Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relexpmulnn Structured version   Visualization version   GIF version

Theorem relexpmulnn 43705
Description: With exponents limited to the counting numbers, the composition of powers of a relation is the relation raised to the product of exponents. (Contributed by RP, 13-Jun-2020.)
Assertion
Ref Expression
relexpmulnn (((𝑅𝑉𝐼 = (𝐽 · 𝐾)) ∧ (𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼))

Proof of Theorem relexpmulnn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7398 . . . . . . . . 9 (𝑥 = 1 → ((𝑅𝑟𝐽)↑𝑟𝑥) = ((𝑅𝑟𝐽)↑𝑟1))
2 oveq2 7398 . . . . . . . . . 10 (𝑥 = 1 → (𝐽 · 𝑥) = (𝐽 · 1))
32oveq2d 7406 . . . . . . . . 9 (𝑥 = 1 → (𝑅𝑟(𝐽 · 𝑥)) = (𝑅𝑟(𝐽 · 1)))
41, 3eqeq12d 2746 . . . . . . . 8 (𝑥 = 1 → (((𝑅𝑟𝐽)↑𝑟𝑥) = (𝑅𝑟(𝐽 · 𝑥)) ↔ ((𝑅𝑟𝐽)↑𝑟1) = (𝑅𝑟(𝐽 · 1))))
54imbi2d 340 . . . . . . 7 (𝑥 = 1 → (((𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) → ((𝑅𝑟𝐽)↑𝑟𝑥) = (𝑅𝑟(𝐽 · 𝑥))) ↔ ((𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) → ((𝑅𝑟𝐽)↑𝑟1) = (𝑅𝑟(𝐽 · 1)))))
6 oveq2 7398 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝑅𝑟𝐽)↑𝑟𝑥) = ((𝑅𝑟𝐽)↑𝑟𝑦))
7 oveq2 7398 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝐽 · 𝑥) = (𝐽 · 𝑦))
87oveq2d 7406 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑅𝑟(𝐽 · 𝑥)) = (𝑅𝑟(𝐽 · 𝑦)))
96, 8eqeq12d 2746 . . . . . . . 8 (𝑥 = 𝑦 → (((𝑅𝑟𝐽)↑𝑟𝑥) = (𝑅𝑟(𝐽 · 𝑥)) ↔ ((𝑅𝑟𝐽)↑𝑟𝑦) = (𝑅𝑟(𝐽 · 𝑦))))
109imbi2d 340 . . . . . . 7 (𝑥 = 𝑦 → (((𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) → ((𝑅𝑟𝐽)↑𝑟𝑥) = (𝑅𝑟(𝐽 · 𝑥))) ↔ ((𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) → ((𝑅𝑟𝐽)↑𝑟𝑦) = (𝑅𝑟(𝐽 · 𝑦)))))
11 oveq2 7398 . . . . . . . . 9 (𝑥 = (𝑦 + 1) → ((𝑅𝑟𝐽)↑𝑟𝑥) = ((𝑅𝑟𝐽)↑𝑟(𝑦 + 1)))
12 oveq2 7398 . . . . . . . . . 10 (𝑥 = (𝑦 + 1) → (𝐽 · 𝑥) = (𝐽 · (𝑦 + 1)))
1312oveq2d 7406 . . . . . . . . 9 (𝑥 = (𝑦 + 1) → (𝑅𝑟(𝐽 · 𝑥)) = (𝑅𝑟(𝐽 · (𝑦 + 1))))
1411, 13eqeq12d 2746 . . . . . . . 8 (𝑥 = (𝑦 + 1) → (((𝑅𝑟𝐽)↑𝑟𝑥) = (𝑅𝑟(𝐽 · 𝑥)) ↔ ((𝑅𝑟𝐽)↑𝑟(𝑦 + 1)) = (𝑅𝑟(𝐽 · (𝑦 + 1)))))
1514imbi2d 340 . . . . . . 7 (𝑥 = (𝑦 + 1) → (((𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) → ((𝑅𝑟𝐽)↑𝑟𝑥) = (𝑅𝑟(𝐽 · 𝑥))) ↔ ((𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) → ((𝑅𝑟𝐽)↑𝑟(𝑦 + 1)) = (𝑅𝑟(𝐽 · (𝑦 + 1))))))
16 oveq2 7398 . . . . . . . . 9 (𝑥 = 𝐾 → ((𝑅𝑟𝐽)↑𝑟𝑥) = ((𝑅𝑟𝐽)↑𝑟𝐾))
