Step | Hyp | Ref
| Expression |
1 | | oveq2 7263 |
. . . . . . . . 9
⊢ (𝑥 = 1 → ((𝑅↑𝑟𝐽)↑𝑟𝑥) = ((𝑅↑𝑟𝐽)↑𝑟1)) |
2 | | oveq2 7263 |
. . . . . . . . . 10
⊢ (𝑥 = 1 → (𝐽 · 𝑥) = (𝐽 · 1)) |
3 | 2 | oveq2d 7271 |
. . . . . . . . 9
⊢ (𝑥 = 1 → (𝑅↑𝑟(𝐽 · 𝑥)) = (𝑅↑𝑟(𝐽 · 1))) |
4 | 1, 3 | eqeq12d 2754 |
. . . . . . . 8
⊢ (𝑥 = 1 → (((𝑅↑𝑟𝐽)↑𝑟𝑥) = (𝑅↑𝑟(𝐽 · 𝑥)) ↔ ((𝑅↑𝑟𝐽)↑𝑟1) = (𝑅↑𝑟(𝐽 · 1)))) |
5 | 4 | imbi2d 340 |
. . . . . . 7
⊢ (𝑥 = 1 → (((𝐽 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐼 = (𝐽 · 𝐾)) → ((𝑅↑𝑟𝐽)↑𝑟𝑥) = (𝑅↑𝑟(𝐽 · 𝑥))) ↔ ((𝐽 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐼 = (𝐽 · 𝐾)) → ((𝑅↑𝑟𝐽)↑𝑟1) = (𝑅↑𝑟(𝐽 ·
1))))) |
6 | | oveq2 7263 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → ((𝑅↑𝑟𝐽)↑𝑟𝑥) = ((𝑅↑𝑟𝐽)↑𝑟𝑦)) |
7 | | oveq2 7263 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → (𝐽 · 𝑥) = (𝐽 · 𝑦)) |
8 | 7 | oveq2d 7271 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (𝑅↑𝑟(𝐽 · 𝑥)) = (𝑅↑𝑟(𝐽 · 𝑦))) |
9 | 6, 8 | eqeq12d 2754 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (((𝑅↑𝑟𝐽)↑𝑟𝑥) = (𝑅↑𝑟(𝐽 · 𝑥)) ↔ ((𝑅↑𝑟𝐽)↑𝑟𝑦) = (𝑅↑𝑟(𝐽 · 𝑦)))) |
10 | 9 | imbi2d 340 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (((𝐽 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐼 = (𝐽 · 𝐾)) → ((𝑅↑𝑟𝐽)↑𝑟𝑥) = (𝑅↑𝑟(𝐽 · 𝑥))) ↔ ((𝐽 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐼 = (𝐽 · 𝐾)) → ((𝑅↑𝑟𝐽)↑𝑟𝑦) = (𝑅↑𝑟(𝐽 · 𝑦))))) |
11 | | oveq2 7263 |
. . . . . . . . 9
⊢ (𝑥 = (𝑦 + 1) → ((𝑅↑𝑟𝐽)↑𝑟𝑥) = ((𝑅↑𝑟𝐽)↑𝑟(𝑦 + 1))) |
12 | | oveq2 7263 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑦 + 1) → (𝐽 · 𝑥) = (𝐽 · (𝑦 + 1))) |
13 | 12 | oveq2d 7271 |
. . . . . . . . 9
⊢ (𝑥 = (𝑦 + 1) → (𝑅↑𝑟(𝐽 · 𝑥)) = (𝑅↑𝑟(𝐽 · (𝑦 + 1)))) |
14 | 11, 13 | eqeq12d 2754 |
. . . . . . . 8
⊢ (𝑥 = (𝑦 + 1) → (((𝑅↑𝑟𝐽)↑𝑟𝑥) = (𝑅↑𝑟(𝐽 · 𝑥)) ↔ ((𝑅↑𝑟𝐽)↑𝑟(𝑦 + 1)) = (𝑅↑𝑟(𝐽 · (𝑦 + 1))))) |
15 | 14 | imbi2d 340 |
. . . . . . 7
⊢ (𝑥 = (𝑦 + 1) → (((𝐽 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐼 = (𝐽 · 𝐾)) → ((𝑅↑𝑟𝐽)↑𝑟𝑥) = (𝑅↑𝑟(𝐽 · 𝑥))) ↔ ((𝐽 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐼 = (𝐽 · 𝐾)) → ((𝑅↑𝑟𝐽)↑𝑟(𝑦 + 1)) = (𝑅↑𝑟(𝐽 · (𝑦 + 1)))))) |
