Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3dim2 Structured version   Visualization version   GIF version

Theorem 3dim2 36757
Description: Construct 2 new layers on top of 2 given atoms. (Contributed by NM, 27-Jul-2012.)
Hypotheses
Ref Expression
3dim0.j = (join‘𝐾)
3dim0.l = (le‘𝐾)
3dim0.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
3dim2 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → ∃𝑟𝐴𝑠𝐴𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)))
Distinct variable groups:   𝑠,𝑟,𝐴   ,𝑟,𝑠   ,𝑟,𝑠   𝑃,𝑟,𝑠   𝑄,𝑟,𝑠
Allowed substitution hints:   𝐾(𝑠,𝑟)

Proof of Theorem 3dim2
Dummy variables 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3dim0.j . . . 4 = (join‘𝐾)
2 3dim0.l . . . 4 = (le‘𝐾)
3 3dim0.a . . . 4 𝐴 = (Atoms‘𝐾)
41, 2, 33dim1 36756 . . 3 ((𝐾 ∈ HL ∧ 𝑄𝐴) → ∃𝑢𝐴𝑣𝐴𝑤𝐴 (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣)))
543adant2 1128 . 2 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → ∃𝑢𝐴𝑣𝐴𝑤𝐴 (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣)))
6 simpl21 1248 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃 = 𝑄) → 𝑢𝐴)
7 simpl22 1249 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃 = 𝑄) → 𝑣𝐴)
8 simp31 1206 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) → 𝑄𝑢)
98necomd 3045 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) → 𝑢𝑄)
109adantr 484 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃 = 𝑄) → 𝑢𝑄)
11 oveq1 7146 . . . . . . . . . . . . . 14 (𝑃 = 𝑄 → (𝑃 𝑄) = (𝑄 𝑄))
12 simp11 1200 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) → 𝐾 ∈ HL)
13 simp13 1202 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) → 𝑄𝐴)
141, 3hlatjidm 36658 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ 𝑄𝐴) → (𝑄 𝑄) = 𝑄)
1512, 13, 14syl2anc 587 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) → (𝑄 𝑄) = 𝑄)
1611, 15sylan9eqr 2858 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃 = 𝑄) → (𝑃 𝑄) = 𝑄)
1716breq2d 5045 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃 = 𝑄) → (𝑢 (𝑃 𝑄) ↔ 𝑢 𝑄))
1817notbid 321 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃 = 𝑄) → (¬ 𝑢 (𝑃 𝑄) ↔ ¬ 𝑢 𝑄))
19 hlatl 36649 . . . . . . . . . . . . . 14 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
2012, 19syl 17 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) → 𝐾 ∈ AtLat)
21 simp21 1203 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) → 𝑢𝐴)
222, 3atncmp 36601 . . . . . . . . . . . . 13 ((𝐾 ∈ AtLat ∧ 𝑢𝐴𝑄𝐴) → (¬ 𝑢 𝑄𝑢𝑄))
2320, 21, 13, 22syl3anc 1368 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) → (¬ 𝑢 𝑄𝑢𝑄))
2423adantr 484 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃 = 𝑄) → (¬ 𝑢 𝑄𝑢𝑄))
2518, 24bitrd 282 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃 = 𝑄) → (¬ 𝑢 (𝑃 𝑄) ↔ 𝑢𝑄))
2610, 25mpbird 260 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃 = 𝑄) → ¬ 𝑢 (𝑃 𝑄))
