Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3dim2 Structured version   Visualization version   GIF version

Theorem 3dim2 39450
Description: Construct 2 new layers on top of 2 given atoms. (Contributed by NM, 27-Jul-2012.)
Hypotheses
Ref Expression
3dim0.j = (join‘𝐾)
3dim0.l = (le‘𝐾)
3dim0.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
3dim2 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → ∃𝑟𝐴𝑠𝐴𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)))
Distinct variable groups:   𝑠,𝑟,𝐴   ,𝑟,𝑠   ,𝑟,𝑠   𝑃,𝑟,𝑠   𝑄,𝑟,𝑠
Allowed substitution hints:   𝐾(𝑠,𝑟)

Proof of Theorem 3dim2
Dummy variables 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3dim0.j . . . 4 = (join‘𝐾)
2 3dim0.l . . . 4 = (le‘𝐾)
3 3dim0.a . . . 4 𝐴 = (Atoms‘𝐾)
41, 2, 33dim1 39449 . . 3 ((𝐾 ∈ HL ∧ 𝑄𝐴) → ∃𝑢𝐴𝑣𝐴𝑤𝐴 (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣)))
543adant2 1131 . 2 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → ∃𝑢𝐴𝑣𝐴𝑤𝐴 (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣)))
6 simpl21 1252 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃 = 𝑄) → 𝑢𝐴)
7 simpl22 1253 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃 = 𝑄) → 𝑣𝐴)
8 simp31 1210 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) → 𝑄𝑢)
98necomd 2980 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) → 𝑢𝑄)
109adantr 480 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃 = 𝑄) → 𝑢𝑄)
11 oveq1 7360 . . . . . . . . . . . . . 14 (𝑃 = 𝑄 → (𝑃 𝑄) = (𝑄 𝑄))
12 simp11 1204 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) → 𝐾 ∈ HL)
13 simp13 1206 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) → 𝑄𝐴)
141, 3hlatjidm 39350 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ 𝑄𝐴) → (𝑄 𝑄) = 𝑄)
1512, 13, 14syl2anc 584 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) → (𝑄 𝑄) = 𝑄)
1611, 15sylan9eqr 2786 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃 = 𝑄) → (𝑃 𝑄) = 𝑄)
1716breq2d 5107 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃 = 𝑄) → (𝑢 (𝑃 𝑄) ↔ 𝑢 𝑄))
1817notbid 318 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃 = 𝑄) → (¬ 𝑢 (𝑃 𝑄) ↔ ¬ 𝑢 𝑄))
19 hlatl 39341 . . . . . . . . . . . . . 14 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
2012, 19syl 17 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) → 𝐾 ∈ AtLat)
21 simp21 1207 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) → 𝑢𝐴)
222, 3atncmp 39293 . . . . . . . . . . . . 13 ((𝐾 ∈ AtLat ∧ 𝑢𝐴𝑄𝐴) → (¬ 𝑢 𝑄𝑢𝑄))
2320, 21, 13, 22syl3anc 1373 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) → (¬ 𝑢 𝑄𝑢𝑄))
2423adantr 480 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃 = 𝑄) → (¬ 𝑢 𝑄𝑢𝑄))
2518, 24bitrd 279 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃 = 𝑄) → (¬ 𝑢 (𝑃 𝑄) ↔ 𝑢𝑄))
2610, 25mpbird 257 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃 = 𝑄) → ¬ 𝑢 (𝑃 𝑄))
