| Step | Hyp | Ref
| Expression |
| 1 | | 3dim0.j |
. . . 4
⊢ ∨ =
(join‘𝐾) |
| 2 | | 3dim0.l |
. . . 4
⊢ ≤ =
(le‘𝐾) |
| 3 | | 3dim0.a |
. . . 4
⊢ 𝐴 = (Atoms‘𝐾) |
| 4 | 1, 2, 3 | 3dim1 39469 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴) → ∃𝑢 ∈ 𝐴 ∃𝑣 ∈ 𝐴 ∃𝑤 ∈ 𝐴 (𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑄 ∨ 𝑢) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑢) ∨ 𝑣))) |
| 5 | 4 | 3adant2 1132 |
. 2
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → ∃𝑢 ∈ 𝐴 ∃𝑣 ∈ 𝐴 ∃𝑤 ∈ 𝐴 (𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑄 ∨ 𝑢) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑢) ∨ 𝑣))) |
| 6 | | simpl21 1252 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑄 ∨ 𝑢) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑢) ∨ 𝑣))) ∧ 𝑃 = 𝑄) → 𝑢 ∈ 𝐴) |
| 7 | | simpl22 1253 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑄 ∨ 𝑢) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑢) ∨ 𝑣))) ∧ 𝑃 = 𝑄) → 𝑣 ∈ 𝐴) |
| 8 | | simp31 1210 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑄 ∨ 𝑢) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑢) ∨ 𝑣))) → 𝑄 ≠ 𝑢) |
| 9 | 8 | necomd 2996 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑄 ∨ 𝑢) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑢) ∨ 𝑣))) → 𝑢 ≠ 𝑄) |
| 10 | 9 | adantr 480 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑄 ∨ 𝑢) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑢) ∨ 𝑣))) ∧ 𝑃 = 𝑄) → 𝑢 ≠ 𝑄) |
| 11 | | oveq1 7438 |
. . . . . . . . . . . . . 14
⊢ (𝑃 = 𝑄 → (𝑃 ∨ 𝑄) = (𝑄 ∨ 𝑄)) |
| 12 | | simp11 1204 |
. . . . . . . . . . . . . . 15
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑄 ∨ 𝑢) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑢) ∨ 𝑣))) → 𝐾 ∈ HL) |
| 13 | | simp13 1206 |
. . . . . . . . . . . . . . 15
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑄 ∨ 𝑢) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑢) ∨ 𝑣))) → 𝑄 ∈ 𝐴) |
| 14 | 1, 3 | hlatjidm 39370 |
. . . . . . . . . . . . . . 15
⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴) → (𝑄 ∨ 𝑄) = 𝑄) |
| 15 | 12, 13, 14 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑄 ∨ 𝑢) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑢) ∨ 𝑣))) → (𝑄 ∨ 𝑄) = 𝑄) |
| 16 | 11, 15 | sylan9eqr 2799 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑄 ∨ 𝑢) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑢) ∨ 𝑣))) ∧ 𝑃 = 𝑄) → (𝑃 ∨ 𝑄) = 𝑄) |
| 17 | 16 | breq2d 5155 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑄 ∨ 𝑢) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑢) ∨ 𝑣))) ∧ 𝑃 = 𝑄) → (𝑢 ≤ (𝑃 ∨ 𝑄) ↔ 𝑢 ≤ 𝑄)) |
| 18 | 17 | notbid 318 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑄 ∨ 𝑢) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑢) ∨ 𝑣))) ∧ 𝑃 = 𝑄) → (¬ 𝑢 ≤ (𝑃 ∨ 𝑄) ↔ ¬ 𝑢 ≤ 𝑄)) |
| 19 | | hlatl 39361 |
. . . . . . . . . . . . . 14
⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) |
| 20 | 12, 19 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑄 ∨ 𝑢) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑢) ∨ 𝑣))) → 𝐾 ∈ AtLat) |
| 21 | | simp21 1207 |
. . . . . . . . . . . . 13