27 simpl32 1252 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃 = 𝑄) → ¬ 𝑣 (𝑄 𝑢))
2816oveq1d 7154 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃 = 𝑄) → ((𝑃 𝑄) 𝑢) = (𝑄 𝑢))
2928breq2d 5045 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃 = 𝑄) → (𝑣 ((𝑃 𝑄) 𝑢) ↔ 𝑣 (𝑄 𝑢)))
3027, 29mtbird 328 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃 = 𝑄) → ¬ 𝑣 ((𝑃 𝑄) 𝑢))
31 breq1 5036 . . . . . . . . . . . 12 (𝑟 = 𝑢 → (𝑟 (𝑃 𝑄) ↔ 𝑢 (𝑃 𝑄)))
3231notbid 321 . . . . . . . . . . 11 (𝑟 = 𝑢 → (¬ 𝑟 (𝑃 𝑄) ↔ ¬ 𝑢 (𝑃 𝑄)))
33 oveq2 7147 . . . . . . . . . . . . 13 (𝑟 = 𝑢 → ((𝑃 𝑄) 𝑟) = ((𝑃 𝑄) 𝑢))
3433breq2d 5045 . . . . . . . . . . . 12 (𝑟 = 𝑢 → (𝑠 ((𝑃 𝑄) 𝑟) ↔ 𝑠 ((𝑃 𝑄) 𝑢)))
3534notbid 321 . . . . . . . . . . 11 (𝑟 = 𝑢 → (¬ 𝑠 ((𝑃 𝑄) 𝑟) ↔ ¬ 𝑠 ((𝑃 𝑄) 𝑢)))
3632, 35anbi12d 633 . . . . . . . . . 10 (𝑟 = 𝑢 → ((¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ↔ (¬ 𝑢 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑢))))
37 breq1 5036 . . . . . . . . . . . 12 (𝑠 = 𝑣 → (𝑠 ((𝑃 𝑄) 𝑢) ↔ 𝑣 ((𝑃 𝑄) 𝑢)))
3837notbid 321 . . . . . . . . . . 11 (𝑠 = 𝑣 → (¬ 𝑠 ((𝑃 𝑄) 𝑢) ↔ ¬ 𝑣 ((𝑃 𝑄) 𝑢)))
3938anbi2d 631 . . . . . . . . . 10 (𝑠 = 𝑣 → ((¬ 𝑢 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑢)) ↔ (¬ 𝑢 (𝑃 𝑄) ∧ ¬ 𝑣 ((𝑃 𝑄) 𝑢))))
4036, 39rspc2ev 3586 . . . . . . . . 9 ((𝑢𝐴𝑣𝐴 ∧ (¬ 𝑢 (𝑃 𝑄) ∧ ¬ 𝑣 ((𝑃 𝑄) 𝑢))) → ∃𝑟𝐴𝑠𝐴𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)))
416, 7, 26, 30, 40syl112anc 1371 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃 = 𝑄) → ∃𝑟𝐴𝑠𝐴𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)))
42 simp22 1204 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) → 𝑣𝐴)
43 simp23 1205 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) → 𝑤𝐴)
4442, 43jca 515 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) → (𝑣𝐴𝑤𝐴))
4544ad2antrr 725 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃𝑄) ∧ 𝑃 (𝑄 𝑢)) → (𝑣𝐴𝑤𝐴))
46 simpll1 1209 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃𝑄) ∧ 𝑃 (𝑄 𝑢)) → (𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴))
47 simp32 1207 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) → ¬ 𝑣 (𝑄 𝑢))
48 simp33 1208 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) → ¬ 𝑤 ((𝑄 𝑢) 𝑣))
4921, 47, 483jca 1125 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) → (𝑢𝐴 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣)))
5049ad2antrr 725 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃𝑄) ∧ 𝑃 (𝑄 𝑢)) → (𝑢𝐴 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣)))
51 simplr 768 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃𝑄) ∧ 𝑃 (𝑄 𝑢)) → 𝑃𝑄)
52 simpr 488 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃𝑄) ∧ 𝑃 (𝑄 𝑢)) → 𝑃 (𝑄 𝑢))
531, 2, 33dimlem2 36748 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣)) ∧ (𝑃𝑄𝑃 (𝑄 𝑢))) → (𝑃𝑄 ∧ ¬ 𝑣 (𝑃 𝑄) ∧ ¬ 𝑤 ((𝑃 𝑄) 𝑣)))