27 simpl32 1256 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃 = 𝑄) → ¬ 𝑣 (𝑄 𝑢))
2816oveq1d 7368 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃 = 𝑄) → ((𝑃 𝑄) 𝑢) = (𝑄 𝑢))
2928breq2d 5107 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃 = 𝑄) → (𝑣 ((𝑃 𝑄) 𝑢) ↔ 𝑣 (𝑄 𝑢)))
3027, 29mtbird 325 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃 = 𝑄) → ¬ 𝑣 ((𝑃 𝑄) 𝑢))
31 breq1 5098 . . . . . . . . . . . 12 (𝑟 = 𝑢 → (𝑟 (𝑃 𝑄) ↔ 𝑢 (𝑃 𝑄)))
3231notbid 318 . . . . . . . . . . 11 (𝑟 = 𝑢 → (¬ 𝑟 (𝑃 𝑄) ↔ ¬ 𝑢 (𝑃 𝑄)))
33 oveq2 7361 . . . . . . . . . . . . 13 (𝑟 = 𝑢 → ((𝑃 𝑄) 𝑟) = ((𝑃 𝑄) 𝑢))
3433breq2d 5107 . . . . . . . . . . . 12 (𝑟 = 𝑢 → (𝑠 ((𝑃 𝑄) 𝑟) ↔ 𝑠 ((𝑃 𝑄) 𝑢)))
3534notbid 318 . . . . . . . . . . 11 (𝑟 = 𝑢 → (¬ 𝑠 ((𝑃 𝑄) 𝑟) ↔ ¬ 𝑠 ((𝑃 𝑄) 𝑢)))
3632, 35anbi12d 632 . . . . . . . . . 10 (𝑟 = 𝑢 → ((¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ↔ (¬ 𝑢 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑢))))
37 breq1 5098 . . . . . . . . . . . 12 (𝑠 = 𝑣 → (𝑠 ((𝑃 𝑄) 𝑢) ↔ 𝑣 ((𝑃 𝑄) 𝑢)))
3837notbid 318 . . . . . . . . . . 11 (𝑠 = 𝑣 → (¬ 𝑠 ((𝑃 𝑄) 𝑢) ↔ ¬ 𝑣 ((𝑃 𝑄) 𝑢)))
3938anbi2d 630 . . . . . . . . . 10 (𝑠 = 𝑣 → ((¬ 𝑢 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑢)) ↔ (¬ 𝑢 (𝑃 𝑄) ∧ ¬ 𝑣 ((𝑃 𝑄) 𝑢))))
4036, 39rspc2ev 3592 . . . . . . . . 9 ((𝑢𝐴𝑣𝐴 ∧ (¬ 𝑢 (𝑃 𝑄) ∧ ¬ 𝑣 ((𝑃 𝑄) 𝑢))) → ∃𝑟𝐴𝑠𝐴𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)))
416, 7, 26, 30, 40syl112anc 1376 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃 = 𝑄) → ∃𝑟𝐴𝑠𝐴𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)))
42 simp22 1208 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) → 𝑣𝐴)
43 simp23 1209 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) → 𝑤𝐴)
4442, 43jca 511 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) → (𝑣𝐴𝑤𝐴))
4544ad2antrr 726 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃𝑄) ∧ 𝑃 (𝑄 𝑢)) → (𝑣𝐴𝑤𝐴))
46 simpll1 1213 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃𝑄) ∧ 𝑃 (𝑄 𝑢)) → (𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴))
47 simp32 1211 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) → ¬ 𝑣 (𝑄 𝑢))
48 simp33 1212 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) → ¬ 𝑤 ((𝑄 𝑢) 𝑣))
4921, 47, 483jca 1128 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) → (𝑢𝐴 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣)))
5049ad2antrr 726 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃𝑄) ∧ 𝑃 (𝑄 𝑢)) → (𝑢𝐴 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣)))
51 simplr 768 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃𝑄) ∧ 𝑃 (𝑄 𝑢)) → 𝑃𝑄)
52 simpr 484 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃𝑄) ∧ 𝑃 (𝑄 𝑢)) → 𝑃 (𝑄 𝑢))
531, 2, 33dimlem2 39441 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣)) ∧ (𝑃𝑄𝑃 (𝑄 𝑢))) → (𝑃𝑄 ∧ ¬ 𝑣 (𝑃 𝑄) ∧ ¬ 𝑤 ((𝑃 𝑄) 𝑣)))