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑄 ∨ 𝑢) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑢) ∨ 𝑣))) → 𝑢 ∈ 𝐴) |
| 22 | 2, 3 | atncmp 39313 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ AtLat ∧ 𝑢 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (¬ 𝑢 ≤ 𝑄 ↔ 𝑢 ≠ 𝑄)) |
| 23 | 20, 21, 13, 22 | syl3anc 1373 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑄 ∨ 𝑢) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑢) ∨ 𝑣))) → (¬ 𝑢 ≤ 𝑄 ↔ 𝑢 ≠ 𝑄)) |
| 24 | 23 | adantr 480 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑄 ∨ 𝑢) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑢) ∨ 𝑣))) ∧ 𝑃 = 𝑄) → (¬ 𝑢 ≤ 𝑄 ↔ 𝑢 ≠ 𝑄)) |
| 25 | 18, 24 | bitrd 279 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑄 ∨ 𝑢) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑢) ∨ 𝑣))) ∧ 𝑃 = 𝑄) → (¬ 𝑢 ≤ (𝑃 ∨ 𝑄) ↔ 𝑢 ≠ 𝑄)) |
| 26 | 10, 25 | mpbird 257 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑄 ∨ 𝑢) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑢) ∨ 𝑣))) ∧ 𝑃 = 𝑄) → ¬ 𝑢 ≤ (𝑃 ∨ 𝑄)) |
| 27 | | simpl32 1256 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑄 ∨ 𝑢) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑢) ∨ 𝑣))) ∧ 𝑃 = 𝑄) → ¬ 𝑣 ≤ (𝑄 ∨ 𝑢)) |
| 28 | 16 | oveq1d 7446 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑄 ∨ 𝑢) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑢) ∨ 𝑣))) ∧ 𝑃 = 𝑄) → ((𝑃 ∨ 𝑄) ∨ 𝑢) = (𝑄 ∨ 𝑢)) |
| 29 | 28 | breq2d 5155 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑄 ∨ 𝑢) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑢) ∨ 𝑣))) ∧ 𝑃 = 𝑄) → (𝑣 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑢) ↔ 𝑣 ≤ (𝑄 ∨ 𝑢))) |
| 30 | 27, 29 | mtbird 325 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑄 ∨ 𝑢) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑢) ∨ 𝑣))) ∧ 𝑃 = 𝑄) → ¬ 𝑣 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑢)) |
| 31 | | breq1 5146 |
. . . . . . . . . . . 12
⊢ (𝑟 = 𝑢 → (𝑟 ≤ (𝑃 ∨ 𝑄) ↔ 𝑢 ≤ (𝑃 ∨ 𝑄))) |
| 32 | 31 | notbid 318 |
. . . . . . . . . . 11
⊢ (𝑟 = 𝑢 → (¬ 𝑟 ≤ (𝑃 ∨ 𝑄) ↔ ¬ 𝑢 ≤ (𝑃 ∨ 𝑄))) |
| 33 | | oveq2 7439 |
. . . . . . . . . . . . 13
⊢ (𝑟 = 𝑢 → ((𝑃 ∨ 𝑄) ∨ 𝑟) = ((𝑃 ∨ 𝑄) ∨ 𝑢)) |
| 34 | 33 | breq2d 5155 |
. . . . . . . . . . . 12
⊢ (𝑟 = 𝑢 → (𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑟) ↔ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑢))) |
| 35 | 34 | notbid 318 |
. . . . . . . . . . 11
⊢ (𝑟 = 𝑢 → (¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑟) ↔ ¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑢))) |
| 36 | 32, 35 | anbi12d 632 |
. . . . . . . . . 10
⊢ (𝑟 = 𝑢 → ((¬ 𝑟 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑟)) ↔ (¬ 𝑢 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑢)))) |
| 37 | | breq1 5146 |
. . . . . . . . . . . 12
⊢ (𝑠 = 𝑣 → (𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑢) ↔ 𝑣 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑢))) |
| 38 | 37 | notbid 318 |
. . . . . . . . . . 11
⊢ (𝑠 = 𝑣 → (¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑢) ↔ ¬ 𝑣 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑢))) |
| 39 | 38 | anbi2d 630 |
. . . . . . . . . 10
