Step | Hyp | Ref
| Expression |
1 | | ecovass.1 |
. 2
⊢ 𝐷 = ((𝑆 × 𝑆) / ∼ ) |
2 | | oveq1 7365 |
. . . 4
⊢
([⟨𝑥, 𝑦⟩] ∼ = 𝐴 → ([⟨𝑥, 𝑦⟩] ∼ + [⟨𝑧, 𝑤⟩] ∼ ) = (𝐴 + [⟨𝑧, 𝑤⟩] ∼ )) |
3 | 2 | oveq1d 7373 |
. . 3
⊢
([⟨𝑥, 𝑦⟩] ∼ = 𝐴 → (([⟨𝑥, 𝑦⟩] ∼ + [⟨𝑧, 𝑤⟩] ∼ ) + [⟨𝑣, 𝑢⟩] ∼ ) = ((𝐴 + [⟨𝑧, 𝑤⟩] ∼ ) + [⟨𝑣, 𝑢⟩] ∼ )) |
4 | | oveq1 7365 |
. . 3
⊢
([⟨𝑥, 𝑦⟩] ∼ = 𝐴 → ([⟨𝑥, 𝑦⟩] ∼ + ([⟨𝑧, 𝑤⟩] ∼ + [⟨𝑣, 𝑢⟩] ∼ )) = (𝐴 + ([⟨𝑧, 𝑤⟩] ∼ + [⟨𝑣, 𝑢⟩] ∼
))) |
5 | 3, 4 | eqeq12d 2753 |
. 2
⊢
([⟨𝑥, 𝑦⟩] ∼ = 𝐴 → ((([⟨𝑥, 𝑦⟩] ∼ + [⟨𝑧, 𝑤⟩] ∼ ) + [⟨𝑣, 𝑢⟩] ∼ ) = ([⟨𝑥, 𝑦⟩] ∼ + ([⟨𝑧, 𝑤⟩] ∼ + [⟨𝑣, 𝑢⟩] ∼ )) ↔ ((𝐴 + [⟨𝑧, 𝑤⟩] ∼ ) + [⟨𝑣, 𝑢⟩] ∼ ) = (𝐴 + ([⟨𝑧, 𝑤⟩] ∼ + [⟨𝑣, 𝑢⟩] ∼
)))) |
6 | | oveq2 7366 |
. . . 4
⊢
([⟨𝑧, 𝑤⟩] ∼ = 𝐵 → (𝐴 + [⟨𝑧, 𝑤⟩] ∼ ) = (𝐴 + 𝐵)) |
7 | 6 | oveq1d 7373 |
. . 3
⊢
([⟨𝑧, 𝑤⟩] ∼ = 𝐵 → ((𝐴 + [⟨𝑧, 𝑤⟩] ∼ ) + [⟨𝑣, 𝑢⟩] ∼ ) = ((𝐴 + 𝐵) + [⟨𝑣, 𝑢⟩] ∼ )) |
8 | | oveq1 7365 |
. . . 4
⊢
([⟨𝑧, 𝑤⟩] ∼ = 𝐵 → ([⟨𝑧, 𝑤⟩] ∼ + [⟨𝑣, 𝑢⟩] ∼ ) = (𝐵 + [⟨𝑣, 𝑢⟩] ∼ )) |
9 | 8 | oveq2d 7374 |
. . 3
⊢
([⟨𝑧, 𝑤⟩] ∼ = 𝐵 → (𝐴 + ([⟨𝑧, 𝑤⟩] ∼ + [⟨𝑣, 𝑢⟩] ∼ )) = (𝐴 + (𝐵 + [⟨𝑣, 𝑢⟩] ∼
))) |
10 | 7, 9 | eqeq12d 2753 |
. 2
⊢
([⟨𝑧, 𝑤⟩] ∼ = 𝐵 → (((𝐴 + [⟨𝑧, 𝑤⟩] ∼ ) + [⟨𝑣, 𝑢⟩] ∼ ) = (𝐴 + ([⟨𝑧, 𝑤⟩] ∼ + [⟨𝑣, 𝑢⟩] ∼ )) ↔ ((𝐴 + 𝐵) + [⟨𝑣, 𝑢⟩] ∼ ) = (𝐴 + (𝐵 + [⟨𝑣, 𝑢⟩] ∼
)))) |
11 | | oveq2 7366 |
. . 3
⊢
([⟨𝑣, 𝑢⟩] ∼ = 𝐶 → ((𝐴 + 𝐵) + [⟨𝑣, 𝑢⟩] ∼ ) = ((𝐴 + 𝐵) + 𝐶)) |
12 | | oveq2 7366 |
. . . 4
⊢
([⟨𝑣, 𝑢⟩] ∼ = 𝐶 → (𝐵 + [⟨𝑣, 𝑢⟩] ∼ ) = (𝐵 + 𝐶)) |
13 | 12 | oveq2d 7374 |
. . 3
⊢
([⟨𝑣, 𝑢⟩] ∼ = 𝐶 → (𝐴 + (𝐵 + [⟨𝑣, 𝑢⟩] ∼ )) = (𝐴 + (𝐵 + 𝐶))) |
14 | 11, 13 | eqeq12d 2753 |
. 2
⊢
([⟨𝑣, 𝑢⟩] ∼ = 𝐶 → (((𝐴 + 𝐵) + [⟨𝑣, 𝑢⟩] ∼ ) = (𝐴 + (𝐵 + [⟨𝑣, 𝑢⟩] ∼ )) ↔ ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)))) |