5446, 50, 51, 52, 53syl112anc 1376 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃𝑄) ∧ 𝑃 (𝑄 𝑢)) → (𝑃𝑄 ∧ ¬ 𝑣 (𝑃 𝑄) ∧ ¬ 𝑤 ((𝑃 𝑄) 𝑣)))
55 3simpc 1150 . . . . . . . . . . 11 ((𝑃𝑄 ∧ ¬ 𝑣 (𝑃 𝑄) ∧ ¬ 𝑤 ((𝑃 𝑄) 𝑣)) → (¬ 𝑣 (𝑃 𝑄) ∧ ¬ 𝑤 ((𝑃 𝑄) 𝑣)))
5654, 55syl 17 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃𝑄) ∧ 𝑃 (𝑄 𝑢)) → (¬ 𝑣 (𝑃 𝑄) ∧ ¬ 𝑤 ((𝑃 𝑄) 𝑣)))
57 breq1 5098 . . . . . . . . . . . . . 14 (𝑟 = 𝑣 → (𝑟 (𝑃 𝑄) ↔ 𝑣 (𝑃 𝑄)))
5857notbid 318 . . . . . . . . . . . . 13 (𝑟 = 𝑣 → (¬ 𝑟 (𝑃 𝑄) ↔ ¬ 𝑣 (𝑃 𝑄)))
59 oveq2 7361 . . . . . . . . . . . . . . 15 (𝑟 = 𝑣 → ((𝑃 𝑄) 𝑟) = ((𝑃 𝑄) 𝑣))
6059breq2d 5107 . . . . . . . . . . . . . 14 (𝑟 = 𝑣 → (𝑠 ((𝑃 𝑄) 𝑟) ↔ 𝑠 ((𝑃 𝑄) 𝑣)))
6160notbid 318 . . . . . . . . . . . . 13 (𝑟 = 𝑣 → (¬ 𝑠 ((𝑃 𝑄) 𝑟) ↔ ¬ 𝑠 ((𝑃 𝑄) 𝑣)))
6258, 61anbi12d 632 . . . . . . . . . . . 12 (𝑟 = 𝑣 → ((¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ↔ (¬ 𝑣 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑣))))
63 breq1 5098 . . . . . . . . . . . . . 14 (𝑠 = 𝑤 → (𝑠 ((𝑃 𝑄) 𝑣) ↔ 𝑤 ((𝑃 𝑄) 𝑣)))
6463notbid 318 . . . . . . . . . . . . 13 (𝑠 = 𝑤 → (¬ 𝑠 ((𝑃 𝑄) 𝑣) ↔ ¬ 𝑤 ((𝑃 𝑄) 𝑣)))
6564anbi2d 630 . . . . . . . . . . . 12 (𝑠 = 𝑤 → ((¬ 𝑣 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑣)) ↔ (¬ 𝑣 (𝑃 𝑄) ∧ ¬ 𝑤 ((𝑃 𝑄) 𝑣))))
6662, 65rspc2ev 3592 . . . . . . . . . . 11 ((𝑣𝐴𝑤𝐴 ∧ (¬ 𝑣 (𝑃 𝑄) ∧ ¬ 𝑤 ((𝑃 𝑄) 𝑣))) → ∃𝑟𝐴𝑠𝐴𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)))
67663expa 1118 . . . . . . . . . 10 (((𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑃 𝑄) ∧ ¬ 𝑤 ((𝑃 𝑄) 𝑣))) → ∃𝑟𝐴𝑠𝐴𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)))
6845, 56, 67syl2anc 584 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃𝑄) ∧ 𝑃 (𝑄 𝑢)) → ∃𝑟𝐴𝑠𝐴𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)))
6921, 43jca 511 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) → (𝑢𝐴𝑤𝐴))
7069ad3antrrr 730 . . . . . . . . . . 11 ((((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑢)) ∧ 𝑃 ((𝑄 𝑢) 𝑣)) → (𝑢𝐴𝑤𝐴))
71 simp1 1136 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) → (𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴))
7221, 42jca 511 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) → (𝑢𝐴𝑣𝐴))
738, 48jca 511 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) → (𝑄𝑢 ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣)))
7471, 72, 733jca 1128 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) → ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))))
7574ad3antrrr 730 . . . . . . . . . . . . 13 ((((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑢)) ∧ 𝑃 ((𝑄 𝑢) 𝑣)) → ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))))
76 simpllr 775 . . . . . . . . . . . . 13 ((((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑢)) ∧ 𝑃 ((𝑄 𝑢) 𝑣)) → 𝑃𝑄)
77 simplr 768 . . . . . . . . . . . . 13 ((((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑢)) ∧ 𝑃 ((𝑄 𝑢) 𝑣)) → ¬ 𝑃 (𝑄 𝑢))