⊢ (𝑠 = 𝑣 → ((¬ 𝑢 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑢)) ↔ (¬ 𝑢 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑣 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑢)))) |
| 40 | 36, 39 | rspc2ev 3635 |
. . . . . . . . 9
⊢ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ (¬ 𝑢 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑣 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑢))) → ∃𝑟 ∈ 𝐴 ∃𝑠 ∈ 𝐴 (¬ 𝑟 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑟))) |
| 41 | 6, 7, 26, 30, 40 | syl112anc 1376 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑄 ∨ 𝑢) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑢) ∨ 𝑣))) ∧ 𝑃 = 𝑄) → ∃𝑟 ∈ 𝐴 ∃𝑠 ∈ 𝐴 (¬ 𝑟 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑟))) |
| 42 | | simp22 1208 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑄 ∨ 𝑢) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑢) ∨ 𝑣))) → 𝑣 ∈ 𝐴) |
| 43 | | simp23 1209 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑄 ∨ 𝑢) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑢) ∨ 𝑣))) → 𝑤 ∈ 𝐴) |
| 44 | 42, 43 | jca 511 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑄 ∨ 𝑢) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑢) ∨ 𝑣))) → (𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) |
| 45 | 44 | ad2antrr 726 |
. . . . . . . . . 10
⊢
(((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑄 ∨ 𝑢) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑢) ∨ 𝑣))) ∧ 𝑃 ≠ 𝑄) ∧ 𝑃 ≤ (𝑄 ∨ 𝑢)) → (𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) |
| 46 | | simpll1 1213 |
. . . . . . . . . . . 12
⊢
(((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑄 ∨ 𝑢) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑢) ∨ 𝑣))) ∧ 𝑃 ≠ 𝑄) ∧ 𝑃 ≤ (𝑄 ∨ 𝑢)) → (𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) |
| 47 | | simp32 1211 |
. . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑄 ∨ 𝑢) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑢) ∨ 𝑣))) → ¬ 𝑣 ≤ (𝑄 ∨ 𝑢)) |
| 48 | | simp33 1212 |
. . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑄 ∨ 𝑢) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑢) ∨ 𝑣))) → ¬ 𝑤 ≤ ((𝑄 ∨ 𝑢) ∨ 𝑣)) |
| 49 | 21, 47, 48 | 3jca 1129 |
. . . . . . . . . . . . 13
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑄 ∨ 𝑢) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑢) ∨ 𝑣))) → (𝑢 ∈ 𝐴 ∧ ¬ 𝑣 ≤ (𝑄 ∨ 𝑢) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑢) ∨ 𝑣))) |
| 50 | 49 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢
(((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑄 ∨ 𝑢) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑢) ∨ 𝑣))) ∧ 𝑃 ≠ 𝑄) ∧ 𝑃 ≤ (𝑄 ∨ 𝑢)) → (𝑢 ∈ 𝐴 ∧ ¬ 𝑣 ≤ (𝑄 ∨ 𝑢) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑢) ∨ 𝑣))) |
| 51 | | simplr 769 |
. . . . . . . . . . . 12
⊢
(((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑄 ∨ 𝑢) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑢) ∨ 𝑣))) ∧ 𝑃 ≠ 𝑄) ∧ 𝑃 ≤ (𝑄 ∨ 𝑢)) → 𝑃 ≠ 𝑄) |
| 52 | | simpr 484 |
. . . . . . . . . . . 12
⊢
(((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑄 ∨ 𝑢) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑢) ∨ 𝑣))) ∧ 𝑃 ≠ 𝑄) ∧ 𝑃 ≤ (𝑄 ∨ 𝑢)) → 𝑃 ≤ (𝑄 ∨ 𝑢)) |
