![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lclkrlem2y | Structured version Visualization version GIF version |
Description: Lemma for lclkr 40708. Restate the hypotheses for πΈ and πΊ to say their kernels are closed, in order to eliminate the generating vectors π and π. (Contributed by NM, 18-Jan-2015.) |
Ref | Expression |
---|---|
lclkrlem2y.l | β’ πΏ = (LKerβπ) |
lclkrlem2y.h | β’ π» = (LHypβπΎ) |
lclkrlem2y.o | β’ β₯ = ((ocHβπΎ)βπ) |
lclkrlem2y.u | β’ π = ((DVecHβπΎ)βπ) |
lclkrlem2y.f | β’ πΉ = (LFnlβπ) |
lclkrlem2y.d | β’ π· = (LDualβπ) |
lclkrlem2y.p | β’ + = (+gβπ·) |
lclkrlem2y.k | β’ (π β (πΎ β HL β§ π β π»)) |
lclkrlem2y.e | β’ (π β πΈ β πΉ) |
lclkrlem2y.g | β’ (π β πΊ β πΉ) |
lclkrlem2y.le | β’ (π β ( β₯ β( β₯ β(πΏβπΈ))) = (πΏβπΈ)) |
lclkrlem2y.lg | β’ (π β ( β₯ β( β₯ β(πΏβπΊ))) = (πΏβπΊ)) |
Ref | Expression |
---|---|
lclkrlem2y | β’ (π β ( β₯ β( β₯ β(πΏβ(πΈ + πΊ)))) = (πΏβ(πΈ + πΊ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lclkrlem2y.lg | . . 3 β’ (π β ( β₯ β( β₯ β(πΏβπΊ))) = (πΏβπΊ)) | |
2 | lclkrlem2y.h | . . . 4 β’ π» = (LHypβπΎ) | |
3 | lclkrlem2y.o | . . . 4 β’ β₯ = ((ocHβπΎ)βπ) | |
4 | lclkrlem2y.u | . . . 4 β’ π = ((DVecHβπΎ)βπ) | |
5 | eqid 2731 | . . . 4 β’ (Baseβπ) = (Baseβπ) | |
6 | lclkrlem2y.f | . . . 4 β’ πΉ = (LFnlβπ) | |
7 | lclkrlem2y.l | . . . 4 β’ πΏ = (LKerβπ) | |
8 | lclkrlem2y.k | . . . 4 β’ (π β (πΎ β HL β§ π β π»)) | |
9 | lclkrlem2y.g | . . . 4 β’ (π β πΊ β πΉ) | |
10 | 2, 3, 4, 5, 6, 7, 8, 9 | lcfl8a 40678 | . . 3 β’ (π β (( β₯ β( β₯ β(πΏβπΊ))) = (πΏβπΊ) β βπ¦ β (Baseβπ)(πΏβπΊ) = ( β₯ β{π¦}))) |
11 | 1, 10 | mpbid 231 | . 2 β’ (π β βπ¦ β (Baseβπ)(πΏβπΊ) = ( β₯ β{π¦})) |
12 | lclkrlem2y.le | . . . . 5 β’ (π β ( β₯ β( β₯ β(πΏβπΈ))) = (πΏβπΈ)) | |
13 | lclkrlem2y.e | . . . . . 6 β’ (π β πΈ β πΉ) | |
14 | 2, 3, 4, 5, 6, 7, 8, 13 | lcfl8a 40678 | . . . . 5 β’ (π β (( β₯ β( β₯ β(πΏβπΈ))) = (πΏβπΈ) β βπ₯ β (Baseβπ)(πΏβπΈ) = ( β₯ β{π₯}))) |
15 | 12, 14 | mpbid 231 | . . . 4 β’ (π β βπ₯ β (Baseβπ)(πΏβπΈ) = ( β₯ β{π₯})) |
16 | lclkrlem2y.d | . . . . . . . 8 β’ π· = (LDualβπ) | |
17 | lclkrlem2y.p | . . . . . . . 8 β’ + = (+gβπ·) | |