78 simpr 484 . . . . . . . . . . . . 13 ((((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑢)) ∧ 𝑃 ((𝑄 𝑢) 𝑣)) → 𝑃 ((𝑄 𝑢) 𝑣))
791, 2, 33dimlem3 39443 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ (𝑃𝑄 ∧ ¬ 𝑃 (𝑄 𝑢) ∧ 𝑃 ((𝑄 𝑢) 𝑣))) → (𝑃𝑄 ∧ ¬ 𝑢 (𝑃 𝑄) ∧ ¬ 𝑤 ((𝑃 𝑄) 𝑢)))
8075, 76, 77, 78, 79syl13anc 1374 . . . . . . . . . . . 12 ((((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑢)) ∧ 𝑃 ((𝑄 𝑢) 𝑣)) → (𝑃𝑄 ∧ ¬ 𝑢 (𝑃 𝑄) ∧ ¬ 𝑤 ((𝑃 𝑄) 𝑢)))
81 3simpc 1150 . . . . . . . . . . . 12 ((𝑃𝑄 ∧ ¬ 𝑢 (𝑃 𝑄) ∧ ¬ 𝑤 ((𝑃 𝑄) 𝑢)) → (¬ 𝑢 (𝑃 𝑄) ∧ ¬ 𝑤 ((𝑃 𝑄) 𝑢)))
8280, 81syl 17 . . . . . . . . . . 11 ((((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑢)) ∧ 𝑃 ((𝑄 𝑢) 𝑣)) → (¬ 𝑢 (𝑃 𝑄) ∧ ¬ 𝑤 ((𝑃 𝑄) 𝑢)))
83 breq1 5098 . . . . . . . . . . . . . . 15 (𝑠 = 𝑤 → (𝑠 ((𝑃 𝑄) 𝑢) ↔ 𝑤 ((𝑃 𝑄) 𝑢)))
8483notbid 318 . . . . . . . . . . . . . 14 (𝑠 = 𝑤 → (¬ 𝑠 ((𝑃 𝑄) 𝑢) ↔ ¬ 𝑤 ((𝑃 𝑄) 𝑢)))
8584anbi2d 630 . . . . . . . . . . . . 13 (𝑠 = 𝑤 → ((¬ 𝑢 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑢)) ↔ (¬ 𝑢 (𝑃 𝑄) ∧ ¬ 𝑤 ((𝑃 𝑄) 𝑢))))
8636, 85rspc2ev 3592 . . . . . . . . . . . 12 ((𝑢𝐴𝑤𝐴 ∧ (¬ 𝑢 (𝑃 𝑄) ∧ ¬ 𝑤 ((𝑃 𝑄) 𝑢))) → ∃𝑟𝐴𝑠𝐴𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)))
87863expa 1118 . . . . . . . . . . 11 (((𝑢𝐴𝑤𝐴) ∧ (¬ 𝑢 (𝑃 𝑄) ∧ ¬ 𝑤 ((𝑃 𝑄) 𝑢))) → ∃𝑟𝐴𝑠𝐴𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)))
8870, 82, 87syl2anc 584 . . . . . . . . . 10 ((((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑢)) ∧ 𝑃 ((𝑄 𝑢) 𝑣)) → ∃𝑟𝐴𝑠𝐴𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)))
8972ad3antrrr 730 . . . . . . . . . . 11 ((((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑢)) ∧ ¬ 𝑃 ((𝑄 𝑢) 𝑣)) → (𝑢𝐴𝑣𝐴))
908, 47jca 511 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) → (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢)))
9171, 72, 903jca 1128 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) → ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢))))
9291ad3antrrr 730 . . . . . . . . . . . . 13 ((((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑢)) ∧ ¬ 𝑃 ((𝑄 𝑢) 𝑣)) → ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢))))
93 simpllr 775 . . . . . . . . . . . . 13 ((((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑢)) ∧ ¬ 𝑃 ((𝑄 𝑢) 𝑣)) → 𝑃𝑄)
94 simplr 768 . . . . . . . . . . . . 13 ((((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑢)) ∧ ¬ 𝑃 ((𝑄 𝑢) 𝑣)) → ¬ 𝑃 (𝑄 𝑢))
95 simpr 484 . . . . . . . . . . . . 13 ((((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑢)) ∧ ¬ 𝑃 ((𝑄 𝑢) 𝑣)) → ¬ 𝑃 ((𝑄 𝑢) 𝑣))
961, 2, 33dimlem4 39446 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢))) ∧ (𝑃𝑄 ∧ ¬ 𝑃 (𝑄 𝑢)) ∧ ¬ 𝑃 ((𝑄 𝑢) 𝑣)) → (𝑃𝑄 ∧ ¬ 𝑢 (𝑃 𝑄) ∧ ¬ 𝑣 ((𝑃 𝑄) 𝑢)))
9792, 93, 94, 95, 96syl121anc 1377 . . . . . . . . . . . 12 ((((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑢)) ∧ ¬ 𝑃 ((𝑄 𝑢) 𝑣)) → (𝑃𝑄 ∧ ¬ 𝑢 (𝑃 𝑄) ∧ ¬ 𝑣 ((𝑃 𝑄) 𝑢)))
