Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relexpmulnn Structured version   Visualization version   GIF version

Theorem relexpmulnn 43748
Description: With exponents limited to the counting numbers, the composition of powers of a relation is the relation raised to the product of exponents. (Contributed by RP, 13-Jun-2020.)
Assertion
Ref Expression
relexpmulnn (((𝑅𝑉𝐼 = (𝐽 · 𝐾)) ∧ (𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼))

Proof of Theorem relexpmulnn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7354 . . . . . . . . 9 (𝑥 = 1 → ((𝑅𝑟𝐽)↑𝑟𝑥) = ((𝑅𝑟𝐽)↑𝑟1))
2 oveq2 7354 . . . . . . . . . 10 (𝑥 = 1 → (𝐽 · 𝑥) = (𝐽 · 1))
32oveq2d 7362 . . . . . . . . 9 (𝑥 = 1 → (𝑅𝑟(𝐽 · 𝑥)) = (𝑅𝑟(𝐽 · 1)))
41, 3eqeq12d 2747 . . . . . . . 8 (𝑥 = 1 → (((𝑅𝑟𝐽)↑𝑟𝑥) = (𝑅𝑟(𝐽 · 𝑥)) ↔ ((𝑅𝑟𝐽)↑𝑟1) = (𝑅𝑟(𝐽 · 1))))
54imbi2d 340 . . . . . . 7 (𝑥 = 1 → (((𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) → ((𝑅𝑟𝐽)↑𝑟𝑥) = (𝑅𝑟(𝐽 · 𝑥))) ↔ ((𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) → ((𝑅𝑟𝐽)↑𝑟1) = (𝑅𝑟(𝐽 · 1)))))
6 oveq2 7354 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝑅𝑟𝐽)↑𝑟𝑥) = ((𝑅𝑟𝐽)↑𝑟𝑦))
7 oveq2 7354 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝐽 · 𝑥) = (𝐽 · 𝑦))
87oveq2d 7362 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑅𝑟(𝐽 · 𝑥)) = (𝑅𝑟(𝐽 · 𝑦)))
96, 8eqeq12d 2747 . . . . . . . 8 (𝑥 = 𝑦 → (((𝑅𝑟𝐽)↑𝑟𝑥) = (𝑅𝑟(𝐽 · 𝑥)) ↔ ((𝑅𝑟𝐽)↑𝑟𝑦) = (𝑅𝑟(𝐽 · 𝑦))))
109imbi2d 340 . . . . . . 7 (𝑥 = 𝑦 → (((𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) → ((𝑅𝑟𝐽)↑𝑟𝑥) = (𝑅𝑟(𝐽 · 𝑥))) ↔ ((𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) → ((𝑅𝑟𝐽)↑𝑟𝑦) = (𝑅𝑟(𝐽 · 𝑦)))))
11 oveq2 7354 . . . . . . . . 9 (𝑥 = (𝑦 + 1) → ((𝑅𝑟𝐽)↑𝑟𝑥) = ((𝑅𝑟𝐽)↑𝑟(𝑦 + 1)))
12 oveq2 7354 . . . . . . . . . 10 (𝑥 = (𝑦 + 1) → (𝐽 · 𝑥) = (𝐽 · (𝑦 + 1)))
1312oveq2d 7362 . . . . . . . . 9 (𝑥 = (𝑦 + 1) → (𝑅𝑟(𝐽 · 𝑥)) = (𝑅𝑟(𝐽 · (𝑦 + 1))))
1411, 13eqeq12d 2747 . . . . . . . 8 (𝑥 = (𝑦 + 1) → (((𝑅𝑟𝐽)↑𝑟𝑥) = (𝑅𝑟(𝐽 · 𝑥)) ↔ ((𝑅𝑟𝐽)↑𝑟(𝑦 + 1)) = (𝑅𝑟(𝐽 · (𝑦 + 1)))))
1514imbi2d 340 . . . . . . 7 (𝑥 = (𝑦 + 1) → (((𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) → ((𝑅𝑟𝐽)↑𝑟𝑥) = (𝑅𝑟(𝐽 · 𝑥))) ↔ ((𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) → ((𝑅𝑟𝐽)↑𝑟(𝑦 + 1)) = (𝑅𝑟(𝐽 · (𝑦 + 1))))))
16 oveq2 7354 . . . . . . . . 9 (𝑥 = 𝐾 → ((𝑅𝑟𝐽)↑𝑟𝑥) = ((𝑅𝑟𝐽)↑𝑟𝐾))