15 | | ecovass.8 |
. . . 4
⊢ 𝐽 = 𝐿 |
16 | | ecovass.9 |
. . . 4
⊢ 𝐾 = 𝑀 |
17 | | opeq12 4833 |
. . . . 5
⊢ ((𝐽 = 𝐿 ∧ 𝐾 = 𝑀) → ⟨𝐽, 𝐾⟩ = ⟨𝐿, 𝑀⟩) |
18 | 17 | eceq1d 8688 |
. . . 4
⊢ ((𝐽 = 𝐿 ∧ 𝐾 = 𝑀) → [⟨𝐽, 𝐾⟩] ∼ = [⟨𝐿, 𝑀⟩] ∼ ) |
19 | 15, 16, 18 | mp2an 691 |
. . 3
⊢
[⟨𝐽, 𝐾⟩] ∼ = [⟨𝐿, 𝑀⟩] ∼ |
20 | | ecovass.2 |
. . . . . . 7
⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → ([⟨𝑥, 𝑦⟩] ∼ + [⟨𝑧, 𝑤⟩] ∼ ) = [⟨𝐺, 𝐻⟩] ∼ ) |
21 | 20 | oveq1d 7373 |
. . . . . 6
⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → (([⟨𝑥, 𝑦⟩] ∼ + [⟨𝑧, 𝑤⟩] ∼ ) + [⟨𝑣, 𝑢⟩] ∼ ) = ([⟨𝐺, 𝐻⟩] ∼ + [⟨𝑣, 𝑢⟩] ∼ )) |
22 | 21 | adantr 482 |
. . . . 5
⊢ ((((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → (([⟨𝑥, 𝑦⟩] ∼ + [⟨𝑧, 𝑤⟩] ∼ ) + [⟨𝑣, 𝑢⟩] ∼ ) = ([⟨𝐺, 𝐻⟩] ∼ + [⟨𝑣, 𝑢⟩] ∼ )) |
23 | | ecovass.6 |
. . . . . 6
⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → (𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆)) |
24 | | ecovass.4 |
. . . . . 6
⊢ (((𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → ([⟨𝐺, 𝐻⟩] ∼ + [⟨𝑣, 𝑢⟩] ∼ ) = [⟨𝐽, 𝐾⟩] ∼ ) |
25 | 23, 24 | sylan 581 |
. . . . 5
⊢ ((((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → ([⟨𝐺, 𝐻⟩] ∼ + [⟨𝑣, 𝑢⟩] ∼ ) = [⟨𝐽, 𝐾⟩] ∼ ) |
26 | 22, 25 | eqtrd 2777 |
. . . 4
⊢ ((((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → (([⟨𝑥, 𝑦⟩] ∼ + [⟨𝑧, 𝑤⟩] ∼ ) + [⟨𝑣, 𝑢⟩] ∼ ) = [⟨𝐽, 𝐾⟩] ∼ ) |
27 | 26 | 3impa 1111 |
. . 3
⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → (([⟨𝑥, 𝑦⟩] ∼ + [⟨𝑧, 𝑤⟩] ∼ ) + [⟨𝑣, 𝑢⟩] ∼ ) = [⟨𝐽, 𝐾⟩] ∼ ) |
28 | | ecovass.3 |
. . . . . . 7