| 53 | 1, 2, 3 | 3dimlem2 39461 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑢 ∈ 𝐴 ∧ ¬ 𝑣 ≤ (𝑄 ∨ 𝑢) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑢) ∨ 𝑣)) ∧ (𝑃 ≠ 𝑄 ∧ 𝑃 ≤ (𝑄 ∨ 𝑢))) → (𝑃 ≠ 𝑄 ∧ ¬ 𝑣 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑤 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑣))) |
| 54 | 46, 50, 51, 52, 53 | syl112anc 1376 |
. . . . . . . . . . 11
⊢
(((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑄 ∨ 𝑢) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑢) ∨ 𝑣))) ∧ 𝑃 ≠ 𝑄) ∧ 𝑃 ≤ (𝑄 ∨ 𝑢)) → (𝑃 ≠ 𝑄 ∧ ¬ 𝑣 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑤 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑣))) |
| 55 | | 3simpc 1151 |
. . . . . . . . . . 11
⊢ ((𝑃 ≠ 𝑄 ∧ ¬ 𝑣 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑤 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑣)) → (¬ 𝑣 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑤 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑣))) |
| 56 | 54, 55 | syl 17 |
. . . . . . . . . 10
⊢
(((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑄 ∨ 𝑢) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑢) ∨ 𝑣))) ∧ 𝑃 ≠ 𝑄) ∧ 𝑃 ≤ (𝑄 ∨ 𝑢)) → (¬ 𝑣 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑤 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑣))) |
| 57 | | breq1 5146 |
. . . . . . . . . . . . . 14
⊢ (𝑟 = 𝑣 → (𝑟 ≤ (𝑃 ∨ 𝑄) ↔ 𝑣 ≤ (𝑃 ∨ 𝑄))) |
| 58 | 57 | notbid 318 |
. . . . . . . . . . . . 13
⊢ (𝑟 = 𝑣 → (¬ 𝑟 ≤ (𝑃 ∨ 𝑄) ↔ ¬ 𝑣 ≤ (𝑃 ∨ 𝑄))) |
| 59 | | oveq2 7439 |
. . . . . . . . . . . . . . 15
⊢ (𝑟 = 𝑣 → ((𝑃 ∨ 𝑄) ∨ 𝑟) = ((𝑃 ∨ 𝑄) ∨ 𝑣)) |
| 60 | 59 | breq2d 5155 |
. . . . . . . . . . . . . 14
⊢ (𝑟 = 𝑣 → (𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑟) ↔ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑣))) |
| 61 | 60 | notbid 318 |
. . . . . . . . . . . . 13
⊢ (𝑟 = 𝑣 → (¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑟) ↔ ¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑣))) |
| 62 | 58, 61 | anbi12d 632 |
. . . . . . . . . . . 12
⊢ (𝑟 = 𝑣 → ((¬ 𝑟 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑟)) ↔ (¬ 𝑣 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑣)))) |
| 63 | | breq1 5146 |
. . . . . . . . . . . . . 14
⊢ (𝑠 = 𝑤 → (𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑣) ↔ 𝑤 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑣))) |
| 64 | 63 | notbid 318 |
. . . . . . . . . . . . 13
⊢ (𝑠 = 𝑤 → (¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑣) ↔ ¬ 𝑤 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑣))) |
| 65 | 64 | anbi2d 630 |
. . . . . . . . . . . 12
⊢ (𝑠 = 𝑤 → ((¬ 𝑣 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑣)) ↔ (¬ 𝑣 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑤 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑣)))) |
| 66 | 62, 65 | rspc2ev 3635 |
. . . . . . . . . . 11
⊢ ((𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ∧ (¬ 𝑣 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑤 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑣))) → ∃𝑟 ∈ 𝐴 ∃𝑠 ∈ 𝐴 (¬ 𝑟 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑟))) |
| 67 | 66 | 3expa 1119 |
. . . . . . . . . 10