18 | 8 | 3ad2ant1 1132 | . . . . . . . 8 β’ ((π β§ (π₯ β (Baseβπ) β§ (πΏβπΈ) = ( β₯ β{π₯}) β§ π¦ β (Baseβπ)) β§ (πΏβπΊ) = ( β₯ β{π¦})) β (πΎ β HL β§ π β π»)) |
19 | simp21 1205 | . . . . . . . 8 β’ ((π β§ (π₯ β (Baseβπ) β§ (πΏβπΈ) = ( β₯ β{π₯}) β§ π¦ β (Baseβπ)) β§ (πΏβπΊ) = ( β₯ β{π¦})) β π₯ β (Baseβπ)) | |
20 | simp23 1207 | . . . . . . . 8 β’ ((π β§ (π₯ β (Baseβπ) β§ (πΏβπΈ) = ( β₯ β{π₯}) β§ π¦ β (Baseβπ)) β§ (πΏβπΊ) = ( β₯ β{π¦})) β π¦ β (Baseβπ)) | |
21 | 13 | 3ad2ant1 1132 | . . . . . . . 8 β’ ((π β§ (π₯ β (Baseβπ) β§ (πΏβπΈ) = ( β₯ β{π₯}) β§ π¦ β (Baseβπ)) β§ (πΏβπΊ) = ( β₯ β{π¦})) β πΈ β πΉ) |
22 | 9 | 3ad2ant1 1132 | . . . . . . . 8 β’ ((π β§ (π₯ β (Baseβπ) β§ (πΏβπΈ) = ( β₯ β{π₯}) β§ π¦ β (Baseβπ)) β§ (πΏβπΊ) = ( β₯ β{π¦})) β πΊ β πΉ) |
23 | simp22 1206 | . . . . . . . 8 β’ ((π β§ (π₯ β (Baseβπ) β§ (πΏβπΈ) = ( β₯ β{π₯}) β§ π¦ β (Baseβπ)) β§ (πΏβπΊ) = ( β₯ β{π¦})) β (πΏβπΈ) = ( β₯ β{π₯})) | |
24 | simp3 1137 | . . . . . . . 8 β’ ((π β§ (π₯ β (Baseβπ) β§ (πΏβπΈ) = ( β₯ β{π₯}) β§ π¦ β (Baseβπ)) β§ (πΏβπΊ) = ( β₯ β{π¦})) β (πΏβπΊ) = ( β₯ β{π¦})) | |
25 | 7, 2, 3, 4, 5, 6, 16, 17, 18, 19, 20, 21, 22, 23, 24 | lclkrlem2x 40705 | . . . . . . 7 β’ ((π β§ (π₯ β (Baseβπ) β§ (πΏβπΈ) = ( β₯ β{π₯}) β§ π¦ β (Baseβπ)) β§ (πΏβπΊ) = ( β₯ β{π¦})) β ( β₯ β( β₯ β(πΏβ(πΈ + πΊ)))) = (πΏβ(πΈ + πΊ))) |
26 | 25 | 3exp 1118 | . . . . . 6 β’ (π β ((π₯ β (Baseβπ) β§ (πΏβπΈ) = ( β₯ β{π₯}) β§ π¦ β (Baseβπ)) β ((πΏβπΊ) = ( β₯ β{π¦}) β ( β₯ β( β₯ β(πΏβ(πΈ + πΊ)))) = (πΏβ(πΈ + πΊ))))) |
27 | 26 | 3expd 1352 | . . . . 5 β’ (π β (π₯ β (Baseβπ) β ((πΏβπΈ) = ( β₯ β{π₯}) β (π¦ β (Baseβπ) β ((πΏβπΊ) = ( β₯ β{π¦}) β ( β₯ β( β₯ β(πΏβ(πΈ + πΊ)))) = (πΏβ(πΈ + πΊ))))))) |
28 | 27 | rexlimdv 3152 | . . . 4 β’ (π β (βπ₯ β (Baseβπ)(πΏβπΈ) = ( β₯ β{π₯}) β (π¦ β (Baseβπ) β ((πΏβπΊ) = ( β₯ β{π¦}) β ( β₯ β( β₯ β(πΏβ(πΈ + πΊ)))) = (πΏβ(πΈ + πΊ)))))) |
29 | 15, 28 | mpd 15 | . . 3 β’ (π β (π¦ β (Baseβπ) β ((πΏβπΊ) = ( β₯ β{π¦}) β ( β₯ β( β₯ β(πΏβ(πΈ + πΊ)))) = (πΏβ(πΈ + πΊ))))) |
30 | 29 | rexlimdv 3152 | . 2 β’ (π β (βπ¦ β (Baseβπ)(πΏβπΊ) = ( β₯ β{π¦}) β ( β₯ β( β₯ β(πΏβ(πΈ + πΊ)))) = (πΏβ(πΈ + πΊ)))) |
