| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1t1e1 | Structured version Visualization version GIF version | ||
| Description: 1 times 1 equals 1. (Contributed by David A. Wheeler, 7-Jul-2016.) |
| Ref | Expression |
|---|---|
| 1t1e1 | ⊢ (1 · 1) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 11126 | . 2 ⊢ 1 ∈ ℂ | |
| 2 | 1 | mulridi 11178 | 1 ⊢ (1 · 1) = 1 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7387 1c1 11069 · cmul 11073 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-mulcl 11130 ax-mulcom 11132 ax-mulass 11134 ax-distr 11135 ax-1rid 11138 ax-cnre 11141 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-ov 7390 |
| This theorem is referenced by: neg1mulneg1e1 12394 addltmul 12418 1exp 14056 expge1 14064 mulexp 14066 mulexpz 14067 expaddz 14071 m1expeven 14074 sqrecii 14148 i4 14169 facp1 14243 hashf1 14422 binom 15796 prodf1 15857 prodfrec 15861 fprodmul 15926 fprodge1 15961 fallfac0 15994 binomfallfac 16007 pwp1fsum 16361 rpmul 16629 2503lem2 17108 2503lem3 17109 4001lem4 17114 abvtrivd 20741 pzriprng1ALT 21406 iimulcl 24833 dvexp 25857 dvef 25884 mulcxplem 26593 cxpmul2 26598 dvsqrt 26651 dvcnsqrt 26653 abscxpbnd 26663 1cubr 26752 dchrmulcl 27160 dchr1cl 27162 dchrinvcl 27164 lgslem3 27210 lgsval2lem 27218 lgsneg 27232 lgsdilem 27235 lgsdir 27243 lgsdi 27245 lgsquad2lem1 27295 lgsquad2lem2 27296 dchrisum0flblem2 27420 rpvmasum2 27423 mudivsum 27441 pntibndlem2 27502 axlowdimlem6 28874 hisubcomi 31033 lnophmlem2 31946 1nei 32660 1neg1t1neg1 32661 sgnmul 32760 hgt750lem2 34643 subfacval2 35174 faclim2 35735 knoppndvlem18 36517 lcmineqlem12 42028 pell1234qrmulcl 42843 pellqrex 42867 imsqrtvalex 43635 binomcxplemnotnn0 44345 dvnprodlem3 45946 stoweidlem13 46011 stoweidlem16 46014 wallispi 46068 wallispi2lem2 46070 2exp340mod341 47734 8exp8mod9 47737 nn0sumshdiglemB 48609 |
| Copyright terms: Public domain | W3C validator |