⊢ (((𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (¬ 𝑣 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑤 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑣))) → ∃𝑟 ∈ 𝐴 ∃𝑠 ∈ 𝐴 (¬ 𝑟 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑟))) |
| 68 | 45, 56, 67 | syl2anc 584 |
. . . . . . . . 9
⊢
(((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑄 ∨ 𝑢) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑢) ∨ 𝑣))) ∧ 𝑃 ≠ 𝑄) ∧ 𝑃 ≤ (𝑄 ∨ 𝑢)) → ∃𝑟 ∈ 𝐴 ∃𝑠 ∈ 𝐴 (¬ 𝑟 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑟))) |
| 69 | 21, 43 | jca 511 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑄 ∨ 𝑢) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑢) ∨ 𝑣))) → (𝑢 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) |
| 70 | 69 | ad3antrrr 730 |
. . . . . . . . . . 11
⊢
((((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑄 ∨ 𝑢) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑢) ∨ 𝑣))) ∧ 𝑃 ≠ 𝑄) ∧ ¬ 𝑃 ≤ (𝑄 ∨ 𝑢)) ∧ 𝑃 ≤ ((𝑄 ∨ 𝑢) ∨ 𝑣)) → (𝑢 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) |
| 71 | | simp1 1137 |
. . . . . . . . . . . . . . 15
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑄 ∨ 𝑢) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑢) ∨ 𝑣))) → (𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) |
| 72 | 21, 42 | jca 511 |
. . . . . . . . . . . . . . 15
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑄 ∨ 𝑢) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑢) ∨ 𝑣))) → (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) |
| 73 | 8, 48 | jca 511 |
. . . . . . . . . . . . . . 15
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑄 ∨ 𝑢) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑢) ∨ 𝑣))) → (𝑄 ≠ 𝑢 ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑢) ∨ 𝑣))) |
| 74 | 71, 72, 73 | 3jca 1129 |
. . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑄 ∨ 𝑢) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑢) ∨ 𝑣))) → ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ (𝑄 ≠ 𝑢 ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑢) ∨ 𝑣)))) |
| 75 | 74 | ad3antrrr 730 |
. . . . . . . . . . . . 13
⊢
((((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑄 ∨ 𝑢) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑢) ∨ 𝑣))) ∧ 𝑃 ≠ 𝑄) ∧ ¬ 𝑃 ≤ (𝑄 ∨ 𝑢)) ∧ 𝑃 ≤ ((𝑄 ∨ 𝑢) ∨ 𝑣)) → ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ (𝑄 ≠ 𝑢 ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑢) ∨ 𝑣)))) |
| 76 | | simpllr 776 |
. . . . . . . . . . . . 13
⊢
((((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑄 ∨ 𝑢) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑢) ∨ 𝑣))) ∧ 𝑃 ≠ 𝑄) ∧ ¬ 𝑃 ≤ (𝑄 ∨ 𝑢)) ∧ 𝑃 ≤ ((𝑄 ∨ 𝑢) ∨ 𝑣)) → 𝑃 ≠ 𝑄) |
| 77 | | simplr 769 |
. . . . . . . . . . . . 13
⊢
((((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑄 ∨ 𝑢) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑢) ∨ 𝑣))) ∧ 𝑃 ≠ 𝑄) ∧ ¬ 𝑃 ≤ (𝑄 ∨ 𝑢)) ∧ 𝑃 ≤ ((𝑄 ∨ 𝑢) ∨ 𝑣)) → ¬ 𝑃 ≤ (𝑄 ∨ 𝑢)) |
| 78 | | simpr 484 |
. . . . . . . . . . . . 13
⊢
((((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑄 ∨ 𝑢) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑢) ∨ 𝑣))) ∧ 𝑃 ≠ 𝑄) ∧ ¬ 𝑃 ≤ (𝑄 ∨ 𝑢)) ∧ 𝑃 ≤ ((𝑄 ∨ 𝑢) ∨ 𝑣)) → 𝑃 ≤ ((𝑄 ∨ 𝑢) ∨ 𝑣)) |