5446, 50, 51, 52, 53syl112anc 1371 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃𝑄) ∧ 𝑃 (𝑄 𝑢)) → (𝑃𝑄 ∧ ¬ 𝑣 (𝑃 𝑄) ∧ ¬ 𝑤 ((𝑃 𝑄) 𝑣)))
55 3simpc 1147 . . . . . . . . . . 11 ((𝑃𝑄 ∧ ¬ 𝑣 (𝑃 𝑄) ∧ ¬ 𝑤 ((𝑃 𝑄) 𝑣)) → (¬ 𝑣 (𝑃 𝑄) ∧ ¬ 𝑤 ((𝑃 𝑄) 𝑣)))
5654, 55syl 17 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃𝑄) ∧ 𝑃 (𝑄 𝑢)) → (¬ 𝑣 (𝑃 𝑄) ∧ ¬ 𝑤 ((𝑃 𝑄) 𝑣)))
57 breq1 5036 . . . . . . . . . . . . . 14 (𝑟 = 𝑣 → (𝑟 (𝑃 𝑄) ↔ 𝑣 (𝑃 𝑄)))
5857notbid 321 . . . . . . . . . . . . 13 (𝑟 = 𝑣 → (¬ 𝑟 (𝑃 𝑄) ↔ ¬ 𝑣 (𝑃 𝑄)))
59 oveq2 7147 . . . . . . . . . . . . . . 15 (𝑟 = 𝑣 → ((𝑃 𝑄) 𝑟) = ((𝑃 𝑄) 𝑣))
6059breq2d 5045 . . . . . . . . . . . . . 14 (𝑟 = 𝑣 → (𝑠 ((𝑃 𝑄) 𝑟) ↔ 𝑠 ((𝑃 𝑄) 𝑣)))
6160notbid 321 . . . . . . . . . . . . 13 (𝑟 = 𝑣 → (¬ 𝑠 ((𝑃 𝑄) 𝑟) ↔ ¬ 𝑠 ((𝑃 𝑄) 𝑣)))
6258, 61anbi12d 633 . . . . . . . . . . . 12 (𝑟 = 𝑣 → ((¬ 𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)) ↔ (¬ 𝑣 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑣))))
63 breq1 5036 . . . . . . . . . . . . . 14 (𝑠 = 𝑤 → (𝑠 ((𝑃 𝑄) 𝑣) ↔ 𝑤 ((𝑃 𝑄) 𝑣)))
6463notbid 321 . . . . . . . . . . . . 13 (𝑠 = 𝑤 → (¬ 𝑠 ((𝑃 𝑄) 𝑣) ↔ ¬ 𝑤 ((𝑃 𝑄) 𝑣)))
6564anbi2d 631 . . . . . . . . . . . 12 (𝑠 = 𝑤 → ((¬ 𝑣 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑣)) ↔ (¬ 𝑣 (𝑃 𝑄) ∧ ¬ 𝑤 ((𝑃 𝑄) 𝑣))))
6662, 65rspc2ev 3586 . . . . . . . . . . 11 ((𝑣𝐴𝑤𝐴 ∧ (¬ 𝑣 (𝑃 𝑄) ∧ ¬ 𝑤 ((𝑃 𝑄) 𝑣))) → ∃𝑟𝐴𝑠𝐴𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)))
67663expa 1115 . . . . . . . . . 10 (((𝑣𝐴𝑤𝐴) ∧ (¬ 𝑣 (𝑃 𝑄) ∧ ¬ 𝑤 ((𝑃 𝑄) 𝑣))) → ∃𝑟𝐴𝑠𝐴𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)))
6845, 56, 67syl2anc 587 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃𝑄) ∧ 𝑃 (𝑄 𝑢)) → ∃𝑟𝐴𝑠𝐴𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)))
6921, 43jca 515 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) → (𝑢𝐴𝑤𝐴))
7069ad3antrrr 729 . . . . . . . . . . 11 ((((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑢)) ∧ 𝑃 ((𝑄 𝑢) 𝑣)) → (𝑢𝐴𝑤𝐴))
71 simp1 1133 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) → (𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴))
7221, 42jca 515 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) → (𝑢𝐴𝑣𝐴))
738, 48jca 515 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) → (𝑄𝑢 ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣)))
7471, 72, 733jca 1125 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) → ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))))
7574ad3antrrr 729 . . . . . . . . . . . . 13 ((((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑢)) ∧ 𝑃 ((𝑄 𝑢) 𝑣)) → ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))))
76 simpllr 775 . . . . . . . . . . . . 13 ((((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑢)) ∧ 𝑃 ((𝑄 𝑢) 𝑣)) → 𝑃𝑄)
77 simplr 768 . . . . . . . . . . . . 13 ((((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑢)) ∧ 𝑃 ((𝑄 𝑢) 𝑣)) → ¬ 𝑃 (𝑄 𝑢))