17 oveq2 7398 . . . . . . . . . 10 (𝑥 = 𝐾 → (𝐽 · 𝑥) = (𝐽 · 𝐾))
1817oveq2d 7406 . . . . . . . . 9 (𝑥 = 𝐾 → (𝑅𝑟(𝐽 · 𝑥)) = (𝑅𝑟(𝐽 · 𝐾)))
1916, 18eqeq12d 2746 . . . . . . . 8 (𝑥 = 𝐾 → (((𝑅𝑟𝐽)↑𝑟𝑥) = (𝑅𝑟(𝐽 · 𝑥)) ↔ ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟(𝐽 · 𝐾))))
2019imbi2d 340 . . . . . . 7 (𝑥 = 𝐾 → (((𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) → ((𝑅𝑟𝐽)↑𝑟𝑥) = (𝑅𝑟(𝐽 · 𝑥))) ↔ ((𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟(𝐽 · 𝐾)))))
21 ovexd 7425 . . . . . . . . 9 ((𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) → (𝑅𝑟𝐽) ∈ V)
2221relexp1d 15002 . . . . . . . 8 ((𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) → ((𝑅𝑟𝐽)↑𝑟1) = (𝑅𝑟𝐽))
23 simp1 1136 . . . . . . . . . . 11 ((𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) → 𝐽 ∈ ℕ)
24 nnre 12200 . . . . . . . . . . 11 (𝐽 ∈ ℕ → 𝐽 ∈ ℝ)
25 ax-1rid 11145 . . . . . . . . . . 11 (𝐽 ∈ ℝ → (𝐽 · 1) = 𝐽)
2623, 24, 253syl 18 . . . . . . . . . 10 ((𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) → (𝐽 · 1) = 𝐽)
2726eqcomd 2736 . . . . . . . . 9 ((𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) → 𝐽 = (𝐽 · 1))
2827oveq2d 7406 . . . . . . . 8 ((𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) → (𝑅𝑟𝐽) = (𝑅𝑟(𝐽 · 1)))
2922, 28eqtrd 2765 . . . . . . 7 ((𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) → ((𝑅𝑟𝐽)↑𝑟1) = (𝑅𝑟(𝐽 · 1)))
30 ovex 7423 . . . . . . . . . . 11 (𝑅𝑟𝐽) ∈ V
31 simp1 1136 . . . . . . . . . . 11 ((𝑦 ∈ ℕ ∧ (𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) ∧ ((𝑅𝑟𝐽)↑𝑟𝑦) = (𝑅𝑟(𝐽 · 𝑦))) → 𝑦 ∈ ℕ)
32 relexpsucnnr 14998 . . . . . . . . . . 11 (((𝑅𝑟𝐽) ∈ V ∧ 𝑦 ∈ ℕ) → ((𝑅𝑟𝐽)↑𝑟(𝑦 + 1)) = (((𝑅𝑟𝐽)↑𝑟𝑦) ∘ (𝑅𝑟𝐽)))
3330, 31, 32sylancr 587 . . . . . . . . . 10 ((𝑦 ∈ ℕ ∧ (𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) ∧ ((𝑅𝑟𝐽)↑𝑟𝑦) = (𝑅𝑟(𝐽 · 𝑦))) → ((𝑅𝑟𝐽)↑𝑟(𝑦 + 1)) = (((𝑅𝑟𝐽)↑𝑟𝑦) ∘ (𝑅𝑟𝐽)))
34 simp3 1138 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ ∧ (𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) ∧ ((𝑅𝑟𝐽)↑𝑟𝑦) = (𝑅𝑟(𝐽 · 𝑦))) → ((𝑅𝑟𝐽)↑𝑟𝑦) = (𝑅𝑟(𝐽 · 𝑦)))
3534coeq1d 5828 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ ∧ (𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) ∧ ((𝑅𝑟𝐽)↑𝑟𝑦) = (𝑅𝑟(𝐽 · 𝑦))) → (((𝑅𝑟𝐽)↑𝑟𝑦) ∘ (𝑅𝑟𝐽)) = ((𝑅𝑟(𝐽 · 𝑦)) ∘ (𝑅𝑟𝐽)))
