Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 1t1e1 | Structured version Visualization version GIF version |
Description: 1 times 1 equals 1. (Contributed by David A. Wheeler, 7-Jul-2016.) |
Ref | Expression |
---|---|
1t1e1 | ⊢ (1 · 1) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 10860 | . 2 ⊢ 1 ∈ ℂ | |
2 | 1 | mulid1i 10910 | 1 ⊢ (1 · 1) = 1 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 (class class class)co 7255 1c1 10803 · cmul 10807 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-mulcl 10864 ax-mulcom 10866 ax-mulass 10868 ax-distr 10869 ax-1rid 10872 ax-cnre 10875 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-ov 7258 |
This theorem is referenced by: neg1mulneg1e1 12116 addltmul 12139 1exp 13740 expge1 13748 mulexp 13750 mulexpz 13751 expaddz 13755 m1expeven 13758 sqrecii 13828 i4 13849 facp1 13920 hashf1 14099 binom 15470 prodf1 15531 prodfrec 15535 fprodmul 15598 fprodge1 15633 fallfac0 15666 binomfallfac 15679 pwp1fsum 16028 rpmul 16292 2503lem2 16767 2503lem3 16768 4001lem4 16773 abvtrivd 20015 iimulcl 24006 dvexp 25022 dvef 25049 mulcxplem 25744 cxpmul2 25749 dvsqrt 25800 dvcnsqrt 25802 abscxpbnd 25811 1cubr 25897 dchrmulcl 26302 dchr1cl 26304 dchrinvcl 26306 lgslem3 26352 lgsval2lem 26360 lgsneg 26374 lgsdilem 26377 lgsdir 26385 lgsdi 26387 lgsquad2lem1 26437 lgsquad2lem2 26438 dchrisum0flblem2 26562 rpvmasum2 26565 mudivsum 26583 pntibndlem2 26644 axlowdimlem6 27218 hisubcomi 29367 lnophmlem2 30280 1nei 30973 1neg1t1neg1 30974 sgnmul 32409 hgt750lem2 32532 subfacval2 33049 faclim2 33620 knoppndvlem18 34636 lcmineqlem12 39976 pell1234qrmulcl 40593 pellqrex 40617 imsqrtvalex 41143 binomcxplemnotnn0 41863 dvnprodlem3 43379 stoweidlem13 43444 stoweidlem16 43447 wallispi 43501 wallispi2lem2 43503 2exp340mod341 45073 8exp8mod9 45076 nn0sumshdiglemB 45854 |
Copyright terms: Public domain | W3C validator |