Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3dim2 Structured version   Visualization version   GIF version

Theorem 3dim2 39462
Description: Construct 2 new layers on top of 2 given atoms. (Contributed by NM, 27-Jul-2012.)
Hypotheses
Ref Expression
3dim0.j = (join‘𝐾)
3dim0.l = (le‘𝐾)
3dim0.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
3dim2 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → ∃𝑟𝐴𝑠𝐴𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)))
Distinct variable groups:   𝑠,𝑟,𝐴   ,𝑟,𝑠   ,𝑟,𝑠   𝑃,𝑟,𝑠   𝑄,𝑟,𝑠
Allowed substitution hints:   𝐾(𝑠,𝑟)

Proof of Theorem 3dim2
Dummy variables 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3dim0.j . . . 4 = (join‘𝐾)
2 3dim0.l . . . 4 = (le‘𝐾)
3 3dim0.a . . . 4 𝐴 = (Atoms‘𝐾)
41, 2, 33dim1 39461 . . 3 ((𝐾 ∈ HL ∧ 𝑄𝐴) → ∃𝑢𝐴𝑣𝐴𝑤𝐴 (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣)))
543adant2 1131 . 2 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → ∃𝑢𝐴𝑣𝐴𝑤𝐴 (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣)))
6 simpl21 1252 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃 = 𝑄) → 𝑢𝐴)
7 simpl22 1253 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃 = 𝑄) → 𝑣𝐴)
8 simp31 1210 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) → 𝑄𝑢)
98necomd 2980 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) → 𝑢𝑄)
109adantr 480 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃 = 𝑄) → 𝑢𝑄)
11 oveq1 7394 . . . . . . . . . . . . . 14 (𝑃 = 𝑄 → (𝑃 𝑄) = (𝑄 𝑄))
12 simp11 1204 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) → 𝐾 ∈ HL)
13 simp13 1206 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) → 𝑄𝐴)
141, 3hlatjidm 39362 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ 𝑄𝐴) → (𝑄 𝑄) = 𝑄)
1512, 13, 14syl2anc 584 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) → (𝑄 𝑄) = 𝑄)
1611, 15sylan9eqr 2786 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃 = 𝑄) → (𝑃 𝑄) = 𝑄)
1716breq2d 5119 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃 = 𝑄) → (𝑢 (𝑃 𝑄) ↔ 𝑢 𝑄))
1817notbid 318 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃 = 𝑄) → (¬ 𝑢 (𝑃 𝑄) ↔ ¬ 𝑢 𝑄))
19 hlatl 39353 . . . . . . . . . . . . . 14 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
2012, 19syl 17 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) → 𝐾 ∈ AtLat)
21 simp21 1207 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) → 𝑢𝐴)
222, 3atncmp 39305 . . . . . . . . . . . . 13 ((𝐾 ∈ AtLat ∧ 𝑢𝐴𝑄𝐴) → (¬ 𝑢 𝑄𝑢𝑄))
2320, 21, 13, 22syl3anc 1373 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) → (¬ 𝑢 𝑄𝑢𝑄))
2423adantr 480 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃 = 𝑄) → (¬ 𝑢 𝑄𝑢𝑄))
2518, 24bitrd 279 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃 = 𝑄) → (¬ 𝑢 (𝑃 𝑄) ↔ 𝑢𝑄))
2610, 25mpbird 257 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃 = 𝑄) → ¬ 𝑢 (𝑃 𝑄))