16 | | oveq2 7263 |
. . . . . . . . 9
⊢ (𝑥 = 𝐾 → ((𝑅↑𝑟𝐽)↑𝑟𝑥) = ((𝑅↑𝑟𝐽)↑𝑟𝐾)) |
17 | | oveq2 7263 |
. . . . . . . . . 10
⊢ (𝑥 = 𝐾 → (𝐽 · 𝑥) = (𝐽 · 𝐾)) |
18 | 17 | oveq2d 7271 |
. . . . . . . . 9
⊢ (𝑥 = 𝐾 → (𝑅↑𝑟(𝐽 · 𝑥)) = (𝑅↑𝑟(𝐽 · 𝐾))) |
19 | 16, 18 | eqeq12d 2754 |
. . . . . . . 8
⊢ (𝑥 = 𝐾 → (((𝑅↑𝑟𝐽)↑𝑟𝑥) = (𝑅↑𝑟(𝐽 · 𝑥)) ↔ ((𝑅↑𝑟𝐽)↑𝑟𝐾) = (𝑅↑𝑟(𝐽 · 𝐾)))) |
20 | 19 | imbi2d 340 |
. . . . . . 7
⊢ (𝑥 = 𝐾 → (((𝐽 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐼 = (𝐽 · 𝐾)) → ((𝑅↑𝑟𝐽)↑𝑟𝑥) = (𝑅↑𝑟(𝐽 · 𝑥))) ↔ ((𝐽 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐼 = (𝐽 · 𝐾)) → ((𝑅↑𝑟𝐽)↑𝑟𝐾) = (𝑅↑𝑟(𝐽 · 𝐾))))) |
21 | | ovexd 7290 |
. . . . . . . . 9
⊢ ((𝐽 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐼 = (𝐽 · 𝐾)) → (𝑅↑𝑟𝐽) ∈ V) |
22 | 21 | relexp1d 14668 |
. . . . . . . 8
⊢ ((𝐽 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐼 = (𝐽 · 𝐾)) → ((𝑅↑𝑟𝐽)↑𝑟1) = (𝑅↑𝑟𝐽)) |
23 | | simp1 1134 |
. . . . . . . . . . 11
⊢ ((𝐽 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐼 = (𝐽 · 𝐾)) → 𝐽 ∈ ℕ) |
24 | | nnre 11910 |
. . . . . . . . . . 11
⊢ (𝐽 ∈ ℕ → 𝐽 ∈
ℝ) |
25 | | ax-1rid 10872 |
. . . . . . . . . . 11
⊢ (𝐽 ∈ ℝ → (𝐽 · 1) = 𝐽) |
26 | 23, 24, 25 | 3syl 18 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐼 = (𝐽 · 𝐾)) → (𝐽 · 1) = 𝐽) |
27 | 26 | eqcomd 2744 |
. . . . . . . . 9
⊢ ((𝐽 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐼 = (𝐽 · 𝐾)) → 𝐽 = (𝐽 · 1)) |
28 | 27 | oveq2d 7271 |
. . . . . . . 8
⊢ ((𝐽 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐼 = (𝐽 · 𝐾)) → (𝑅↑𝑟𝐽) = (𝑅↑𝑟(𝐽 · 1))) |
29 | 22, 28 | eqtrd 2778 |
. . . . . . 7
⊢ ((𝐽 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐼 = (𝐽 · 𝐾)) → ((𝑅↑𝑟𝐽)↑𝑟1) = (𝑅↑𝑟(𝐽 · 1))) |
30 | | ovex 7288 |
. . . . . . . . . . 11
⊢ (𝑅↑𝑟𝐽) ∈ V |
31 | | simp1 1134 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ ℕ ∧ (𝐽 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐼 = (𝐽 · 𝐾)) ∧ ((𝑅↑𝑟𝐽)↑𝑟𝑦) = (𝑅↑𝑟(𝐽 · 𝑦))) → 𝑦 ∈ ℕ) |
