Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lclkrlem2y Structured version   Visualization version   GIF version

Theorem lclkrlem2y 38666
Description: Lemma for lclkr 38668. Restate the hypotheses for 𝐸 and 𝐺 to say their kernels are closed, in order to eliminate the generating vectors 𝑋 and 𝑌. (Contributed by NM, 18-Jan-2015.)
Hypotheses
Ref Expression
lclkrlem2y.l 𝐿 = (LKer‘𝑈)
lclkrlem2y.h 𝐻 = (LHyp‘𝐾)
lclkrlem2y.o = ((ocH‘𝐾)‘𝑊)
lclkrlem2y.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
lclkrlem2y.f 𝐹 = (LFnl‘𝑈)
lclkrlem2y.d 𝐷 = (LDual‘𝑈)
lclkrlem2y.p + = (+g𝐷)
lclkrlem2y.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
lclkrlem2y.e (𝜑𝐸𝐹)
lclkrlem2y.g (𝜑𝐺𝐹)
lclkrlem2y.le (𝜑 → ( ‘( ‘(𝐿𝐸))) = (𝐿𝐸))
lclkrlem2y.lg (𝜑 → ( ‘( ‘(𝐿𝐺))) = (𝐿𝐺))
Assertion
Ref Expression
lclkrlem2y (𝜑 → ( ‘( ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺)))

Proof of Theorem lclkrlem2y
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lclkrlem2y.lg . . 3 (𝜑 → ( ‘( ‘(𝐿𝐺))) = (𝐿𝐺))
2 lclkrlem2y.h . . . 4 𝐻 = (LHyp‘𝐾)
3 lclkrlem2y.o . . . 4 = ((ocH‘𝐾)‘𝑊)
4 lclkrlem2y.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
5 eqid 2821 . . . 4 (Base‘𝑈) = (Base‘𝑈)
6 lclkrlem2y.f . . . 4 𝐹 = (LFnl‘𝑈)
7 lclkrlem2y.l . . . 4 𝐿 = (LKer‘𝑈)
8 lclkrlem2y.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
9 lclkrlem2y.g . . . 4 (𝜑𝐺𝐹)
102, 3, 4, 5, 6, 7, 8, 9lcfl8a 38638 . . 3 (𝜑 → (( ‘( ‘(𝐿𝐺))) = (𝐿𝐺) ↔ ∃𝑦 ∈ (Base‘𝑈)(𝐿𝐺) = ( ‘{𝑦})))
111, 10mpbid 234 . 2 (𝜑 → ∃𝑦 ∈ (Base‘𝑈)(𝐿𝐺) = ( ‘{𝑦}))
12 lclkrlem2y.le . . . . 5 (𝜑 → ( ‘( ‘(𝐿𝐸))) = (𝐿𝐸))
13 lclkrlem2y.e . . . . . 6 (𝜑𝐸𝐹)
142, 3, 4, 5, 6, 7, 8, 13lcfl8a 38638 . . . . 5 (𝜑 → (( ‘( ‘(𝐿𝐸))) = (𝐿𝐸) ↔ ∃𝑥 ∈ (Base‘𝑈)(𝐿𝐸) = ( ‘{𝑥})))
1512, 14mpbid 234 . . . 4 (𝜑 → ∃𝑥 ∈ (Base‘𝑈)(𝐿𝐸) = ( ‘{𝑥}))
16 lclkrlem2y.d . . . . . . . 8 𝐷 = (LDual‘𝑈)
17 lclkrlem2y.p . . . . . . . 8 + = (+g𝐷)
1883ad2ant1 1129 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑈) ∧ (𝐿𝐸) = ( ‘{𝑥}) ∧ 𝑦 ∈ (Base‘𝑈)) ∧ (𝐿𝐺) = ( ‘{𝑦})) → (𝐾 ∈ HL ∧ 𝑊𝐻))
19 simp21 1202 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑈) ∧ (𝐿𝐸) = ( ‘{𝑥}) ∧ 𝑦 ∈ (Base‘𝑈)) ∧ (𝐿𝐺) = ( ‘{𝑦})) → 𝑥 ∈ (Base‘𝑈))
20 simp23 1204 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑈) ∧ (𝐿𝐸) = ( ‘{𝑥}) ∧ 𝑦 ∈ (Base‘𝑈)) ∧ (𝐿𝐺) = ( ‘{𝑦})) → 𝑦 ∈ (Base‘𝑈))
21133ad2ant1 1129 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑈) ∧ (𝐿𝐸) = ( ‘{𝑥}) ∧ 𝑦 ∈ (Base‘𝑈)) ∧ (𝐿𝐺) = ( ‘{𝑦})) → 𝐸𝐹)
2293ad2ant1 1129 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑈) ∧ (𝐿𝐸) = ( ‘{𝑥}) ∧ 𝑦 ∈ (Base‘𝑈)) ∧ (𝐿𝐺) = ( ‘{𝑦})) → 𝐺𝐹)
23 simp22 1203 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑈) ∧ (𝐿𝐸) = ( ‘{𝑥}) ∧ 𝑦 ∈ (Base‘𝑈)) ∧ (𝐿𝐺) = ( ‘{𝑦})) → (𝐿𝐸) = ( ‘{𝑥}))
24 simp3 1134 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑈) ∧ (𝐿𝐸) = ( ‘{𝑥}) ∧ 𝑦 ∈ (Base‘𝑈)) ∧ (𝐿𝐺) = ( ‘{𝑦})) → (𝐿𝐺) = ( ‘{𝑦}))
257, 2, 3, 4, 5, 6, 16, 17, 18, 19, 20, 21, 22, 23, 24lclkrlem2x 38665 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑈) ∧ (𝐿𝐸) = ( ‘{𝑥}) ∧ 𝑦 ∈ (Base‘𝑈)) ∧ (𝐿𝐺) = ( ‘{𝑦})) → ( ‘( ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺)))