98 3simpc 1150 . . . . . . . . . . . 12 ((𝑃𝑄 ∧ ¬ 𝑢 (𝑃 𝑄) ∧ ¬ 𝑣 ((𝑃 𝑄) 𝑢)) → (¬ 𝑢 (𝑃 𝑄) ∧ ¬ 𝑣 ((𝑃 𝑄) 𝑢)))
9997, 98syl 17 . . . . . . . . . . 11 ((((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑢)) ∧ ¬ 𝑃 ((𝑄 𝑢) 𝑣)) → (¬ 𝑢 (𝑃 𝑄) ∧ ¬ 𝑣 ((𝑃 𝑄) 𝑢)))
100403expa 1118 . . . . . . . . . . 11 (((𝑢𝐴𝑣𝐴) ∧ (¬ 𝑢 (𝑃 𝑄) ∧ ¬ 𝑣 ((𝑃 𝑄) 𝑢))) → ∃𝑟𝐴𝑠𝐴𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)))
10189, 99, 100syl2anc 584 . . . . . . . . . 10 ((((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑢)) ∧ ¬ 𝑃 ((𝑄 𝑢) 𝑣)) → ∃𝑟𝐴𝑠𝐴𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)))
10288, 101pm2.61dan 812 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑢)) → ∃𝑟𝐴𝑠𝐴𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)))
10368, 102pm2.61dan 812 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃𝑄) → ∃𝑟𝐴𝑠𝐴𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)))
10441, 103pm2.61dane 3012 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) → ∃𝑟𝐴𝑠𝐴𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)))
1051043exp 1119 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → ((𝑢𝐴𝑣𝐴𝑤𝐴) → ((𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣)) → ∃𝑟𝐴𝑠𝐴𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)))))
1061053expd 1354 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑢𝐴 → (𝑣𝐴 → (𝑤𝐴 → ((𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣)) → ∃𝑟𝐴𝑠𝐴𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)))))))
107106imp32 418 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴)) → (𝑤𝐴 → ((𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣)) → ∃𝑟𝐴𝑠𝐴𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)))))
108107rexlimdv 3128 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴)) → (∃𝑤𝐴 (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣)) → ∃𝑟𝐴𝑠𝐴𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟))))
109108rexlimdvva 3186 . 2 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (∃𝑢𝐴𝑣𝐴𝑤𝐴 (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣)) → ∃𝑟𝐴𝑠𝐴𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟))))
1105, 109mpd 15 1 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → ∃𝑟𝐴𝑠𝐴𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053   class class class wbr 5095  cfv 6486  (class class class)co 7353  lecple 17186  joincjn 18235  Atomscatm 39244  AtLatcal 39245  HLchlt 39331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-proset 18218  df-poset 18237  df-plt 18252  df-lub 18268  df-glb 18269  df-join 18270  df-meet 18271  df-p0 18347  df-p1 18348  df-lat 18356  df-clat 18423  df-oposet 39157  df-ol 39159  df-oml 39160  df-covers 39247  df-ats 39248  df-atl 39279  df-cvlat 39303  df-hlat 39332
This theorem is referenced by:  3dim3  39451  lhp2lt  39983
  Copyright terms: Public domain W3C validator