| 79 | 1, 2, 3 | 3dimlem3 39463 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ (𝑄 ≠ 𝑢 ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑢) ∨ 𝑣))) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑃 ≤ (𝑄 ∨ 𝑢) ∧ 𝑃 ≤ ((𝑄 ∨ 𝑢) ∨ 𝑣))) → (𝑃 ≠ 𝑄 ∧ ¬ 𝑢 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑤 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑢))) |
| 80 | 75, 76, 77, 78, 79 | syl13anc 1374 |
. . . . . . . . . . . 12
⊢
((((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑄 ∨ 𝑢) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑢) ∨ 𝑣))) ∧ 𝑃 ≠ 𝑄) ∧ ¬ 𝑃 ≤ (𝑄 ∨ 𝑢)) ∧ 𝑃 ≤ ((𝑄 ∨ 𝑢) ∨ 𝑣)) → (𝑃 ≠ 𝑄 ∧ ¬ 𝑢 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑤 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑢))) |
| 81 | | 3simpc 1151 |
. . . . . . . . . . . 12
⊢ ((𝑃 ≠ 𝑄 ∧ ¬ 𝑢 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑤 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑢)) → (¬ 𝑢 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑤 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑢))) |
| 82 | 80, 81 | syl 17 |
. . . . . . . . . . 11
⊢
((((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑄 ∨ 𝑢) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑢) ∨ 𝑣))) ∧ 𝑃 ≠ 𝑄) ∧ ¬ 𝑃 ≤ (𝑄 ∨ 𝑢)) ∧ 𝑃 ≤ ((𝑄 ∨ 𝑢) ∨ 𝑣)) → (¬ 𝑢 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑤 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑢))) |
| 83 | | breq1 5146 |
. . . . . . . . . . . . . . 15
⊢ (𝑠 = 𝑤 → (𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑢) ↔ 𝑤 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑢))) |
| 84 | 83 | notbid 318 |
. . . . . . . . . . . . . 14
⊢ (𝑠 = 𝑤 → (¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑢) ↔ ¬ 𝑤 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑢))) |
| 85 | 84 | anbi2d 630 |
. . . . . . . . . . . . 13
⊢ (𝑠 = 𝑤 → ((¬ 𝑢 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑢)) ↔ (¬ 𝑢 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑤 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑢)))) |
| 86 | 36, 85 | rspc2ev 3635 |
. . . . . . . . . . . 12
⊢ ((𝑢 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ∧ (¬ 𝑢 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑤 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑢))) → ∃𝑟 ∈ 𝐴 ∃𝑠 ∈ 𝐴 (¬ 𝑟 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑟))) |
| 87 | 86 | 3expa 1119 |
. . . . . . . . . . 11
⊢ (((𝑢 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (¬ 𝑢 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑤 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑢))) → ∃𝑟 ∈ 𝐴 ∃𝑠 ∈ 𝐴 (¬ 𝑟 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑟))) |
| 88 | 70, 82, 87 | syl2anc 584 |
. . . . . . . . . 10
⊢
((((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑄 ∨ 𝑢) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑢) ∨ 𝑣))) ∧ 𝑃 ≠ 𝑄) ∧ ¬ 𝑃 ≤ (𝑄 ∨ 𝑢)) ∧ 𝑃 ≤ ((𝑄 ∨ 𝑢) ∨ 𝑣)) → ∃𝑟 ∈ 𝐴 ∃𝑠 ∈ 𝐴 (¬ 𝑟 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑟))) |
| 89 | 72 | ad3antrrr 730 |
. . . . . . . . . . 11
⊢
