| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1t1e1 | Structured version Visualization version GIF version | ||
| Description: 1 times 1 equals 1. (Contributed by David A. Wheeler, 7-Jul-2016.) |
| Ref | Expression |
|---|---|
| 1t1e1 | ⊢ (1 · 1) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 11187 | . 2 ⊢ 1 ∈ ℂ | |
| 2 | 1 | mulridi 11239 | 1 ⊢ (1 · 1) = 1 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7405 1c1 11130 · cmul 11134 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-mulcl 11191 ax-mulcom 11193 ax-mulass 11195 ax-distr 11196 ax-1rid 11199 ax-cnre 11202 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-iota 6484 df-fv 6539 df-ov 7408 |
| This theorem is referenced by: neg1mulneg1e1 12453 addltmul 12477 1exp 14109 expge1 14117 mulexp 14119 mulexpz 14120 expaddz 14124 m1expeven 14127 sqrecii 14201 i4 14222 facp1 14296 hashf1 14475 binom 15846 prodf1 15907 prodfrec 15911 fprodmul 15976 fprodge1 16011 fallfac0 16044 binomfallfac 16057 pwp1fsum 16410 rpmul 16678 2503lem2 17157 2503lem3 17158 4001lem4 17163 abvtrivd 20792 pzriprng1ALT 21457 iimulcl 24884 dvexp 25909 dvef 25936 mulcxplem 26645 cxpmul2 26650 dvsqrt 26703 dvcnsqrt 26705 abscxpbnd 26715 1cubr 26804 dchrmulcl 27212 dchr1cl 27214 dchrinvcl 27216 lgslem3 27262 lgsval2lem 27270 lgsneg 27284 lgsdilem 27287 lgsdir 27295 lgsdi 27297 lgsquad2lem1 27347 lgsquad2lem2 27348 dchrisum0flblem2 27472 rpvmasum2 27475 mudivsum 27493 pntibndlem2 27554 axlowdimlem6 28926 hisubcomi 31085 lnophmlem2 31998 1nei 32714 1neg1t1neg1 32715 sgnmul 32814 hgt750lem2 34684 subfacval2 35209 faclim2 35765 knoppndvlem18 36547 lcmineqlem12 42053 pell1234qrmulcl 42878 pellqrex 42902 imsqrtvalex 43670 binomcxplemnotnn0 44380 dvnprodlem3 45977 stoweidlem13 46042 stoweidlem16 46045 wallispi 46099 wallispi2lem2 46101 2exp340mod341 47747 8exp8mod9 47750 nn0sumshdiglemB 48600 |
| Copyright terms: Public domain | W3C validator |