27 simpl32 1256 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃 = 𝑄) → ¬ 𝑣 (𝑄 𝑢))
2816oveq1d 7402 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃 = 𝑄) → ((𝑃 𝑄) 𝑢) = (𝑄 𝑢))
2928breq2d 5119 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃 = 𝑄) → (𝑣 ((𝑃 𝑄) 𝑢) ↔ 𝑣 (𝑄 𝑢)))
3027, 29mtbird 325 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃 = 𝑄) → ¬ 𝑣 ((𝑃 𝑄) 𝑢))
31 breq1 5110 . . . . . . . . . . . 12 (𝑟 = 𝑢 → (𝑟 (𝑃 𝑄) ↔ 𝑢 (𝑃 𝑄)))
3231notbid 318 . . . . . . . . . . 11 (𝑟 = 𝑢 → (¬ 𝑟 (𝑃 𝑄) ↔ ¬ 𝑢 (𝑃 𝑄)))
33 oveq2 7395 . . . . . . . . . . . . 13 (𝑟 = 𝑢 → ((𝑃 𝑄) 𝑟) = ((𝑃 𝑄) 𝑢))
3433breq2d 5119 . . . . . . . . . . . 12 (𝑟 = 𝑢 → (𝑠 ((𝑃 𝑄) 𝑟) ↔ 𝑠 ((𝑃 𝑄) 𝑢)))
3534notbid 318 . . . . . . . . . . 11 (𝑟 = 𝑢 → (¬ 𝑠 ((𝑃 𝑄) 𝑟) ↔ ¬ 𝑠 ((𝑃 𝑄) 𝑢)))
3632, 35anbi12d 632 . . . . . . . . . 10 (𝑟 = 𝑢 → ((¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ↔ (¬ 𝑢 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑢))))
37 breq1 5110 . . . . . . . . . . . 12 (𝑠 = 𝑣 → (𝑠 ((𝑃 𝑄) 𝑢) ↔ 𝑣 ((𝑃 𝑄) 𝑢)))
3837notbid 318 . . . . . . . . . . 11 (𝑠 = 𝑣 → (¬ 𝑠 ((𝑃 𝑄) 𝑢) ↔ ¬ 𝑣 ((𝑃 𝑄) 𝑢)))
3938anbi2d 630 . . . . . . . . . 10 (𝑠 = 𝑣 → ((¬ 𝑢 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑢)) ↔ (¬ 𝑢 (𝑃 𝑄) ∧ ¬ 𝑣 ((𝑃 𝑄) 𝑢))))
4036, 39rspc2ev 3601 . . . . . . . . 9 ((𝑢𝐴𝑣𝐴 ∧ (¬ 𝑢 (𝑃 𝑄) ∧ ¬ 𝑣 ((𝑃 𝑄) 𝑢))) → ∃𝑟𝐴𝑠𝐴𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)))
416, 7, 26, 30, 40syl112anc 1376 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃 = 𝑄) → ∃𝑟𝐴𝑠𝐴𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)))
42 simp22 1208 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) → 𝑣𝐴)
43 simp23 1209 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) → 𝑤𝐴)
4442, 43jca 511 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) → (𝑣𝐴𝑤𝐴))
4544ad2antrr 726 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃𝑄) ∧ 𝑃 (𝑄 𝑢)) → (𝑣𝐴𝑤𝐴))
46 simpll1 1213 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃𝑄) ∧ 𝑃 (𝑄 𝑢)) → (𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴))
47 simp32 1211 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) → ¬ 𝑣 (𝑄 𝑢))
48 simp33 1212 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) → ¬ 𝑤 ((𝑄 𝑢) 𝑣))
4921, 47, 483jca 1128 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) → (𝑢𝐴 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣)))
5049ad2antrr 726 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃𝑄) ∧ 𝑃 (𝑄 𝑢)) → (𝑢𝐴 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣)))
51 simplr 768 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃𝑄) ∧ 𝑃 (𝑄 𝑢)) → 𝑃𝑄)
52 simpr 484 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃𝑄) ∧ 𝑃 (𝑄 𝑢)) → 𝑃 (𝑄 𝑢))
531, 2, 33dimlem2 39453 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣)) ∧ (𝑃𝑄𝑃 (𝑄 𝑢))) → (𝑃𝑄 ∧ ¬ 𝑣 (𝑃 𝑄) ∧ ¬ 𝑤 ((𝑃 𝑄) 𝑣)))
