Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 1t1e1 | Structured version Visualization version GIF version |
Description: 1 times 1 equals 1. (Contributed by David A. Wheeler, 7-Jul-2016.) |
Ref | Expression |
---|---|
1t1e1 | ⊢ (1 · 1) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 10929 | . 2 ⊢ 1 ∈ ℂ | |
2 | 1 | mulid1i 10979 | 1 ⊢ (1 · 1) = 1 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 (class class class)co 7275 1c1 10872 · cmul 10876 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-mulcl 10933 ax-mulcom 10935 ax-mulass 10937 ax-distr 10938 ax-1rid 10941 ax-cnre 10944 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 df-ov 7278 |
This theorem is referenced by: neg1mulneg1e1 12186 addltmul 12209 1exp 13812 expge1 13820 mulexp 13822 mulexpz 13823 expaddz 13827 m1expeven 13830 sqrecii 13900 i4 13921 facp1 13992 hashf1 14171 binom 15542 prodf1 15603 prodfrec 15607 fprodmul 15670 fprodge1 15705 fallfac0 15738 binomfallfac 15751 pwp1fsum 16100 rpmul 16364 2503lem2 16839 2503lem3 16840 4001lem4 16845 abvtrivd 20100 iimulcl 24100 dvexp 25117 dvef 25144 mulcxplem 25839 cxpmul2 25844 dvsqrt 25895 dvcnsqrt 25897 abscxpbnd 25906 1cubr 25992 dchrmulcl 26397 dchr1cl 26399 dchrinvcl 26401 lgslem3 26447 lgsval2lem 26455 lgsneg 26469 lgsdilem 26472 lgsdir 26480 lgsdi 26482 lgsquad2lem1 26532 lgsquad2lem2 26533 dchrisum0flblem2 26657 rpvmasum2 26660 mudivsum 26678 pntibndlem2 26739 axlowdimlem6 27315 hisubcomi 29466 lnophmlem2 30379 1nei 31071 1neg1t1neg1 31072 sgnmul 32509 hgt750lem2 32632 subfacval2 33149 faclim2 33714 knoppndvlem18 34709 lcmineqlem12 40048 pell1234qrmulcl 40677 pellqrex 40701 imsqrtvalex 41254 binomcxplemnotnn0 41974 dvnprodlem3 43489 stoweidlem13 43554 stoweidlem16 43557 wallispi 43611 wallispi2lem2 43613 2exp340mod341 45185 8exp8mod9 45188 nn0sumshdiglemB 45966 |
Copyright terms: Public domain | W3C validator |