⊢ (((𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → ([⟨𝑧, 𝑤⟩] ∼ + [⟨𝑣, 𝑢⟩] ∼ ) = [⟨𝑁, 𝑄⟩] ∼ ) |
29 | 28 | oveq2d 7374 |
. . . . . 6
⊢ (((𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → ([⟨𝑥, 𝑦⟩] ∼ + ([⟨𝑧, 𝑤⟩] ∼ + [⟨𝑣, 𝑢⟩] ∼ )) = ([⟨𝑥, 𝑦⟩] ∼ + [⟨𝑁, 𝑄⟩] ∼ )) |
30 | 29 | adantl 483 |
. . . . 5
⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ ((𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆))) → ([⟨𝑥, 𝑦⟩] ∼ + ([⟨𝑧, 𝑤⟩] ∼ + [⟨𝑣, 𝑢⟩] ∼ )) = ([⟨𝑥, 𝑦⟩] ∼ + [⟨𝑁, 𝑄⟩] ∼ )) |
31 | | ecovass.7 |
. . . . . 6
⊢ (((𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → (𝑁 ∈ 𝑆 ∧ 𝑄 ∈ 𝑆)) |
32 | | ecovass.5 |
. . . . . 6
⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑁 ∈ 𝑆 ∧ 𝑄 ∈ 𝑆)) → ([⟨𝑥, 𝑦⟩] ∼ + [⟨𝑁, 𝑄⟩] ∼ ) = [⟨𝐿, 𝑀⟩] ∼ ) |
33 | 31, 32 | sylan2 594 |
. . . . 5
⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ ((𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆))) → ([⟨𝑥, 𝑦⟩] ∼ + [⟨𝑁, 𝑄⟩] ∼ ) = [⟨𝐿, 𝑀⟩] ∼ ) |
34 | 30, 33 | eqtrd 2777 |
. . . 4
⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ ((𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆))) → ([⟨𝑥, 𝑦⟩] ∼ + ([⟨𝑧, 𝑤⟩] ∼ + [⟨𝑣, 𝑢⟩] ∼ )) = [⟨𝐿, 𝑀⟩] ∼ ) |
35 | 34 | 3impb 1116 |
. . 3
⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → ([⟨𝑥, 𝑦⟩] ∼ + ([⟨𝑧, 𝑤⟩] ∼ + [⟨𝑣, 𝑢⟩] ∼ )) = [⟨𝐿, 𝑀⟩] ∼ ) |
36 | 19, 27, 35 | 3eqtr4a 2803 |
. 2
⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → (([⟨𝑥, 𝑦⟩] ∼ + [⟨𝑧, 𝑤⟩] ∼ ) + [⟨𝑣, 𝑢⟩] ∼ ) = ([⟨𝑥, 𝑦⟩] ∼ + ([⟨𝑧, 𝑤⟩] ∼ + [⟨𝑣, 𝑢⟩] ∼
))) |
37 | 1, 5, 10, 14, 36 | 3ecoptocl 8749 |
1
⊢ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐷) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |