| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1t1e1 | Structured version Visualization version GIF version | ||
| Description: 1 times 1 equals 1. (Contributed by David A. Wheeler, 7-Jul-2016.) |
| Ref | Expression |
|---|---|
| 1t1e1 | ⊢ (1 · 1) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 11064 | . 2 ⊢ 1 ∈ ℂ | |
| 2 | 1 | mulridi 11116 | 1 ⊢ (1 · 1) = 1 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 (class class class)co 7346 1c1 11007 · cmul 11011 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-mulcl 11068 ax-mulcom 11070 ax-mulass 11072 ax-distr 11073 ax-1rid 11076 ax-cnre 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-iota 6437 df-fv 6489 df-ov 7349 |
| This theorem is referenced by: neg1mulneg1e1 12333 addltmul 12357 1exp 13998 expge1 14006 mulexp 14008 mulexpz 14009 expaddz 14013 m1expeven 14016 sqrecii 14090 i4 14111 facp1 14185 hashf1 14364 binom 15737 prodf1 15798 prodfrec 15802 fprodmul 15867 fprodge1 15902 fallfac0 15935 binomfallfac 15948 pwp1fsum 16302 rpmul 16570 2503lem2 17049 2503lem3 17050 4001lem4 17055 abvtrivd 20747 pzriprng1ALT 21433 iimulcl 24860 dvexp 25884 dvef 25911 mulcxplem 26620 cxpmul2 26625 dvsqrt 26678 dvcnsqrt 26680 abscxpbnd 26690 1cubr 26779 dchrmulcl 27187 dchr1cl 27189 dchrinvcl 27191 lgslem3 27237 lgsval2lem 27245 lgsneg 27259 lgsdilem 27262 lgsdir 27270 lgsdi 27272 lgsquad2lem1 27322 lgsquad2lem2 27323 dchrisum0flblem2 27447 rpvmasum2 27450 mudivsum 27468 pntibndlem2 27529 axlowdimlem6 28925 hisubcomi 31084 lnophmlem2 31997 1nei 32720 1neg1t1neg1 32721 sgnmul 32818 hgt750lem2 34665 subfacval2 35231 faclim2 35792 knoppndvlem18 36573 lcmineqlem12 42132 pell1234qrmulcl 42947 pellqrex 42971 imsqrtvalex 43738 binomcxplemnotnn0 44448 dvnprodlem3 46045 stoweidlem13 46110 stoweidlem16 46113 wallispi 46167 wallispi2lem2 46169 2exp340mod341 47832 8exp8mod9 47835 nn0sumshdiglemB 48720 |
| Copyright terms: Public domain | W3C validator |