239 facp1 14313 hashf1 14492 binom 15862 prodf1 15923 prodfrec 15927 fprodmul 15992 fprodge1 16027 fallfac0 16060 binomfallfac 16073 pwp1fsum 16424 rpmul 16692 2503lem2 17171 2503lem3 17172 4001lem4 17177 abvtrivd 20849 pzriprng1ALT 21524 iimulcl 24979 dvexp 26005 dvef 26032 mulcxplem 26740 cxpmul2 26745 dvsqrt 26798 dvcnsqrt 26800 abscxpbnd 26810 1cubr 26899 dchrmulcl 27307 dchr1cl 27309 dchrinvcl 27311 lgslem3 27357 lgsval2lem 27365 lgsneg 27379 lgsdilem 27382 lgsdir 27390 lgsdi 27392 lgsquad2lem1 27442 lgsquad2lem2 27443 dchrisum0flblem2 27567 rpvmasum2 27570 mudivsum 27588 pntibndlem2 27649 axlowdimlem6 28976 hisubcomi 31132 lnophmlem2 32045 1nei 32753 1neg1t1neg1 32754 sgnmul 34523 hgt750lem2 34645 subfacval2 35171 faclim2 35727 knoppndvlem18 36511 lcmineqlem12 42021 pell1234qrmulcl 42842 pellqrex 42866 imsqrtvalex 43635 binomcxplemnotnn0 44351 dvnprodlem3 45903 stoweidlem13 45968 stoweidlem16 45971 wallispi 46025 wallispi2lem2 46027 2exp340mod341 47657 8exp8mod9 47660 nn0sumshdiglemB 48469 |
Copyright terms: Public domain | W3C validator |