| Step | Hyp | Ref
| Expression |
| 1 | | oveq2 7439 |
. . . . . . . . 9
⊢ (𝑥 = 1 → ((𝑅↑𝑟𝐽)↑𝑟𝑥) = ((𝑅↑𝑟𝐽)↑𝑟1)) |
| 2 | | oveq2 7439 |
. . . . . . . . . 10
⊢ (𝑥 = 1 → (𝐽 · 𝑥) = (𝐽 · 1)) |
| 3 | 2 | oveq2d 7447 |
. . . . . . . . 9
⊢ (𝑥 = 1 → (𝑅↑𝑟(𝐽 · 𝑥)) = (𝑅↑𝑟(𝐽 · 1))) |
| 4 | 1, 3 | eqeq12d 2753 |
. . . . . . . 8
⊢ (𝑥 = 1 → (((𝑅↑𝑟𝐽)↑𝑟𝑥) = (𝑅↑𝑟(𝐽 · 𝑥)) ↔ ((𝑅↑𝑟𝐽)↑𝑟1) = (𝑅↑𝑟(𝐽 · 1)))) |
| 5 | 4 | imbi2d 340 |
. . . . . . 7
⊢ (𝑥 = 1 → (((𝐽 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐼 = (𝐽 · 𝐾)) → ((𝑅↑𝑟𝐽)↑𝑟𝑥) = (𝑅↑𝑟(𝐽 · 𝑥))) ↔ ((𝐽 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐼 = (𝐽 · 𝐾)) → ((𝑅↑𝑟𝐽)↑𝑟1) = (𝑅↑𝑟(𝐽 ·
1))))) |
| 6 | | oveq2 7439 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → ((𝑅↑𝑟𝐽)↑𝑟𝑥) = ((𝑅↑𝑟𝐽)↑𝑟𝑦)) |
| 7 | | oveq2 7439 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → (𝐽 · 𝑥) = (𝐽 · 𝑦)) |
| 8 | 7 | oveq2d 7447 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (𝑅↑𝑟(𝐽 · 𝑥)) = (𝑅↑𝑟(𝐽 · 𝑦))) |
| 9 | 6, 8 | eqeq12d 2753 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (((𝑅↑𝑟𝐽)↑𝑟𝑥) = (𝑅↑𝑟(𝐽 · 𝑥)) ↔ ((𝑅↑𝑟𝐽)↑𝑟𝑦) = (𝑅↑𝑟(𝐽 · 𝑦)))) |
| 10 | 9 | imbi2d 340 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (((𝐽 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐼 = (𝐽 · 𝐾)) → ((𝑅↑𝑟𝐽)↑𝑟𝑥) = (𝑅↑𝑟(𝐽 · 𝑥))) ↔ ((𝐽 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐼 = (𝐽 · 𝐾)) → ((𝑅↑𝑟𝐽)↑𝑟𝑦) = (𝑅↑𝑟(𝐽 · 𝑦))))) |
| 11 | | oveq2 7439 |
. . . . . . . . 9
⊢ (𝑥 = (𝑦 + 1) → ((𝑅↑𝑟𝐽)↑𝑟𝑥) = ((𝑅↑𝑟𝐽)↑𝑟(𝑦 + 1))) |
| 12 | | oveq2 7439 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑦 + 1) → (𝐽 · 𝑥) = (𝐽 · (𝑦 + 1))) |
| 13 | 12 | oveq2d 7447 |
. . . . . . . . 9
⊢ (𝑥 = (𝑦 + 1) → (𝑅↑𝑟(𝐽 · 𝑥)) = (𝑅↑𝑟(𝐽 · (𝑦 + 1)))) |
| 14 | 11, 13 | eqeq12d 2753 |
. . . . . . . 8
⊢ (𝑥 = (𝑦 + 1) → (((𝑅↑𝑟𝐽)↑𝑟𝑥) = (𝑅↑𝑟(𝐽 · 𝑥)) ↔ ((𝑅↑𝑟𝐽)↑𝑟(𝑦 + 1)) = (𝑅↑𝑟(𝐽 · (𝑦 + 1))))) |
| 15 | 14 | imbi2d 340 |
. . . . . . 7
⊢ (𝑥 = (𝑦 + 1) → (((𝐽 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐼 = (𝐽 · 𝐾)) → ((𝑅↑𝑟𝐽)↑𝑟𝑥) = (𝑅↑𝑟(𝐽 · 𝑥))) ↔ ((𝐽 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐼 = (𝐽 · 𝐾)) → ((𝑅↑𝑟𝐽)↑𝑟(𝑦 + 1)) = (𝑅↑𝑟(𝐽 · (𝑦 + 1)))))) |