32 | | relexpsucnnr 14664 |
. . . . . . . . . . 11
⊢ (((𝑅↑𝑟𝐽) ∈ V ∧ 𝑦 ∈ ℕ) → ((𝑅↑𝑟𝐽)↑𝑟(𝑦 + 1)) = (((𝑅↑𝑟𝐽)↑𝑟𝑦) ∘ (𝑅↑𝑟𝐽))) |
33 | 30, 31, 32 | sylancr 586 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ ℕ ∧ (𝐽 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐼 = (𝐽 · 𝐾)) ∧ ((𝑅↑𝑟𝐽)↑𝑟𝑦) = (𝑅↑𝑟(𝐽 · 𝑦))) → ((𝑅↑𝑟𝐽)↑𝑟(𝑦 + 1)) = (((𝑅↑𝑟𝐽)↑𝑟𝑦) ∘ (𝑅↑𝑟𝐽))) |
34 | | simp3 1136 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ ℕ ∧ (𝐽 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐼 = (𝐽 · 𝐾)) ∧ ((𝑅↑𝑟𝐽)↑𝑟𝑦) = (𝑅↑𝑟(𝐽 · 𝑦))) → ((𝑅↑𝑟𝐽)↑𝑟𝑦) = (𝑅↑𝑟(𝐽 · 𝑦))) |
35 | 34 | coeq1d 5759 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ ℕ ∧ (𝐽 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐼 = (𝐽 · 𝐾)) ∧ ((𝑅↑𝑟𝐽)↑𝑟𝑦) = (𝑅↑𝑟(𝐽 · 𝑦))) → (((𝑅↑𝑟𝐽)↑𝑟𝑦) ∘ (𝑅↑𝑟𝐽)) = ((𝑅↑𝑟(𝐽 · 𝑦)) ∘ (𝑅↑𝑟𝐽))) |
36 | | simp21 1204 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ ℕ ∧ (𝐽 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐼 = (𝐽 · 𝐾)) ∧ ((𝑅↑𝑟𝐽)↑𝑟𝑦) = (𝑅↑𝑟(𝐽 · 𝑦))) → 𝐽 ∈ ℕ) |
37 | 36, 31 | nnmulcld 11956 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ ℕ ∧ (𝐽 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐼 = (𝐽 · 𝐾)) ∧ ((𝑅↑𝑟𝐽)↑𝑟𝑦) = (𝑅↑𝑟(𝐽 · 𝑦))) → (𝐽 · 𝑦) ∈ ℕ) |
38 | | simp22 1205 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ ℕ ∧ (𝐽 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐼 = (𝐽 · 𝐾)) ∧ ((𝑅↑𝑟𝐽)↑𝑟𝑦) = (𝑅↑𝑟(𝐽 · 𝑦))) → 𝑅 ∈ 𝑉) |
39 | | relexpaddnn 14690 |
. . . . . . . . . . . . 13
⊢ (((𝐽 · 𝑦) ∈ ℕ ∧ 𝐽 ∈ ℕ ∧ 𝑅 ∈ 𝑉) → ((𝑅↑𝑟(𝐽 · 𝑦)) ∘ (𝑅↑𝑟𝐽)) = (𝑅↑𝑟((𝐽 · 𝑦) + 𝐽))) |
40 | 37, 36, 38, 39 | syl3anc 1369 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ ℕ ∧ (𝐽 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐼 = (𝐽 · 𝐾)) ∧ ((𝑅↑𝑟𝐽)↑𝑟𝑦) = (𝑅↑𝑟(𝐽 · 𝑦))) → ((𝑅↑𝑟(𝐽 · 𝑦)) ∘ (𝑅↑𝑟𝐽)) = (𝑅↑𝑟((𝐽 · 𝑦) + 𝐽))) |
41 | 35, 40 | eqtrd 2778 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ ℕ ∧ (𝐽 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐼 = (𝐽 · 𝐾)) ∧ ((𝑅↑𝑟𝐽)↑𝑟𝑦) = (𝑅↑𝑟(𝐽 · 𝑦))) → (((𝑅↑𝑟𝐽)↑𝑟𝑦) ∘ (𝑅↑𝑟𝐽)) = (𝑅↑𝑟((𝐽 · 𝑦) + 𝐽))) |