36 simp21 1207 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℕ ∧ (𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) ∧ ((𝑅𝑟𝐽)↑𝑟𝑦) = (𝑅𝑟(𝐽 · 𝑦))) → 𝐽 ∈ ℕ)
3736, 31nnmulcld 12246 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ ∧ (𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) ∧ ((𝑅𝑟𝐽)↑𝑟𝑦) = (𝑅𝑟(𝐽 · 𝑦))) → (𝐽 · 𝑦) ∈ ℕ)
38 simp22 1208 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ ∧ (𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) ∧ ((𝑅𝑟𝐽)↑𝑟𝑦) = (𝑅𝑟(𝐽 · 𝑦))) → 𝑅𝑉)
39 relexpaddnn 15024 . . . . . . . . . . . . 13 (((𝐽 · 𝑦) ∈ ℕ ∧ 𝐽 ∈ ℕ ∧ 𝑅𝑉) → ((𝑅𝑟(𝐽 · 𝑦)) ∘ (𝑅𝑟𝐽)) = (𝑅𝑟((𝐽 · 𝑦) + 𝐽)))
4037, 36, 38, 39syl3anc 1373 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ ∧ (𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) ∧ ((𝑅𝑟𝐽)↑𝑟𝑦) = (𝑅𝑟(𝐽 · 𝑦))) → ((𝑅𝑟(𝐽 · 𝑦)) ∘ (𝑅𝑟𝐽)) = (𝑅𝑟((𝐽 · 𝑦) + 𝐽)))
4135, 40eqtrd 2765 . . . . . . . . . . 11 ((𝑦 ∈ ℕ ∧ (𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) ∧ ((𝑅𝑟𝐽)↑𝑟𝑦) = (𝑅𝑟(𝐽 · 𝑦))) → (((𝑅𝑟𝐽)↑𝑟𝑦) ∘ (𝑅𝑟𝐽)) = (𝑅𝑟((𝐽 · 𝑦) + 𝐽)))
4236nncnd 12209 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℕ ∧ (𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) ∧ ((𝑅𝑟𝐽)↑𝑟𝑦) = (𝑅𝑟(𝐽 · 𝑦))) → 𝐽 ∈ ℂ)
4331nncnd 12209 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℕ ∧ (𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) ∧ ((𝑅𝑟𝐽)↑𝑟𝑦) = (𝑅𝑟(𝐽 · 𝑦))) → 𝑦 ∈ ℂ)
44 1cnd 11176 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℕ ∧ (𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) ∧ ((𝑅𝑟𝐽)↑𝑟𝑦) = (𝑅𝑟(𝐽 · 𝑦))) → 1 ∈ ℂ)
4542, 43, 44adddid 11205 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ ∧ (𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) ∧ ((𝑅𝑟𝐽)↑𝑟𝑦) = (𝑅𝑟(𝐽 · 𝑦))) → (𝐽 · (𝑦 + 1)) = ((𝐽 · 𝑦) + (𝐽 · 1)))
4642mulridd 11198 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℕ ∧ (𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) ∧ ((𝑅𝑟𝐽)↑𝑟𝑦) = (𝑅𝑟(𝐽 · 𝑦))) → (𝐽 · 1) = 𝐽)
4746oveq2d 7406 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ ∧ (𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) ∧ ((𝑅𝑟𝐽)↑𝑟𝑦) = (𝑅𝑟(𝐽 · 𝑦))) → ((𝐽 · 𝑦) + (𝐽 · 1)) = ((𝐽 · 𝑦) + 𝐽))
4845, 47eqtr2d 2766 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ ∧ (𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) ∧ ((𝑅𝑟𝐽)↑𝑟𝑦) = (𝑅𝑟(𝐽 · 𝑦))) → ((𝐽 · 𝑦) + 𝐽) = (𝐽 · (𝑦 + 1)))