| 16 | | oveq2 7439 |
. . . . . . . . 9
⊢ (𝑥 = 𝐾 → ((𝑅↑𝑟𝐽)↑𝑟𝑥) = ((𝑅↑𝑟𝐽)↑𝑟𝐾)) |
| 17 | | oveq2 7439 |
. . . . . . . . . 10
⊢ (𝑥 = 𝐾 → (𝐽 · 𝑥) = (𝐽 · 𝐾)) |
| 18 | 17 | oveq2d 7447 |
. . . . . . . . 9
⊢ (𝑥 = 𝐾 → (𝑅↑𝑟(𝐽 · 𝑥)) = (𝑅↑𝑟(𝐽 · 𝐾))) |
| 19 | 16, 18 | eqeq12d 2753 |
. . . . . . . 8
⊢ (𝑥 = 𝐾 → (((𝑅↑𝑟𝐽)↑𝑟𝑥) = (𝑅↑𝑟(𝐽 · 𝑥)) ↔ ((𝑅↑𝑟𝐽)↑𝑟𝐾) = (𝑅↑𝑟(𝐽 · 𝐾)))) |
| 20 | 19 | imbi2d 340 |
. . . . . . 7
⊢ (𝑥 = 𝐾 → (((𝐽 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐼 = (𝐽 · 𝐾)) → ((𝑅↑𝑟𝐽)↑𝑟𝑥) = (𝑅↑𝑟(𝐽 · 𝑥))) ↔ ((𝐽 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐼 = (𝐽 · 𝐾)) → ((𝑅↑𝑟𝐽)↑𝑟𝐾) = (𝑅↑𝑟(𝐽 · 𝐾))))) |
| 21 | | ovexd 7466 |
. . . . . . . . 9
⊢ ((𝐽 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐼 = (𝐽 · 𝐾)) → (𝑅↑𝑟𝐽) ∈ V) |
| 22 | 21 | relexp1d 15068 |
. . . . . . . 8
⊢ ((𝐽 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐼 = (𝐽 · 𝐾)) → ((𝑅↑𝑟𝐽)↑𝑟1) = (𝑅↑𝑟𝐽)) |
| 23 | | simp1 1137 |
. . . . . . . . . . 11
⊢ ((𝐽 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐼 = (𝐽 · 𝐾)) → 𝐽 ∈ ℕ) |
| 24 | | nnre 12273 |
. . . . . . . . . . 11
⊢ (𝐽 ∈ ℕ → 𝐽 ∈
ℝ) |
| 25 | | ax-1rid 11225 |
. . . . . . . . . . 11
⊢ (𝐽 ∈ ℝ → (𝐽 · 1) = 𝐽) |
| 26 | 23, 24, 25 | 3syl 18 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐼 = (𝐽 · 𝐾)) → (𝐽 · 1) = 𝐽) |
| 27 | 26 | eqcomd 2743 |
. . . . . . . . 9
⊢ ((𝐽 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐼 = (𝐽 · 𝐾)) → 𝐽 = (𝐽 · 1)) |
| 28 | 27 | oveq2d 7447 |
. . . . . . . 8
⊢ ((𝐽 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐼 = (𝐽 · 𝐾)) → (𝑅↑𝑟𝐽) = (𝑅↑𝑟(𝐽 · 1))) |
| 29 | 22, 28 | eqtrd 2777 |
. . . . . . 7
⊢ ((𝐽 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐼 = (𝐽 · 𝐾)) → ((𝑅↑𝑟𝐽)↑𝑟1) = (𝑅↑𝑟(𝐽 · 1))) |
| 30 | | ovex 7464 |
. . . . . . . . . . 11
⊢ (𝑅↑𝑟𝐽) ∈ V |
| 31 | | simp1 1137 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ ℕ ∧ (𝐽 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐼 = (𝐽 · 𝐾)) ∧ ((𝑅↑𝑟𝐽)↑𝑟𝑦) = (𝑅↑𝑟(𝐽 · 𝑦))) → 𝑦 ∈ ℕ) |