42 | 36 | nncnd 11919 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ ℕ ∧ (𝐽 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐼 = (𝐽 · 𝐾)) ∧ ((𝑅↑𝑟𝐽)↑𝑟𝑦) = (𝑅↑𝑟(𝐽 · 𝑦))) → 𝐽 ∈ ℂ) |
43 | 31 | nncnd 11919 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ ℕ ∧ (𝐽 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐼 = (𝐽 · 𝐾)) ∧ ((𝑅↑𝑟𝐽)↑𝑟𝑦) = (𝑅↑𝑟(𝐽 · 𝑦))) → 𝑦 ∈ ℂ) |
44 | | 1cnd 10901 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ ℕ ∧ (𝐽 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐼 = (𝐽 · 𝐾)) ∧ ((𝑅↑𝑟𝐽)↑𝑟𝑦) = (𝑅↑𝑟(𝐽 · 𝑦))) → 1 ∈ ℂ) |
45 | 42, 43, 44 | adddid 10930 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ ℕ ∧ (𝐽 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐼 = (𝐽 · 𝐾)) ∧ ((𝑅↑𝑟𝐽)↑𝑟𝑦) = (𝑅↑𝑟(𝐽 · 𝑦))) → (𝐽 · (𝑦 + 1)) = ((𝐽 · 𝑦) + (𝐽 · 1))) |
46 | 42 | mulid1d 10923 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ ℕ ∧ (𝐽 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐼 = (𝐽 · 𝐾)) ∧ ((𝑅↑𝑟𝐽)↑𝑟𝑦) = (𝑅↑𝑟(𝐽 · 𝑦))) → (𝐽 · 1) = 𝐽) |
47 | 46 | oveq2d 7271 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ ℕ ∧ (𝐽 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐼 = (𝐽 · 𝐾)) ∧ ((𝑅↑𝑟𝐽)↑𝑟𝑦) = (𝑅↑𝑟(𝐽 · 𝑦))) → ((𝐽 · 𝑦) + (𝐽 · 1)) = ((𝐽 · 𝑦) + 𝐽)) |
48 | 45, 47 | eqtr2d 2779 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ ℕ ∧ (𝐽 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐼 = (𝐽 · 𝐾)) ∧ ((𝑅↑𝑟𝐽)↑𝑟𝑦) = (𝑅↑𝑟(𝐽 · 𝑦))) → ((𝐽 · 𝑦) + 𝐽) = (𝐽 · (𝑦 + 1))) |
49 | 48 | oveq2d 7271 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ ℕ ∧ (𝐽 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐼 = (𝐽 · 𝐾)) ∧ ((𝑅↑𝑟𝐽)↑𝑟𝑦) = (𝑅↑𝑟(𝐽 · 𝑦))) → (𝑅↑𝑟((𝐽 · 𝑦) + 𝐽)) = (𝑅↑𝑟(𝐽 · (𝑦 + 1)))) |
50 | 41, 49 | eqtrd 2778 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ ℕ ∧ (𝐽 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐼 = (𝐽 · 𝐾)) ∧ ((𝑅↑𝑟𝐽)↑𝑟𝑦) = (𝑅↑𝑟(𝐽 · 𝑦))) → (((𝑅↑𝑟𝐽)↑𝑟𝑦) ∘ (𝑅↑𝑟𝐽)) = (𝑅↑𝑟(𝐽 · (𝑦 + 1)))) |