17 oveq2 7354 . . . . . . . . . 10 (𝑥 = 𝐾 → (𝐽 · 𝑥) = (𝐽 · 𝐾))
1817oveq2d 7362 . . . . . . . . 9 (𝑥 = 𝐾 → (𝑅𝑟(𝐽 · 𝑥)) = (𝑅𝑟(𝐽 · 𝐾)))
1916, 18eqeq12d 2747 . . . . . . . 8 (𝑥 = 𝐾 → (((𝑅𝑟𝐽)↑𝑟𝑥) = (𝑅𝑟(𝐽 · 𝑥)) ↔ ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟(𝐽 · 𝐾))))
2019imbi2d 340 . . . . . . 7 (𝑥 = 𝐾 → (((𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) → ((𝑅𝑟𝐽)↑𝑟𝑥) = (𝑅𝑟(𝐽 · 𝑥))) ↔ ((𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟(𝐽 · 𝐾)))))
21 ovexd 7381 . . . . . . . . 9 ((𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) → (𝑅𝑟𝐽) ∈ V)
2221relexp1d 14936 . . . . . . . 8 ((𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) → ((𝑅𝑟𝐽)↑𝑟1) = (𝑅𝑟𝐽))
23 simp1 1136 . . . . . . . . . . 11 ((𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) → 𝐽 ∈ ℕ)
24 nnre 12132 . . . . . . . . . . 11 (𝐽 ∈ ℕ → 𝐽 ∈ ℝ)
25 ax-1rid 11076 . . . . . . . . . . 11 (𝐽 ∈ ℝ → (𝐽 · 1) = 𝐽)
2623, 24, 253syl 18 . . . . . . . . . 10 ((𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) → (𝐽 · 1) = 𝐽)
2726eqcomd 2737 . . . . . . . . 9 ((𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) → 𝐽 = (𝐽 · 1))
2827oveq2d 7362 . . . . . . . 8 ((𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) → (𝑅𝑟𝐽) = (𝑅𝑟(𝐽 · 1)))
2922, 28eqtrd 2766 . . . . . . 7 ((𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) → ((𝑅𝑟𝐽)↑𝑟1) = (𝑅𝑟(𝐽 · 1)))
30 ovex 7379 . . . . . . . . . . 11 (𝑅𝑟𝐽) ∈ V
31 simp1 1136 . . . . . . . . . . 11 ((𝑦 ∈ ℕ ∧ (𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) ∧ ((𝑅𝑟𝐽)↑𝑟𝑦) = (𝑅𝑟(𝐽 · 𝑦))) → 𝑦 ∈ ℕ)
32 relexpsucnnr 14932 . . . . . . . . . . 11 (((𝑅𝑟𝐽) ∈ V ∧ 𝑦 ∈ ℕ) → ((𝑅𝑟𝐽)↑𝑟(𝑦 + 1)) = (((𝑅𝑟𝐽)↑𝑟𝑦) ∘ (𝑅𝑟𝐽)))
3330, 31, 32sylancr 587 . . . . . . . . . 10 ((𝑦 ∈ ℕ ∧ (𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) ∧ ((𝑅𝑟𝐽)↑𝑟𝑦) = (𝑅𝑟(𝐽 · 𝑦))) → ((𝑅𝑟𝐽)↑𝑟(𝑦 + 1)) = (((𝑅𝑟𝐽)↑𝑟𝑦) ∘ (𝑅𝑟𝐽)))
34 simp3 1138 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ ∧ (𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) ∧ ((𝑅𝑟𝐽)↑𝑟𝑦) = (𝑅𝑟(𝐽 · 𝑦))) → ((𝑅𝑟𝐽)↑𝑟𝑦) = (𝑅𝑟(𝐽 · 𝑦)))
3534coeq1d 5801 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ ∧ (𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) ∧ ((𝑅𝑟𝐽)↑𝑟𝑦) = (𝑅𝑟(𝐽 · 𝑦))) → (((𝑅𝑟𝐽)↑𝑟𝑦) ∘ (𝑅𝑟𝐽)) = ((𝑅𝑟(𝐽 · 𝑦)) ∘ (𝑅𝑟𝐽)))
36 simp21 1207 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℕ ∧ (𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) ∧ ((𝑅𝑟𝐽)↑𝑟𝑦) = (𝑅𝑟(𝐽 · 𝑦))) → 𝐽 ∈ ℕ)