5446, 50, 51, 52, 53syl112anc 1376 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃𝑄) ∧ 𝑃 (𝑄 𝑢)) → (𝑃𝑄 ∧ ¬ 𝑣 (𝑃 𝑄) ∧ ¬ 𝑤 ((𝑃 𝑄) 𝑣)))
55 3simpc 1150 . . . . . . . . . . 11 ((𝑃𝑄 ∧ ¬ 𝑣 (𝑃 𝑄) ∧ ¬ 𝑤 ((𝑃 𝑄) 𝑣)) → (¬ 𝑣 (𝑃 𝑄) ∧ ¬ 𝑤 ((𝑃 𝑄) 𝑣)))
5654, 55syl 17 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃𝑄) ∧ 𝑃 (𝑄 𝑢)) → (¬ 𝑣 (𝑃 𝑄) ∧ ¬ 𝑤 ((𝑃 𝑄) 𝑣)))
57 breq1 5110 . . . . . . . . . . . . . 14 (𝑟 = 𝑣 → (𝑟 (𝑃 𝑄) ↔ 𝑣 (𝑃 𝑄)))
5857notbid 318 . . . . . . . . . . . . 13 (𝑟 = 𝑣 → (¬ 𝑟 (𝑃 𝑄) ↔ ¬ 𝑣 (𝑃 𝑄)))
59 oveq2 7395 . . . . . . . . . . . . . . 15 (𝑟 = 𝑣 → ((𝑃 𝑄) 𝑟) = ((𝑃 𝑄) 𝑣))
6059breq2d 5119 . . . . . . . . . . . . . 14 (𝑟 = 𝑣 → (𝑠 ((𝑃 𝑄) 𝑟) ↔ 𝑠 ((𝑃 𝑄) 𝑣)))
6160notbid 318 . . . . . . . . . . . . 13 (𝑟 = 𝑣 → (¬ 𝑠 ((𝑃 𝑄) 𝑟) ↔ ¬ 𝑠 ((𝑃 𝑄) 𝑣)))
6258, 61anbi12d 632 . . . . . . . . . . . 12 (𝑟 = 𝑣 → ((¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ↔ (¬ 𝑣 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑣))))
63 breq1 5110 . . . . . . . . . . . . . 14 (𝑠 = 𝑤 → (𝑠 ((𝑃 𝑄) 𝑣) ↔ 𝑤 ((𝑃 𝑄) 𝑣)))
6463notbid 318 . . . . . . . . . . . . 13 (𝑠 = 𝑤 → (¬ 𝑠 ((𝑃 𝑄) 𝑣) ↔ ¬ 𝑤 ((𝑃 𝑄) 𝑣)))
6564anbi2d 630 . . . . . . . . . . . 12 (𝑠 = 𝑤 → ((¬ 𝑣 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑣)) ↔ (¬ 𝑣 (𝑃 𝑄) ∧ ¬ 𝑤 ((𝑃 𝑄) 𝑣))))
6662, 65rspc2ev 3601 . . . . . . . . . . 11 ((𝑣𝐴𝑤𝐴 ∧ (¬ 𝑣 (𝑃 𝑄) ∧ ¬ 𝑤 ((𝑃 𝑄) 𝑣))) → ∃𝑟𝐴𝑠𝐴𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)))
67663expa 1118 . . . . . . . . . 10 (((𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑃 𝑄) ∧ ¬ 𝑤 ((𝑃 𝑄) 𝑣))) → ∃𝑟𝐴𝑠𝐴𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)))
6845, 56, 67syl2anc 584 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃𝑄) ∧ 𝑃 (𝑄 𝑢)) → ∃𝑟𝐴𝑠𝐴𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)))
6921, 43jca 511 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) → (𝑢𝐴𝑤𝐴))
7069ad3antrrr 730 . . . . . . . . . . 11 ((((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑢)) ∧ 𝑃 ((𝑄 𝑢) 𝑣)) → (𝑢𝐴𝑤𝐴))
71 simp1 1136 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) → (𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴))
7221, 42jca 511 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) → (𝑢𝐴𝑣𝐴))
738, 48jca 511 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) → (𝑄𝑢 ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣)))
7471, 72, 733jca 1128 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) → ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))))
7574ad3antrrr 730 . . . . . . . . . . . . 13 ((((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑢)) ∧ 𝑃 ((𝑄 𝑢) 𝑣)) → ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))))
76 simpllr 775 . . . . . . . . . . . . 13 ((((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑢)) ∧ 𝑃 ((𝑄 𝑢) 𝑣)) → 𝑃𝑄)
77 simplr 768 . . . . . . . . . . . . 13 ((((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑢)) ∧ 𝑃 ((𝑄 𝑢) 𝑣)) → ¬ 𝑃 (𝑄 𝑢))