((((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑄 ∨ 𝑢) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑢) ∨ 𝑣))) ∧ 𝑃 ≠ 𝑄) ∧ ¬ 𝑃 ≤ (𝑄 ∨ 𝑢)) ∧ ¬ 𝑃 ≤ ((𝑄 ∨ 𝑢) ∨ 𝑣)) → (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) |
| 90 | 8, 47 | jca 511 |
. . . . . . . . . . . . . . 15
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑄 ∨ 𝑢) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑢) ∨ 𝑣))) → (𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑄 ∨ 𝑢))) |
| 91 | 71, 72, 90 | 3jca 1129 |
. . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑄 ∨ 𝑢) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑢) ∨ 𝑣))) → ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ (𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑄 ∨ 𝑢)))) |
| 92 | 91 | ad3antrrr 730 |
. . . . . . . . . . . . 13
⊢
((((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑄 ∨ 𝑢) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑢) ∨ 𝑣))) ∧ 𝑃 ≠ 𝑄) ∧ ¬ 𝑃 ≤ (𝑄 ∨ 𝑢)) ∧ ¬ 𝑃 ≤ ((𝑄 ∨ 𝑢) ∨ 𝑣)) → ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ (𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑄 ∨ 𝑢)))) |
| 93 | | simpllr 776 |
. . . . . . . . . . . . 13
⊢
((((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑄 ∨ 𝑢) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑢) ∨ 𝑣))) ∧ 𝑃 ≠ 𝑄) ∧ ¬ 𝑃 ≤ (𝑄 ∨ 𝑢)) ∧ ¬ 𝑃 ≤ ((𝑄 ∨ 𝑢) ∨ 𝑣)) → 𝑃 ≠ 𝑄) |
| 94 | | simplr 769 |
. . . . . . . . . . . . 13
⊢
((((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑄 ∨ 𝑢) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑢) ∨ 𝑣))) ∧ 𝑃 ≠ 𝑄) ∧ ¬ 𝑃 ≤ (𝑄 ∨ 𝑢)) ∧ ¬ 𝑃 ≤ ((𝑄 ∨ 𝑢) ∨ 𝑣)) → ¬ 𝑃 ≤ (𝑄 ∨ 𝑢)) |
| 95 | | simpr 484 |
. . . . . . . . . . . . 13
⊢
((((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑄 ∨ 𝑢) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑢) ∨ 𝑣))) ∧ 𝑃 ≠ 𝑄) ∧ ¬ 𝑃 ≤ (𝑄 ∨ 𝑢)) ∧ ¬ 𝑃 ≤ ((𝑄 ∨ 𝑢) ∨ 𝑣)) → ¬ 𝑃 ≤ ((𝑄 ∨ 𝑢) ∨ 𝑣)) |
| 96 | 1, 2, 3 | 3dimlem4 39466 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ (𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑄 ∨ 𝑢))) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑃 ≤ (𝑄 ∨ 𝑢)) ∧ ¬ 𝑃 ≤ ((𝑄 ∨ 𝑢) ∨ 𝑣)) → (𝑃 ≠ 𝑄 ∧ ¬ 𝑢 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑣 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑢))) |
| 97 | 92, 93, 94, 95, 96 | syl121anc 1377 |
. . . . . . . . . . . 12
⊢
((((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑄 ∨ 𝑢) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑢) ∨ 𝑣))) ∧ 𝑃 ≠ 𝑄) ∧ ¬ 𝑃 ≤ (𝑄 ∨ 𝑢)) ∧ ¬ 𝑃 ≤ ((𝑄 ∨ 𝑢) ∨ 𝑣)) → (𝑃 ≠ 𝑄 ∧ ¬ 𝑢 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑣 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑢))) |
| 98 | | 3simpc 1151 |
. . . . . . . . . . . 12
⊢ ((𝑃 ≠ 𝑄 ∧ ¬ 𝑢 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑣 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑢)) → (¬ 𝑢 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑣 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑢))) |
| 99 | 97, 98 | syl 17 |
. . . . . . . . . . 11
⊢
((((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑄 ∨ 𝑢) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑢) ∨ 𝑣))) ∧ 𝑃 ≠ 𝑄) ∧ ¬ 𝑃 ≤ (𝑄 ∨ 𝑢)) ∧ ¬ 𝑃 ≤ ((𝑄 ∨ 𝑢) ∨ 𝑣)) → (¬ 𝑢 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑣 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑢))) |