3736, 31nnmulcld 12178 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ ∧ (𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) ∧ ((𝑅𝑟𝐽)↑𝑟𝑦) = (𝑅𝑟(𝐽 · 𝑦))) → (𝐽 · 𝑦) ∈ ℕ)
38 simp22 1208 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ ∧ (𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) ∧ ((𝑅𝑟𝐽)↑𝑟𝑦) = (𝑅𝑟(𝐽 · 𝑦))) → 𝑅𝑉)
39 relexpaddnn 14958 . . . . . . . . . . . . 13 (((𝐽 · 𝑦) ∈ ℕ ∧ 𝐽 ∈ ℕ ∧ 𝑅𝑉) → ((𝑅𝑟(𝐽 · 𝑦)) ∘ (𝑅𝑟𝐽)) = (𝑅𝑟((𝐽 · 𝑦) + 𝐽)))
4037, 36, 38, 39syl3anc 1373 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ ∧ (𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) ∧ ((𝑅𝑟𝐽)↑𝑟𝑦) = (𝑅𝑟(𝐽 · 𝑦))) → ((𝑅𝑟(𝐽 · 𝑦)) ∘ (𝑅𝑟𝐽)) = (𝑅𝑟((𝐽 · 𝑦) + 𝐽)))
4135, 40eqtrd 2766 . . . . . . . . . . 11 ((𝑦 ∈ ℕ ∧ (𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) ∧ ((𝑅𝑟𝐽)↑𝑟𝑦) = (𝑅𝑟(𝐽 · 𝑦))) → (((𝑅𝑟𝐽)↑𝑟𝑦) ∘ (𝑅𝑟𝐽)) = (𝑅𝑟((𝐽 · 𝑦) + 𝐽)))
4236nncnd 12141 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℕ ∧ (𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) ∧ ((𝑅𝑟𝐽)↑𝑟𝑦) = (𝑅𝑟(𝐽 · 𝑦))) → 𝐽 ∈ ℂ)
4331nncnd 12141 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℕ ∧ (𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) ∧ ((𝑅𝑟𝐽)↑𝑟𝑦) = (𝑅𝑟(𝐽 · 𝑦))) → 𝑦 ∈ ℂ)
44 1cnd 11107 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℕ ∧ (𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) ∧ ((𝑅𝑟𝐽)↑𝑟𝑦) = (𝑅𝑟(𝐽 · 𝑦))) → 1 ∈ ℂ)
4542, 43, 44adddid 11136 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ ∧ (𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) ∧ ((𝑅𝑟𝐽)↑𝑟𝑦) = (𝑅𝑟(𝐽 · 𝑦))) → (𝐽 · (𝑦 + 1)) = ((𝐽 · 𝑦) + (𝐽 · 1)))
4642mulridd 11129 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℕ ∧ (𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) ∧ ((𝑅𝑟𝐽)↑𝑟𝑦) = (𝑅𝑟(𝐽 · 𝑦))) → (𝐽 · 1) = 𝐽)
4746oveq2d 7362 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ ∧ (𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) ∧ ((𝑅𝑟𝐽)↑𝑟𝑦) = (𝑅𝑟(𝐽 · 𝑦))) → ((𝐽 · 𝑦) + (𝐽 · 1)) = ((𝐽 · 𝑦) + 𝐽))
4845, 47eqtr2d 2767 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ ∧ (𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) ∧ ((𝑅𝑟𝐽)↑𝑟𝑦) = (𝑅𝑟(𝐽 · 𝑦))) → ((𝐽 · 𝑦) + 𝐽) = (𝐽 · (𝑦 + 1)))
4948oveq2d 7362 . . . . . . . . . . 11 ((𝑦 ∈ ℕ ∧ (𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) ∧ ((𝑅𝑟𝐽)↑𝑟𝑦) = (𝑅𝑟(𝐽 · 𝑦))) → (𝑅𝑟((𝐽 · 𝑦) + 𝐽)) = (𝑅𝑟(𝐽 · (𝑦 + 1))))