78 simpr 484 . . . . . . . . . . . . 13 ((((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑢)) ∧ 𝑃 ((𝑄 𝑢) 𝑣)) → 𝑃 ((𝑄 𝑢) 𝑣))
791, 2, 33dimlem3 39455 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ (𝑃𝑄 ∧ ¬ 𝑃 (𝑄 𝑢) ∧ 𝑃 ((𝑄 𝑢) 𝑣))) → (𝑃𝑄 ∧ ¬ 𝑢 (𝑃 𝑄) ∧ ¬ 𝑤 ((𝑃 𝑄) 𝑢)))
8075, 76, 77, 78, 79syl13anc 1374 . . . . . . . . . . . 12 ((((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑢)) ∧ 𝑃 ((𝑄 𝑢) 𝑣)) → (𝑃𝑄 ∧ ¬ 𝑢 (𝑃 𝑄) ∧ ¬ 𝑤 ((𝑃 𝑄) 𝑢)))
81 3simpc 1150 . . . . . . . . . . . 12 ((𝑃𝑄 ∧ ¬ 𝑢 (𝑃 𝑄) ∧ ¬ 𝑤 ((𝑃 𝑄) 𝑢)) → (¬ 𝑢 (𝑃 𝑄) ∧ ¬ 𝑤 ((𝑃 𝑄) 𝑢)))
8280, 81syl 17 . . . . . . . . . . 11 ((((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑢)) ∧ 𝑃 ((𝑄 𝑢) 𝑣)) → (¬ 𝑢 (𝑃 𝑄) ∧ ¬ 𝑤 ((𝑃 𝑄) 𝑢)))
83 breq1 5110 . . . . . . . . . . . . . . 15 (𝑠 = 𝑤 → (𝑠 ((𝑃 𝑄) 𝑢) ↔ 𝑤 ((𝑃 𝑄) 𝑢)))
8483notbid 318 . . . . . . . . . . . . . 14 (𝑠 = 𝑤 → (¬ 𝑠 ((𝑃 𝑄) 𝑢) ↔ ¬ 𝑤 ((𝑃 𝑄) 𝑢)))
8584anbi2d 630 . . . . . . . . . . . . 13 (𝑠 = 𝑤 → ((¬ 𝑢 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑢)) ↔ (¬ 𝑢 (𝑃 𝑄) ∧ ¬ 𝑤 ((𝑃 𝑄) 𝑢))))
8636, 85rspc2ev 3601 . . . . . . . . . . . 12 ((𝑢𝐴𝑤𝐴 ∧ (¬ 𝑢 (𝑃 𝑄) ∧ ¬ 𝑤 ((𝑃 𝑄) 𝑢))) → ∃𝑟𝐴𝑠𝐴𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)))
87863expa 1118 . . . . . . . . . . 11 (((𝑢𝐴𝑤𝐴) ∧ (¬ 𝑢 (𝑃 𝑄) ∧ ¬ 𝑤 ((𝑃 𝑄) 𝑢))) → ∃𝑟𝐴𝑠𝐴𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)))
8870, 82, 87syl2anc 584 . . . . . . . . . 10 ((((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑢)) ∧ 𝑃 ((𝑄 𝑢) 𝑣)) → ∃𝑟𝐴𝑠𝐴𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)))
8972ad3antrrr 730 . . . . . . . . . . 11 ((((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑢)) ∧ ¬ 𝑃 ((𝑄 𝑢) 𝑣)) → (𝑢𝐴𝑣𝐴))
908, 47jca 511 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) → (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢)))
9171, 72, 903jca 1128 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) → ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢))))
9291ad3antrrr 730 . . . . . . . . . . . . 13 ((((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑢)) ∧ ¬ 𝑃 ((𝑄 𝑢) 𝑣)) → ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢))))
93 simpllr 775 . . . . . . . . . . . . 13 ((((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑢)) ∧ ¬ 𝑃 ((𝑄 𝑢) 𝑣)) → 𝑃𝑄)
94 simplr 768 . . . . . . . . . . . . 13 ((((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑢)) ∧ ¬ 𝑃 ((𝑄 𝑢) 𝑣)) → ¬ 𝑃 (𝑄 𝑢))
95 simpr 484 . . . . . . . . . . . . 13 ((((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑢)) ∧ ¬ 𝑃 ((𝑄 𝑢) 𝑣)) → ¬ 𝑃 ((𝑄 𝑢) 𝑣))
961, 2, 33dimlem4 39458 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢))) ∧ (𝑃𝑄 ∧ ¬ 𝑃 (𝑄 𝑢)) ∧ ¬ 𝑃 ((𝑄 𝑢) 𝑣)) → (𝑃𝑄 ∧ ¬ 𝑢 (𝑃 𝑄) ∧ ¬ 𝑣 ((𝑃 𝑄) 𝑢)))
9792, 93, 94, 95, 96syl121anc 1377 . . . . . . . . . . . 12 ((((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑢)) ∧ ¬ 𝑃 ((𝑄 𝑢) 𝑣)) → (𝑃𝑄 ∧ ¬ 𝑢 (𝑃 𝑄) ∧ ¬ 𝑣 ((𝑃 𝑄) 𝑢)))
