| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1t1e1 | Structured version Visualization version GIF version | ||
| Description: 1 times 1 equals 1. (Contributed by David A. Wheeler, 7-Jul-2016.) |
| Ref | Expression |
|---|---|
| 1t1e1 | ⊢ (1 · 1) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 11133 | . 2 ⊢ 1 ∈ ℂ | |
| 2 | 1 | mulridi 11185 | 1 ⊢ (1 · 1) = 1 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7390 1c1 11076 · cmul 11080 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-mulcl 11137 ax-mulcom 11139 ax-mulass 11141 ax-distr 11142 ax-1rid 11145 ax-cnre 11148 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-ov 7393 |
| This theorem is referenced by: neg1mulneg1e1 12401 addltmul 12425 1exp 14063 expge1 14071 mulexp 14073 mulexpz 14074 expaddz 14078 m1expeven 14081 sqrecii 14155 i4 14176 facp1 14250 hashf1 14429 binom 15803 prodf1 15864 prodfrec 15868 fprodmul 15933 fprodge1 15968 fallfac0 16001 binomfallfac 16014 pwp1fsum 16368 rpmul 16636 2503lem2 17115 2503lem3 17116 4001lem4 17121 abvtrivd 20748 pzriprng1ALT 21413 iimulcl 24840 dvexp 25864 dvef 25891 mulcxplem 26600 cxpmul2 26605 dvsqrt 26658 dvcnsqrt 26660 abscxpbnd 26670 1cubr 26759 dchrmulcl 27167 dchr1cl 27169 dchrinvcl 27171 lgslem3 27217 lgsval2lem 27225 lgsneg 27239 lgsdilem 27242 lgsdir 27250 lgsdi 27252 lgsquad2lem1 27302 lgsquad2lem2 27303 dchrisum0flblem2 27427 rpvmasum2 27430 mudivsum 27448 pntibndlem2 27509 axlowdimlem6 28881 hisubcomi 31040 lnophmlem2 31953 1nei 32667 1neg1t1neg1 32668 sgnmul 32767 hgt750lem2 34650 subfacval2 35181 faclim2 35742 knoppndvlem18 36524 lcmineqlem12 42035 pell1234qrmulcl 42850 pellqrex 42874 imsqrtvalex 43642 binomcxplemnotnn0 44352 dvnprodlem3 45953 stoweidlem13 46018 stoweidlem16 46021 wallispi 46075 wallispi2lem2 46077 2exp340mod341 47738 8exp8mod9 47741 nn0sumshdiglemB 48613 |
| Copyright terms: Public domain | W3C validator |