| 100 | 40 | 3expa 1119 |
. . . . . . . . . . 11
⊢ (((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ (¬ 𝑢 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑣 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑢))) → ∃𝑟 ∈ 𝐴 ∃𝑠 ∈ 𝐴 (¬ 𝑟 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑟))) |
| 101 | 89, 99, 100 | syl2anc 584 |
. . . . . . . . . 10
⊢
((((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑄 ∨ 𝑢) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑢) ∨ 𝑣))) ∧ 𝑃 ≠ 𝑄) ∧ ¬ 𝑃 ≤ (𝑄 ∨ 𝑢)) ∧ ¬ 𝑃 ≤ ((𝑄 ∨ 𝑢) ∨ 𝑣)) → ∃𝑟 ∈ 𝐴 ∃𝑠 ∈ 𝐴 (¬ 𝑟 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑟))) |
| 102 | 88, 101 | pm2.61dan 813 |
. . . . . . . . 9
⊢
(((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑄 ∨ 𝑢) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑢) ∨ 𝑣))) ∧ 𝑃 ≠ 𝑄) ∧ ¬ 𝑃 ≤ (𝑄 ∨ 𝑢)) → ∃𝑟 ∈ 𝐴 ∃𝑠 ∈ 𝐴 (¬ 𝑟 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑟))) |
| 103 | 68, 102 | pm2.61dan 813 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑄 ∨ 𝑢) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑢) ∨ 𝑣))) ∧ 𝑃 ≠ 𝑄) → ∃𝑟 ∈ 𝐴 ∃𝑠 ∈ 𝐴 (¬ 𝑟 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑟))) |
| 104 | 41, 103 | pm2.61dane 3029 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑄 ∨ 𝑢) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑢) ∨ 𝑣))) → ∃𝑟 ∈ 𝐴 ∃𝑠 ∈ 𝐴 (¬ 𝑟 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑟))) |
| 105 | 104 | 3exp 1120 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) → ((𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑄 ∨ 𝑢) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑢) ∨ 𝑣)) → ∃𝑟 ∈ 𝐴 ∃𝑠 ∈ 𝐴 (¬ 𝑟 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑟))))) |
| 106 | 105 | 3expd 1354 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑢 ∈ 𝐴 → (𝑣 ∈ 𝐴 → (𝑤 ∈ 𝐴 → ((𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑄 ∨ 𝑢) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑢) ∨ 𝑣)) → ∃𝑟 ∈ 𝐴 ∃𝑠 ∈ 𝐴 (¬ 𝑟 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑟))))))) |
| 107 | 106 | imp32 418 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑤 ∈ 𝐴 → ((𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑄 ∨ 𝑢) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑢) ∨ 𝑣)) → ∃𝑟 ∈ 𝐴 ∃𝑠 ∈ 𝐴 (¬ 𝑟 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑟))))) |
| 108 | 107 | rexlimdv 3153 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (∃𝑤 ∈ 𝐴 (𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑄 ∨ 𝑢) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑢) ∨ 𝑣)) → ∃𝑟 ∈ 𝐴 ∃𝑠 ∈ 𝐴 (¬ 𝑟 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑟)))) |
| 109 | 108 | rexlimdvva 3213 |
. 2
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (∃𝑢 ∈ 𝐴 ∃𝑣 ∈ 𝐴 ∃𝑤 ∈ 𝐴 (𝑄 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑄 ∨ 𝑢) ∧ ¬ 𝑤 ≤ ((𝑄 ∨ 𝑢) ∨ 𝑣)) → ∃𝑟 ∈ 𝐴 ∃𝑠 ∈ 𝐴 (¬ 𝑟 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑟)))) |
| 110 | 5, 109 | mpd 15 |
1
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → ∃𝑟 ∈ 𝐴 ∃𝑠 ∈ 𝐴 (¬ 𝑟 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑟))) |