| 32 | | relexpsucnnr 15064 |
. . . . . . . . . . 11
⊢ (((𝑅↑𝑟𝐽) ∈ V ∧ 𝑦 ∈ ℕ) → ((𝑅↑𝑟𝐽)↑𝑟(𝑦 + 1)) = (((𝑅↑𝑟𝐽)↑𝑟𝑦) ∘ (𝑅↑𝑟𝐽))) |
| 33 | 30, 31, 32 | sylancr 587 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ ℕ ∧ (𝐽 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐼 = (𝐽 · 𝐾)) ∧ ((𝑅↑𝑟𝐽)↑𝑟𝑦) = (𝑅↑𝑟(𝐽 · 𝑦))) → ((𝑅↑𝑟𝐽)↑𝑟(𝑦 + 1)) = (((𝑅↑𝑟𝐽)↑𝑟𝑦) ∘ (𝑅↑𝑟𝐽))) |
| 34 | | simp3 1139 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ ℕ ∧ (𝐽 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐼 = (𝐽 · 𝐾)) ∧ ((𝑅↑𝑟𝐽)↑𝑟𝑦) = (𝑅↑𝑟(𝐽 · 𝑦))) → ((𝑅↑𝑟𝐽)↑𝑟𝑦) = (𝑅↑𝑟(𝐽 · 𝑦))) |
| 35 | 34 | coeq1d 5872 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ ℕ ∧ (𝐽 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐼 = (𝐽 · 𝐾)) ∧ ((𝑅↑𝑟𝐽)↑𝑟𝑦) = (𝑅↑𝑟(𝐽 · 𝑦))) → (((𝑅↑𝑟𝐽)↑𝑟𝑦) ∘ (𝑅↑𝑟𝐽)) = ((𝑅↑𝑟(𝐽 · 𝑦)) ∘ (𝑅↑𝑟𝐽))) |
| 36 | | simp21 1207 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ ℕ ∧ (𝐽 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐼 = (𝐽 · 𝐾)) ∧ ((𝑅↑𝑟𝐽)↑𝑟𝑦) = (𝑅↑𝑟(𝐽 · 𝑦))) → 𝐽 ∈ ℕ) |
| 37 | 36, 31 | nnmulcld 12319 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ ℕ ∧ (𝐽 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐼 = (𝐽 · 𝐾)) ∧ ((𝑅↑𝑟𝐽)↑𝑟𝑦) = (𝑅↑𝑟(𝐽 · 𝑦))) → (𝐽 · 𝑦) ∈ ℕ) |
| 38 | | simp22 1208 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ ℕ ∧ (𝐽 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐼 = (𝐽 · 𝐾)) ∧ ((𝑅↑𝑟𝐽)↑𝑟𝑦) = (𝑅↑𝑟(𝐽 · 𝑦))) → 𝑅 ∈ 𝑉) |
| 39 | | relexpaddnn 15090 |
. . . . . . . . . . . . 13
⊢ (((𝐽 · 𝑦) ∈ ℕ ∧ 𝐽 ∈ ℕ ∧ 𝑅 ∈ 𝑉) → ((𝑅↑𝑟(𝐽 · 𝑦)) ∘ (𝑅↑𝑟𝐽)) = (𝑅↑𝑟((𝐽 · 𝑦) + 𝐽))) |
| 40 | 37, 36, 38, 39 | syl3anc 1373 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ ℕ ∧ (𝐽 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐼 = (𝐽 · 𝐾)) ∧ ((𝑅↑𝑟𝐽)↑𝑟𝑦) = (𝑅↑𝑟(𝐽 · 𝑦))) → ((𝑅↑𝑟(𝐽 · 𝑦)) ∘ (𝑅↑𝑟𝐽)) = (𝑅↑𝑟((𝐽 · 𝑦) + 𝐽))) |
| 41 | 35, 40 | eqtrd 2777 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ ℕ ∧ (𝐽 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐼 = (𝐽 · 𝐾)) ∧ ((𝑅↑𝑟𝐽)↑𝑟𝑦) = (𝑅↑𝑟(𝐽 · 𝑦))) → (((𝑅↑𝑟𝐽)↑𝑟𝑦) ∘ (𝑅↑𝑟𝐽)) = (𝑅↑𝑟((𝐽 · 𝑦) + 𝐽))) |