78 simpr 488 . . . . . . . . . . . . 13 ((((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑢)) ∧ 𝑃 ((𝑄 𝑢) 𝑣)) → 𝑃 ((𝑄 𝑢) 𝑣))
791, 2, 33dimlem3 36750 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ (𝑃𝑄 ∧ ¬ 𝑃 (𝑄 𝑢) ∧ 𝑃 ((𝑄 𝑢) 𝑣))) → (𝑃𝑄 ∧ ¬ 𝑢 (𝑃 𝑄) ∧ ¬ 𝑤 ((𝑃 𝑄) 𝑢)))
8075, 76, 77, 78, 79syl13anc 1369 . . . . . . . . . . . 12 ((((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑢)) ∧ 𝑃 ((𝑄 𝑢) 𝑣)) → (𝑃𝑄 ∧ ¬ 𝑢 (𝑃 𝑄) ∧ ¬ 𝑤 ((𝑃 𝑄) 𝑢)))
81 3simpc 1147 . . . . . . . . . . . 12 ((𝑃𝑄 ∧ ¬ 𝑢 (𝑃 𝑄) ∧ ¬ 𝑤 ((𝑃 𝑄) 𝑢)) → (¬ 𝑢 (𝑃 𝑄) ∧ ¬ 𝑤 ((𝑃 𝑄) 𝑢)))
8280, 81syl 17 . . . . . . . . . . 11 ((((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑢)) ∧ 𝑃 ((𝑄 𝑢) 𝑣)) → (¬ 𝑢 (𝑃 𝑄) ∧ ¬ 𝑤 ((𝑃 𝑄) 𝑢)))
83 breq1 5036 . . . . . . . . . . . . . . 15 (𝑠 = 𝑤 → (𝑠 ((𝑃 𝑄) 𝑢) ↔ 𝑤 ((𝑃 𝑄) 𝑢)))
8483notbid 321 . . . . . . . . . . . . . 14 (𝑠 = 𝑤 → (¬ 𝑠 ((𝑃 𝑄) 𝑢) ↔ ¬ 𝑤 ((𝑃 𝑄) 𝑢)))
8584anbi2d 631 . . . . . . . . . . . . 13 (𝑠 = 𝑤 → ((¬ 𝑢 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑢)) ↔ (¬ 𝑢 (𝑃 𝑄) ∧ ¬ 𝑤 ((𝑃 𝑄) 𝑢))))
8636, 85rspc2ev 3586 . . . . . . . . . . . 12 ((𝑢𝐴𝑤𝐴 ∧ (¬ 𝑢 (𝑃 𝑄) ∧ ¬ 𝑤 ((𝑃 𝑄) 𝑢))) → ∃𝑟𝐴𝑠𝐴𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)))
87863expa 1115 . . . . . . . . . . 11 (((𝑢𝐴𝑤𝐴) ∧ (¬ 𝑢 (𝑃 𝑄) ∧ ¬ 𝑤 ((𝑃 𝑄) 𝑢))) → ∃𝑟𝐴𝑠𝐴𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)))
8870, 82, 87syl2anc 587 . . . . . . . . . 10 ((((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑢)) ∧ 𝑃 ((𝑄 𝑢) 𝑣)) → ∃𝑟𝐴𝑠𝐴𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)))
8972ad3antrrr 729 . . . . . . . . . . 11 ((((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑢)) ∧ ¬ 𝑃 ((𝑄 𝑢) 𝑣)) → (𝑢𝐴𝑣𝐴))
908, 47jca 515 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) → (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢)))
9171, 72, 903jca 1125 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) → ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢))))
9291ad3antrrr 729 . . . . . . . . . . . . 13 ((((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑢)) ∧ ¬ 𝑃 ((𝑄 𝑢) 𝑣)) → ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢))))
93 simpllr 775 . . . . . . . . . . . . 13 ((((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑢)) ∧ ¬ 𝑃 ((𝑄 𝑢) 𝑣)) → 𝑃𝑄)
94 simplr 768 . . . . . . . . . . . . 13 ((((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑢)) ∧ ¬ 𝑃 ((𝑄 𝑢) 𝑣)) → ¬ 𝑃 (𝑄 𝑢))
95 simpr 488 . . . . . . . . . . . . 13 ((((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑢)) ∧ ¬ 𝑃 ((𝑄 𝑢) 𝑣)) → ¬ 𝑃 ((𝑄 𝑢) 𝑣))
961, 2, 33dimlem4 36753 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢))) ∧ (𝑃𝑄 ∧ ¬ 𝑃 (𝑄 𝑢)) ∧ ¬ 𝑃 ((𝑄 𝑢) 𝑣)) → (𝑃𝑄 ∧ ¬ 𝑢 (𝑃 𝑄) ∧ ¬ 𝑣 ((𝑃 𝑄) 𝑢)))
9792, 93, 94, 95, 96syl121anc 1372 . . . . . . . . . . . 12 ((((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑢)) ∧ ¬ 𝑃 ((𝑄 𝑢) 𝑣)) → (𝑃𝑄 ∧ ¬ 𝑢 (𝑃 𝑄) ∧ ¬ 𝑣 ((𝑃 𝑄) 𝑢)))