98 3simpc 1150 . . . . . . . . . . . 12 ((𝑃𝑄 ∧ ¬ 𝑢 (𝑃 𝑄) ∧ ¬ 𝑣 ((𝑃 𝑄) 𝑢)) → (¬ 𝑢 (𝑃 𝑄) ∧ ¬ 𝑣 ((𝑃 𝑄) 𝑢)))
9997, 98syl 17 . . . . . . . . . . 11 ((((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑢)) ∧ ¬ 𝑃 ((𝑄 𝑢) 𝑣)) → (¬ 𝑢 (𝑃 𝑄) ∧ ¬ 𝑣 ((𝑃 𝑄) 𝑢)))
100403expa 1118 . . . . . . . . . . 11 (((𝑢𝐴𝑣𝐴) ∧ (¬ 𝑢 (𝑃 𝑄) ∧ ¬ 𝑣 ((𝑃 𝑄) 𝑢))) → ∃𝑟𝐴𝑠𝐴𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)))
10189, 99, 100syl2anc 584 . . . . . . . . . 10 ((((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑢)) ∧ ¬ 𝑃 ((𝑄 𝑢) 𝑣)) → ∃𝑟𝐴𝑠𝐴𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)))
10288, 101pm2.61dan 812 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑢)) → ∃𝑟𝐴𝑠𝐴𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)))
10368, 102pm2.61dan 812 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃𝑄) → ∃𝑟𝐴𝑠𝐴𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)))
10441, 103pm2.61dane 3012 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) → ∃𝑟𝐴𝑠𝐴𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)))
1051043exp 1119 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → ((𝑢𝐴𝑣𝐴𝑤𝐴) → ((𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣)) → ∃𝑟𝐴𝑠𝐴𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)))))
1061053expd 1354 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑢𝐴 → (𝑣𝐴 → (𝑤𝐴 → ((𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣)) → ∃𝑟𝐴𝑠𝐴𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)))))))
107106imp32 418 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴)) → (𝑤𝐴 → ((𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣)) → ∃𝑟𝐴𝑠𝐴𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)))))
108107rexlimdv 3132 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴)) → (∃𝑤𝐴 (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣)) → ∃𝑟𝐴𝑠𝐴𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟))))
109108rexlimdvva 3194 . 2 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (∃𝑢𝐴𝑣𝐴𝑤𝐴 (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣)) → ∃𝑟𝐴𝑠𝐴𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟))))
1105, 109mpd 15 1 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → ∃𝑟𝐴𝑠𝐴𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053   class class class wbr 5107  cfv 6511  (class class class)co 7387  lecple 17227  joincjn 18272  Atomscatm 39256  AtLatcal 39257  HLchlt 39343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-proset 18255  df-poset 18274  df-plt 18289  df-lub 18305  df-glb 18306  df-join 18307  df-meet 18308  df-p0 18384  df-p1 18385  df-lat 18391  df-clat 18458  df-oposet 39169  df-ol 39171  df-oml 39172  df-covers 39259  df-ats 39260  df-atl 39291  df-cvlat 39315  df-hlat 39344
This theorem is referenced by:  3dim3  39463  lhp2lt  39995
  Copyright terms: Public domain W3C validator