| 42 | 36 | nncnd 12282 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ ℕ ∧ (𝐽 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐼 = (𝐽 · 𝐾)) ∧ ((𝑅↑𝑟𝐽)↑𝑟𝑦) = (𝑅↑𝑟(𝐽 · 𝑦))) → 𝐽 ∈ ℂ) |
| 43 | 31 | nncnd 12282 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ ℕ ∧ (𝐽 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐼 = (𝐽 · 𝐾)) ∧ ((𝑅↑𝑟𝐽)↑𝑟𝑦) = (𝑅↑𝑟(𝐽 · 𝑦))) → 𝑦 ∈ ℂ) |
| 44 | | 1cnd 11256 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ ℕ ∧ (𝐽 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐼 = (𝐽 · 𝐾)) ∧ ((𝑅↑𝑟𝐽)↑𝑟𝑦) = (𝑅↑𝑟(𝐽 · 𝑦))) → 1 ∈ ℂ) |
| 45 | 42, 43, 44 | adddid 11285 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ ℕ ∧ (𝐽 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐼 = (𝐽 · 𝐾)) ∧ ((𝑅↑𝑟𝐽)↑𝑟𝑦) = (𝑅↑𝑟(𝐽 · 𝑦))) → (𝐽 · (𝑦 + 1)) = ((𝐽 · 𝑦) + (𝐽 · 1))) |
| 46 | 42 | mulridd 11278 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ ℕ ∧ (𝐽 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐼 = (𝐽 · 𝐾)) ∧ ((𝑅↑𝑟𝐽)↑𝑟𝑦) = (𝑅↑𝑟(𝐽 · 𝑦))) → (𝐽 · 1) = 𝐽) |
| 47 | 46 | oveq2d 7447 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ ℕ ∧ (𝐽 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐼 = (𝐽 · 𝐾)) ∧ ((𝑅↑𝑟𝐽)↑𝑟𝑦) = (𝑅↑𝑟(𝐽 · 𝑦))) → ((𝐽 · 𝑦) + (𝐽 · 1)) = ((𝐽 · 𝑦) + 𝐽)) |
| 48 | 45, 47 | eqtr2d 2778 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ ℕ ∧ (𝐽 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐼 = (𝐽 · 𝐾)) ∧ ((𝑅↑𝑟𝐽)↑𝑟𝑦) = (𝑅↑𝑟(𝐽 · 𝑦))) → ((𝐽 · 𝑦) + 𝐽) = (𝐽 · (𝑦 + 1))) |
| 49 | 48 | oveq2d 7447 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ ℕ ∧ (𝐽 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐼 = (𝐽 · 𝐾)) ∧ ((𝑅↑𝑟𝐽)↑𝑟𝑦) = (𝑅↑𝑟(𝐽 · 𝑦))) → (𝑅↑𝑟((𝐽 · 𝑦) + 𝐽)) = (𝑅↑𝑟(𝐽 · (𝑦 + 1)))) |
| 50 | 41, 49 | eqtrd 2777 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ ℕ ∧ (𝐽 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐼 = (𝐽 · 𝐾)) ∧ ((𝑅↑𝑟𝐽)↑𝑟𝑦) = (𝑅↑𝑟(𝐽 · 𝑦))) → (((𝑅↑𝑟𝐽)↑𝑟𝑦) ∘ (𝑅↑𝑟𝐽)) = (𝑅↑𝑟(𝐽 · (𝑦 + 1)))) |
