![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1t1e1 | Structured version Visualization version GIF version |
Description: 1 times 1 equals 1. (Contributed by David A. Wheeler, 7-Jul-2016.) |
Ref | Expression |
---|---|
1t1e1 | ⊢ (1 · 1) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 11242 | . 2 ⊢ 1 ∈ ℂ | |
2 | 1 | mulridi 11294 | 1 ⊢ (1 · 1) = 1 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 (class class class)co 7448 1c1 11185 · cmul 11189 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-mulcl 11246 ax-mulcom 11248 ax-mulass 11250 ax-distr 11251 ax-1rid 11254 ax-cnre 11257 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 |
This theorem is referenced by: neg1mulneg1e1 12506 addltmul 12529 1exp 14142 expge1 14150 mulexp 14152 mulexpz 14153 expaddz 14157 m1expeven 14160 sqrecii 14232 i4 14253 facp1 14327 hashf1 14506 binom 15878 prodf1 15939 prodfrec 15943 fprodmul 16008 fprodge1 16043 fallfac0 16076 binomfallfac 16089 pwp1fsum 16439 rpmul 16706 2503lem2 17185 2503lem3 17186 4001lem4 17191 abvtrivd 20855 pzriprng1ALT 21530 iimulcl 24985 dvexp 26011 dvef 26038 mulcxplem 26744 cxpmul2 26749 dvsqrt 26802 dvcnsqrt 26804 abscxpbnd 26814 1cubr 26903 dchrmulcl 27311 dchr1cl 27313 dchrinvcl 27315 lgslem3 27361 lgsval2lem 27369 lgsneg 27383 lgsdilem 27386 lgsdir 27394 lgsdi 27396 lgsquad2lem1 27446 lgsquad2lem2 27447 dchrisum0flblem2 27571 rpvmasum2 27574 mudivsum 27592 pntibndlem2 27653 axlowdimlem6 28980 hisubcomi 31136 lnophmlem2 32049 1nei 32750 1neg1t1neg1 32751 sgnmul 34507 hgt750lem2 34629 subfacval2 35155 faclim2 35710 knoppndvlem18 36495 lcmineqlem12 41997 pell1234qrmulcl 42811 pellqrex 42835 imsqrtvalex 43608 binomcxplemnotnn0 44325 dvnprodlem3 45869 stoweidlem13 45934 stoweidlem16 45937 wallispi 45991 wallispi2lem2 45993 2exp340mod341 47607 8exp8mod9 47610 nn0sumshdiglemB 48354 |
Copyright terms: Public domain | W3C validator |