31 | 11, 30 | mpd 15 | 1 β’ (π β ( β₯ β( β₯ β(πΏβ(πΈ + πΊ)))) = (πΏβ(πΈ + πΊ))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 β§ w3a 1086 = wceq 1540 β wcel 2105 βwrex 3069 {csn 4629 βcfv 6544 (class class class)co 7412 Basecbs 17149 +gcplusg 17202 LFnlclfn 38231 LKerclk 38259 LDualcld 38297 HLchlt 38524 LHypclh 39159 DVecHcdvh 40253 ocHcoch 40522 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7728 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 ax-riotaBAD 38127 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-iin 5001 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-of 7673 df-om 7859 df-1st 7978 df-2nd 7979 df-tpos 8214 df-undef 8261 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-1o 8469 df-er 8706 df-map 8825 df-en 8943 df-dom 8944 df-sdom 8945 df-fin 8946 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-2 12280 df-3 12281 df-4 12282 df-5 12283 df-6 12284 df-n0 12478 df-z 12564 df-uz 12828 df-fz 13490 df-struct 17085 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-ress 17179 df-plusg 17215 df-mulr 17216 df-sca 17218 df-vsca 17219 df-0g 17392 df-mre 17535 df-mrc 17536 df-acs 17538 df-proset 18253 df-poset 18271 df-plt 18288 df-lub 18304 df-glb 18305 df-join 18306 df-meet 18307 df-p0 18383 df-p1 18384 df-lat 18390 df-clat 18457 df-mgm 18566 df-sgrp 18645 df-mnd 18661 df-submnd 18707 df-grp 18859 df-minusg 18860 df-sbg 18861 df-subg 19040 df-cntz 19223 df-oppg 19252 df-lsm 19546 df-cmn 19692 df-abl 19693 df-mgp 20030 df-rng 20048 df-ur 20077 df-ring 20130 df-oppr 20226 df-dvdsr 20249 df-unit 20250 df-invr 20280 df-dvr 20293 df-drng 20503 df-lmod 20617 df-lss 20688 df-lsp 20728 df-lvec 20859 df-lsatoms 38150 df-lshyp 38151 df-lcv 38193 df-lfl 38232 df-lkr 38260 df-ldual 38298 df-oposet 38350 df-ol 38352 df-oml 38353 df-covers 38440 df-ats 38441 df-atl 38472 df-cvlat 38496 df-hlat 38525 df-llines 38673 df-lplanes 38674 df-lvols 38675 df-lines 38676 df-psubsp 38678 df-pmap 38679 df-padd 38971 df-lhyp 39163 df-laut 39164 df-ldil 39279 df-ltrn 39280 df-trl 39334 df-tgrp 39918 df-tendo 39930 df-edring 39932 df-dveca 40178 df-disoa 40204 df-dvech 40254 df-dib 40314 df-dic 40348 df-dih 40404 df-doch 40523 df-djh 40570 |
This theorem is referenced by: lclkrlem2 40707 |
Copyright terms: Public domain | W3C validator |