98 3simpc 1147 . . . . . . . . . . . 12 ((𝑃𝑄 ∧ ¬ 𝑢 (𝑃 𝑄) ∧ ¬ 𝑣 ((𝑃 𝑄) 𝑢)) → (¬ 𝑢 (𝑃 𝑄) ∧ ¬ 𝑣 ((𝑃 𝑄) 𝑢)))
9997, 98syl 17 . . . . . . . . . . 11 ((((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑢)) ∧ ¬ 𝑃 ((𝑄 𝑢) 𝑣)) → (¬ 𝑢 (𝑃 𝑄) ∧ ¬ 𝑣 ((𝑃 𝑄) 𝑢)))
100403expa 1115 . . . . . . . . . . 11 (((𝑢𝐴𝑣𝐴) ∧ (¬ 𝑢 (𝑃 𝑄) ∧ ¬ 𝑣 ((𝑃 𝑄) 𝑢))) → ∃𝑟𝐴𝑠𝐴𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)))
10189, 99, 100syl2anc 587 . . . . . . . . . 10 ((((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑢)) ∧ ¬ 𝑃 ((𝑄 𝑢) 𝑣)) → ∃𝑟𝐴𝑠𝐴𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)))
10288, 101pm2.61dan 812 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃𝑄) ∧ ¬ 𝑃 (𝑄 𝑢)) → ∃𝑟𝐴𝑠𝐴𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)))
10368, 102pm2.61dan 812 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) ∧ 𝑃𝑄) → ∃𝑟𝐴𝑠𝐴𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)))
10441, 103pm2.61dane 3077 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣))) → ∃𝑟𝐴𝑠𝐴𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)))
1051043exp 1116 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → ((𝑢𝐴𝑣𝐴𝑤𝐴) → ((𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣)) → ∃𝑟𝐴𝑠𝐴𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)))))
1061053expd 1350 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑢𝐴 → (𝑣𝐴 → (𝑤𝐴 → ((𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣)) → ∃𝑟𝐴𝑠𝐴𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)))))))
107106imp32 422 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴)) → (𝑤𝐴 → ((𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣)) → ∃𝑟𝐴𝑠𝐴𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)))))
108107rexlimdv 3245 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑢𝐴𝑣𝐴)) → (∃𝑤𝐴 (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣)) → ∃𝑟𝐴𝑠𝐴𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟))))
109108rexlimdvva 3256 . 2 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (∃𝑢𝐴𝑣𝐴𝑤𝐴 (𝑄𝑢 ∧ ¬ 𝑣 (𝑄 𝑢) ∧ ¬ 𝑤 ((𝑄 𝑢) 𝑣)) → ∃𝑟𝐴𝑠𝐴𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟))))
1105, 109mpd 15 1 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → ∃𝑟𝐴𝑠𝐴𝑟 (𝑃 𝑄) ∧ ¬ 𝑠 ((𝑃 𝑄) 𝑟)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2112  wne 2990  wrex 3110   class class class wbr 5033  cfv 6328  (class class class)co 7139  lecple 16567  joincjn 17549  Atomscatm 36552  AtLatcal 36553  HLchlt 36639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-proset 17533  df-poset 17551  df-plt 17563  df-lub 17579  df-glb 17580  df-join 17581  df-meet 17582  df-p0 17644  df-p1 17645  df-lat 17651  df-clat 17713  df-oposet 36465  df-ol 36467  df-oml 36468  df-covers 36555  df-ats 36556  df-atl 36587  df-cvlat 36611  df-hlat 36640
This theorem is referenced by:  3dim3  36758  lhp2lt  37290
  Copyright terms: Public domain W3C validator