51 | 33, 50 | eqtrd 2778 |
. . . . . . . . 9
⊢ ((𝑦 ∈ ℕ ∧ (𝐽 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐼 = (𝐽 · 𝐾)) ∧ ((𝑅↑𝑟𝐽)↑𝑟𝑦) = (𝑅↑𝑟(𝐽 · 𝑦))) → ((𝑅↑𝑟𝐽)↑𝑟(𝑦 + 1)) = (𝑅↑𝑟(𝐽 · (𝑦 + 1)))) |
52 | 51 | 3exp 1117 |
. . . . . . . 8
⊢ (𝑦 ∈ ℕ → ((𝐽 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐼 = (𝐽 · 𝐾)) → (((𝑅↑𝑟𝐽)↑𝑟𝑦) = (𝑅↑𝑟(𝐽 · 𝑦)) → ((𝑅↑𝑟𝐽)↑𝑟(𝑦 + 1)) = (𝑅↑𝑟(𝐽 · (𝑦 + 1)))))) |
53 | 52 | a2d 29 |
. . . . . . 7
⊢ (𝑦 ∈ ℕ → (((𝐽 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐼 = (𝐽 · 𝐾)) → ((𝑅↑𝑟𝐽)↑𝑟𝑦) = (𝑅↑𝑟(𝐽 · 𝑦))) → ((𝐽 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐼 = (𝐽 · 𝐾)) → ((𝑅↑𝑟𝐽)↑𝑟(𝑦 + 1)) = (𝑅↑𝑟(𝐽 · (𝑦 + 1)))))) |
54 | 5, 10, 15, 20, 29, 53 | nnind 11921 |
. . . . . 6
⊢ (𝐾 ∈ ℕ → ((𝐽 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐼 = (𝐽 · 𝐾)) → ((𝑅↑𝑟𝐽)↑𝑟𝐾) = (𝑅↑𝑟(𝐽 · 𝐾)))) |
55 | 54 | 3expd 1351 |
. . . . 5
⊢ (𝐾 ∈ ℕ → (𝐽 ∈ ℕ → (𝑅 ∈ 𝑉 → (𝐼 = (𝐽 · 𝐾) → ((𝑅↑𝑟𝐽)↑𝑟𝐾) = (𝑅↑𝑟(𝐽 · 𝐾)))))) |
56 | 55 | impcom 407 |
. . . 4
⊢ ((𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝑅 ∈ 𝑉 → (𝐼 = (𝐽 · 𝐾) → ((𝑅↑𝑟𝐽)↑𝑟𝐾) = (𝑅↑𝑟(𝐽 · 𝐾))))) |
57 | 56 | impd 410 |
. . 3
⊢ ((𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ) → ((𝑅 ∈ 𝑉 ∧ 𝐼 = (𝐽 · 𝐾)) → ((𝑅↑𝑟𝐽)↑𝑟𝐾) = (𝑅↑𝑟(𝐽 · 𝐾)))) |
58 | 57 | impcom 407 |
. 2
⊢ (((𝑅 ∈ 𝑉 ∧ 𝐼 = (𝐽 · 𝐾)) ∧ (𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ)) → ((𝑅↑𝑟𝐽)↑𝑟𝐾) = (𝑅↑𝑟(𝐽 · 𝐾))) |
59 | | simplr 765 |
. . . 4
⊢ (((𝑅 ∈ 𝑉 ∧ 𝐼 = (𝐽 · 𝐾)) ∧ (𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ)) → 𝐼 = (𝐽 · 𝐾)) |
60 | 59 | eqcomd 2744 |
. . 3
⊢ (((𝑅 ∈ 𝑉 ∧ 𝐼 = (𝐽 · 𝐾)) ∧ (𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ)) → (𝐽 · 𝐾) = 𝐼) |
61 | 60 | oveq2d 7271 |
. 2
⊢ (((𝑅 ∈ 𝑉 ∧ 𝐼 = (𝐽 · 𝐾)) ∧ (𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ)) → (𝑅↑𝑟(𝐽 · 𝐾)) = (𝑅↑𝑟𝐼)) |
62 | 58, 61 | eqtrd 2778 |
1
⊢ (((𝑅 ∈ 𝑉 ∧ 𝐼 = (𝐽 · 𝐾)) ∧ (𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ)) → ((𝑅↑𝑟𝐽)↑𝑟𝐾) = (𝑅↑𝑟𝐼)) |