4948oveq2d 7406 . . . . . . . . . . 11 ((𝑦 ∈ ℕ ∧ (𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) ∧ ((𝑅𝑟𝐽)↑𝑟𝑦) = (𝑅𝑟(𝐽 · 𝑦))) → (𝑅𝑟((𝐽 · 𝑦) + 𝐽)) = (𝑅𝑟(𝐽 · (𝑦 + 1))))
5041, 49eqtrd 2765 . . . . . . . . . 10 ((𝑦 ∈ ℕ ∧ (𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) ∧ ((𝑅𝑟𝐽)↑𝑟𝑦) = (𝑅𝑟(𝐽 · 𝑦))) → (((𝑅𝑟𝐽)↑𝑟𝑦) ∘ (𝑅𝑟𝐽)) = (𝑅𝑟(𝐽 · (𝑦 + 1))))
5133, 50eqtrd 2765 . . . . . . . . 9 ((𝑦 ∈ ℕ ∧ (𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) ∧ ((𝑅𝑟𝐽)↑𝑟𝑦) = (𝑅𝑟(𝐽 · 𝑦))) → ((𝑅𝑟𝐽)↑𝑟(𝑦 + 1)) = (𝑅𝑟(𝐽 · (𝑦 + 1))))
52513exp 1119 . . . . . . . 8 (𝑦 ∈ ℕ → ((𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) → (((𝑅𝑟𝐽)↑𝑟𝑦) = (𝑅𝑟(𝐽 · 𝑦)) → ((𝑅𝑟𝐽)↑𝑟(𝑦 + 1)) = (𝑅𝑟(𝐽 · (𝑦 + 1))))))
5352a2d 29 . . . . . . 7 (𝑦 ∈ ℕ → (((𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) → ((𝑅𝑟𝐽)↑𝑟𝑦) = (𝑅𝑟(𝐽 · 𝑦))) → ((𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) → ((𝑅𝑟𝐽)↑𝑟(𝑦 + 1)) = (𝑅𝑟(𝐽 · (𝑦 + 1))))))
545, 10, 15, 20, 29, 53nnind 12211 . . . . . 6 (𝐾 ∈ ℕ → ((𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟(𝐽 · 𝐾))))
55543expd 1354 . . . . 5 (𝐾 ∈ ℕ → (𝐽 ∈ ℕ → (𝑅𝑉 → (𝐼 = (𝐽 · 𝐾) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟(𝐽 · 𝐾))))))
5655impcom 407 . . . 4 ((𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝑅𝑉 → (𝐼 = (𝐽 · 𝐾) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟(𝐽 · 𝐾)))))
5756impd 410 . . 3 ((𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ) → ((𝑅𝑉𝐼 = (𝐽 · 𝐾)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟(𝐽 · 𝐾))))
5857impcom 407 . 2 (((𝑅𝑉𝐼 = (𝐽 · 𝐾)) ∧ (𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟(𝐽 · 𝐾)))
59 simplr 768 . . . 4 (((𝑅𝑉𝐼 = (𝐽 · 𝐾)) ∧ (𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ)) → 𝐼 = (𝐽 · 𝐾))
6059eqcomd 2736 . . 3 (((𝑅𝑉𝐼 = (𝐽 · 𝐾)) ∧ (𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ)) → (𝐽 · 𝐾) = 𝐼)
6160oveq2d 7406 . 2 (((𝑅𝑉𝐼 = (𝐽 · 𝐾)) ∧ (𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ)) → (𝑅𝑟(𝐽 · 𝐾)) = (𝑅𝑟𝐼))
6258, 61eqtrd 2765 1 (((𝑅𝑉𝐼 = (𝐽 · 𝐾)) ∧ (𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3450  ccom 5645  (class class class)co 7390  cr 11074  1c1 11076   + caddc 11078   · cmul 11080  cn 12193  𝑟crelexp 14992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-seq 13974  df-relexp 14993
This theorem is referenced by:  relexpmulg  43706
  Copyright terms: Public domain W3C validator