| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1t1e1 | Structured version Visualization version GIF version | ||
| Description: 1 times 1 equals 1. (Contributed by David A. Wheeler, 7-Jul-2016.) |
| Ref | Expression |
|---|---|
| 1t1e1 | ⊢ (1 · 1) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 11067 | . 2 ⊢ 1 ∈ ℂ | |
| 2 | 1 | mulridi 11119 | 1 ⊢ (1 · 1) = 1 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7349 1c1 11010 · cmul 11014 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-mulcl 11071 ax-mulcom 11073 ax-mulass 11075 ax-distr 11076 ax-1rid 11079 ax-cnre 11082 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-iota 6438 df-fv 6490 df-ov 7352 |
| This theorem is referenced by: neg1mulneg1e1 12336 addltmul 12360 1exp 13998 expge1 14006 mulexp 14008 mulexpz 14009 expaddz 14013 m1expeven 14016 sqrecii 14090 i4 14111 facp1 14185 hashf1 14364 binom 15737 prodf1 15798 prodfrec 15802 fprodmul 15867 fprodge1 15902 fallfac0 15935 binomfallfac 15948 pwp1fsum 16302 rpmul 16570 2503lem2 17049 2503lem3 17050 4001lem4 17055 abvtrivd 20717 pzriprng1ALT 21403 iimulcl 24831 dvexp 25855 dvef 25882 mulcxplem 26591 cxpmul2 26596 dvsqrt 26649 dvcnsqrt 26651 abscxpbnd 26661 1cubr 26750 dchrmulcl 27158 dchr1cl 27160 dchrinvcl 27162 lgslem3 27208 lgsval2lem 27216 lgsneg 27230 lgsdilem 27233 lgsdir 27241 lgsdi 27243 lgsquad2lem1 27293 lgsquad2lem2 27294 dchrisum0flblem2 27418 rpvmasum2 27421 mudivsum 27439 pntibndlem2 27500 axlowdimlem6 28892 hisubcomi 31048 lnophmlem2 31961 1nei 32681 1neg1t1neg1 32682 sgnmul 32781 hgt750lem2 34626 subfacval2 35170 faclim2 35731 knoppndvlem18 36513 lcmineqlem12 42023 pell1234qrmulcl 42838 pellqrex 42862 imsqrtvalex 43629 binomcxplemnotnn0 44339 dvnprodlem3 45939 stoweidlem13 46004 stoweidlem16 46007 wallispi 46061 wallispi2lem2 46063 2exp340mod341 47727 8exp8mod9 47730 nn0sumshdiglemB 48615 |
| Copyright terms: Public domain | W3C validator |