| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1t1e1 | Structured version Visualization version GIF version | ||
| Description: 1 times 1 equals 1. (Contributed by David A. Wheeler, 7-Jul-2016.) |
| Ref | Expression |
|---|---|
| 1t1e1 | ⊢ (1 · 1) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 11102 | . 2 ⊢ 1 ∈ ℂ | |
| 2 | 1 | mulridi 11154 | 1 ⊢ (1 · 1) = 1 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7369 1c1 11045 · cmul 11049 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-mulcl 11106 ax-mulcom 11108 ax-mulass 11110 ax-distr 11111 ax-1rid 11114 ax-cnre 11117 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-iota 6452 df-fv 6507 df-ov 7372 |
| This theorem is referenced by: neg1mulneg1e1 12370 addltmul 12394 1exp 14032 expge1 14040 mulexp 14042 mulexpz 14043 expaddz 14047 m1expeven 14050 sqrecii 14124 i4 14145 facp1 14219 hashf1 14398 binom 15772 prodf1 15833 prodfrec 15837 fprodmul 15902 fprodge1 15937 fallfac0 15970 binomfallfac 15983 pwp1fsum 16337 rpmul 16605 2503lem2 17084 2503lem3 17085 4001lem4 17090 abvtrivd 20752 pzriprng1ALT 21438 iimulcl 24866 dvexp 25890 dvef 25917 mulcxplem 26626 cxpmul2 26631 dvsqrt 26684 dvcnsqrt 26686 abscxpbnd 26696 1cubr 26785 dchrmulcl 27193 dchr1cl 27195 dchrinvcl 27197 lgslem3 27243 lgsval2lem 27251 lgsneg 27265 lgsdilem 27268 lgsdir 27276 lgsdi 27278 lgsquad2lem1 27328 lgsquad2lem2 27329 dchrisum0flblem2 27453 rpvmasum2 27456 mudivsum 27474 pntibndlem2 27535 axlowdimlem6 28927 hisubcomi 31083 lnophmlem2 31996 1nei 32710 1neg1t1neg1 32711 sgnmul 32810 hgt750lem2 34636 subfacval2 35167 faclim2 35728 knoppndvlem18 36510 lcmineqlem12 42021 pell1234qrmulcl 42836 pellqrex 42860 imsqrtvalex 43628 binomcxplemnotnn0 44338 dvnprodlem3 45939 stoweidlem13 46004 stoweidlem16 46007 wallispi 46061 wallispi2lem2 46063 2exp340mod341 47727 8exp8mod9 47730 nn0sumshdiglemB 48602 |
| Copyright terms: Public domain | W3C validator |