26253exp 1115 . . . . . 6 (𝜑 → ((𝑥 ∈ (Base‘𝑈) ∧ (𝐿𝐸) = ( ‘{𝑥}) ∧ 𝑦 ∈ (Base‘𝑈)) → ((𝐿𝐺) = ( ‘{𝑦}) → ( ‘( ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺)))))
27263expd 1349 . . . . 5 (𝜑 → (𝑥 ∈ (Base‘𝑈) → ((𝐿𝐸) = ( ‘{𝑥}) → (𝑦 ∈ (Base‘𝑈) → ((𝐿𝐺) = ( ‘{𝑦}) → ( ‘( ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺)))))))
2827rexlimdv 3283 . . . 4 (𝜑 → (∃𝑥 ∈ (Base‘𝑈)(𝐿𝐸) = ( ‘{𝑥}) → (𝑦 ∈ (Base‘𝑈) → ((𝐿𝐺) = ( ‘{𝑦}) → ( ‘( ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺))))))
2915, 28mpd 15 . . 3 (𝜑 → (𝑦 ∈ (Base‘𝑈) → ((𝐿𝐺) = ( ‘{𝑦}) → ( ‘( ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺)))))
3029rexlimdv 3283 . 2 (𝜑 → (∃𝑦 ∈ (Base‘𝑈)(𝐿𝐺) = ( ‘{𝑦}) → ( ‘( ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺))))
3111, 30mpd 15 1 (𝜑 → ( ‘( ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1533  wcel 2110  wrex 3139  {csn 4566  cfv 6354  (class class class)co 7155  Basecbs 16482  +gcplusg 16564  LFnlclfn 36192  LKerclk 36220  LDualcld 36258  HLchlt 36485  LHypclh 37119  DVecHcdvh 38213  ocHcoch 38482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-riotaBAD 36088
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-iin 4921  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-of 7408  df-om 7580  df-1st 7688  df-2nd 7689  df-tpos 7891  df-undef 7938  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-oadd 8105  df-er 8288  df-map 8407  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-nn 11638  df-2 11699  df-3 11700  df-4 11701  df-5 11702  df-6 11703  df-n0 11897  df-z 11981  df-uz 12243  df-fz 12892  df-struct 16484  df-ndx 16485  df-slot 16486  df-base 16488  df-sets 16489  df-ress 16490  df-plusg 16577  df-mulr 16578  df-sca 16580  df-vsca 16581  df-0g 16714  df-mre 16856  df-mrc 16857  df-acs 16859  df-proset 17537  df-poset 17555  df-plt 17567  df-lub 17583  df-glb 17584  df-join 17585  df-meet 17586  df-p0 17648  df-p1 17649  df-lat 17655  df-clat 17717  df-mgm 17851  df-sgrp 17900  df-mnd 17911  df-submnd 17956  df-grp 18105  df-minusg 18106  df-sbg 18107  df-subg 18275  df-cntz 18446  df-oppg 18473  df-lsm 18760  df-cmn 18907  df-abl 18908  df-mgp 19239  df-ur 19251  df-ring 19298  df-oppr 19372  df-dvdsr 19390  df-unit 19391  df-invr 19421  df-dvr 19432  df-drng 19503  df-lmod 19635  df-lss 19703  df-lsp 19743  df-lvec 19874  df-lsatoms 36111  df-lshyp 36112  df-lcv 36154  df-lfl 36193  df-lkr 36221  df-ldual 36259  df-oposet 36311  df-ol 36313  df-oml 36314  df-covers 36401  df-ats 36402  df-atl 36433  df-cvlat 36457  df-hlat 36486  df-llines 36633  df-lplanes 36634  df-lvols 36635  df-lines 36636  df-psubsp 36638  df-pmap 36639  df-padd 36931  df-lhyp 37123  df-laut 37124  df-ldil 37239  df-ltrn 37240  df-trl 37294  df-tgrp 37878  df-tendo 37890  df-edring 37892  df-dveca 38138  df-disoa 38164  df-dvech 38214  df-dib 38274  df-dic 38308  df-dih 38364  df-doch 38483  df-djh 38530
This theorem is referenced by:  lclkrlem2  38667
  Copyright terms: Public domain W3C validator