| 51 | 33, 50 | eqtrd 2777 |
. . . . . . . . 9
⊢ ((𝑦 ∈ ℕ ∧ (𝐽 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐼 = (𝐽 · 𝐾)) ∧ ((𝑅↑𝑟𝐽)↑𝑟𝑦) = (𝑅↑𝑟(𝐽 · 𝑦))) → ((𝑅↑𝑟𝐽)↑𝑟(𝑦 + 1)) = (𝑅↑𝑟(𝐽 · (𝑦 + 1)))) |
| 52 | 51 | 3exp 1120 |
. . . . . . . 8
⊢ (𝑦 ∈ ℕ → ((𝐽 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐼 = (𝐽 · 𝐾)) → (((𝑅↑𝑟𝐽)↑𝑟𝑦) = (𝑅↑𝑟(𝐽 · 𝑦)) → ((𝑅↑𝑟𝐽)↑𝑟(𝑦 + 1)) = (𝑅↑𝑟(𝐽 · (𝑦 + 1)))))) |
| 53 | 52 | a2d 29 |
. . . . . . 7
⊢ (𝑦 ∈ ℕ → (((𝐽 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐼 = (𝐽 · 𝐾)) → ((𝑅↑𝑟𝐽)↑𝑟𝑦) = (𝑅↑𝑟(𝐽 · 𝑦))) → ((𝐽 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐼 = (𝐽 · 𝐾)) → ((𝑅↑𝑟𝐽)↑𝑟(𝑦 + 1)) = (𝑅↑𝑟(𝐽 · (𝑦 + 1)))))) |
| 54 | 5, 10, 15, 20, 29, 53 | nnind 12284 |
. . . . . 6
⊢ (𝐾 ∈ ℕ → ((𝐽 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐼 = (𝐽 · 𝐾)) → ((𝑅↑𝑟𝐽)↑𝑟𝐾) = (𝑅↑𝑟(𝐽 · 𝐾)))) |
| 55 | 54 | 3expd 1354 |
. . . . 5
⊢ (𝐾 ∈ ℕ → (𝐽 ∈ ℕ → (𝑅 ∈ 𝑉 → (𝐼 = (𝐽 · 𝐾) → ((𝑅↑𝑟𝐽)↑𝑟𝐾) = (𝑅↑𝑟(𝐽 · 𝐾)))))) |
| 56 | 55 | impcom 407 |
. . . 4
⊢ ((𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝑅 ∈ 𝑉 → (𝐼 = (𝐽 · 𝐾) → ((𝑅↑𝑟𝐽)↑𝑟𝐾) = (𝑅↑𝑟(𝐽 · 𝐾))))) |
| 57 | 56 | impd 410 |
. . 3
⊢ ((𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ) → ((𝑅 ∈ 𝑉 ∧ 𝐼 = (𝐽 · 𝐾)) → ((𝑅↑𝑟𝐽)↑𝑟𝐾) = (𝑅↑𝑟(𝐽 · 𝐾)))) |
| 58 | 57 | impcom 407 |
. 2
⊢ (((𝑅 ∈ 𝑉 ∧ 𝐼 = (𝐽 · 𝐾)) ∧ (𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ)) → ((𝑅↑𝑟𝐽)↑𝑟𝐾) = (𝑅↑𝑟(𝐽 · 𝐾))) |
| 59 | | simplr 769 |
. . . 4
⊢ (((𝑅 ∈ 𝑉 ∧ 𝐼 = (𝐽 · 𝐾)) ∧ (𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ)) → 𝐼 = (𝐽 · 𝐾)) |
| 60 | 59 | eqcomd 2743 |
. . 3
⊢ (((𝑅 ∈ 𝑉 ∧ 𝐼 = (𝐽 · 𝐾)) ∧ (𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ)) → (𝐽 · 𝐾) = 𝐼) |
| 61 | 60 | oveq2d 7447 |
. 2
⊢ (((𝑅 ∈ 𝑉 ∧ 𝐼 = (𝐽 · 𝐾)) ∧ (𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ)) → (𝑅↑𝑟(𝐽 · 𝐾)) = (𝑅↑𝑟𝐼)) |
| 62 | 58, 61 | eqtrd 2777 |
1
⊢ (((𝑅 ∈ 𝑉 ∧ 𝐼 = (𝐽 · 𝐾)) ∧ (𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ)) → ((𝑅↑𝑟𝐽)↑𝑟𝐾) = (𝑅↑𝑟𝐼)) |