5041, 49eqtrd 2766 . . . . . . . . . 10 ((𝑦 ∈ ℕ ∧ (𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) ∧ ((𝑅𝑟𝐽)↑𝑟𝑦) = (𝑅𝑟(𝐽 · 𝑦))) → (((𝑅𝑟𝐽)↑𝑟𝑦) ∘ (𝑅𝑟𝐽)) = (𝑅𝑟(𝐽 · (𝑦 + 1))))
5133, 50eqtrd 2766 . . . . . . . . 9 ((𝑦 ∈ ℕ ∧ (𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) ∧ ((𝑅𝑟𝐽)↑𝑟𝑦) = (𝑅𝑟(𝐽 · 𝑦))) → ((𝑅𝑟𝐽)↑𝑟(𝑦 + 1)) = (𝑅𝑟(𝐽 · (𝑦 + 1))))
52513exp 1119 . . . . . . . 8 (𝑦 ∈ ℕ → ((𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) → (((𝑅𝑟𝐽)↑𝑟𝑦) = (𝑅𝑟(𝐽 · 𝑦)) → ((𝑅𝑟𝐽)↑𝑟(𝑦 + 1)) = (𝑅𝑟(𝐽 · (𝑦 + 1))))))
5352a2d 29 . . . . . . 7 (𝑦 ∈ ℕ → (((𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) → ((𝑅𝑟𝐽)↑𝑟𝑦) = (𝑅𝑟(𝐽 · 𝑦))) → ((𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) → ((𝑅𝑟𝐽)↑𝑟(𝑦 + 1)) = (𝑅𝑟(𝐽 · (𝑦 + 1))))))
545, 10, 15, 20, 29, 53nnind 12143 . . . . . 6 (𝐾 ∈ ℕ → ((𝐽 ∈ ℕ ∧ 𝑅𝑉𝐼 = (𝐽 · 𝐾)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟(𝐽 · 𝐾))))
55543expd 1354 . . . . 5 (𝐾 ∈ ℕ → (𝐽 ∈ ℕ → (𝑅𝑉 → (𝐼 = (𝐽 · 𝐾) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟(𝐽 · 𝐾))))))
5655impcom 407 . . . 4 ((𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝑅𝑉 → (𝐼 = (𝐽 · 𝐾) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟(𝐽 · 𝐾)))))
5756impd 410 . . 3 ((𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ) → ((𝑅𝑉𝐼 = (𝐽 · 𝐾)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟(𝐽 · 𝐾))))
5857impcom 407 . 2 (((𝑅𝑉𝐼 = (𝐽 · 𝐾)) ∧ (𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟(𝐽 · 𝐾)))
59 simplr 768 . . . 4 (((𝑅𝑉𝐼 = (𝐽 · 𝐾)) ∧ (𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ)) → 𝐼 = (𝐽 · 𝐾))
6059eqcomd 2737 . . 3 (((𝑅𝑉𝐼 = (𝐽 · 𝐾)) ∧ (𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ)) → (𝐽 · 𝐾) = 𝐼)
6160oveq2d 7362 . 2 (((𝑅𝑉𝐼 = (𝐽 · 𝐾)) ∧ (𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ)) → (𝑅𝑟(𝐽 · 𝐾)) = (𝑅𝑟𝐼))
6258, 61eqtrd 2766 1 (((𝑅𝑉𝐼 = (𝐽 · 𝐾)) ∧ (𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  Vcvv 3436  ccom 5620  (class class class)co 7346  cr 11005  1c1 11007   + caddc 11009   · cmul 11011  cn 12125  𝑟crelexp 14926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-n0 12382  df-z 12469  df-uz 12733  df-seq 13909  df-relexp 14927
This theorem is referenced by:  relexpmulg  43749
  Copyright terms: Public domain W3C validator