Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dia2dimlem6 Structured version   Visualization version   GIF version

Theorem dia2dimlem6 41046
Description: Lemma for dia2dim 41054. Eliminate auxiliary translations 𝐺 and 𝐷. (Contributed by NM, 8-Sep-2014.)
Hypotheses
Ref Expression
dia2dimlem6.l = (le‘𝐾)
dia2dimlem6.j = (join‘𝐾)
dia2dimlem6.m = (meet‘𝐾)
dia2dimlem6.a 𝐴 = (Atoms‘𝐾)
dia2dimlem6.h 𝐻 = (LHyp‘𝐾)
dia2dimlem6.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dia2dimlem6.r 𝑅 = ((trL‘𝐾)‘𝑊)
dia2dimlem6.y 𝑌 = ((DVecA‘𝐾)‘𝑊)
dia2dimlem6.s 𝑆 = (LSubSp‘𝑌)
dia2dimlem6.pl = (LSSum‘𝑌)
dia2dimlem6.n 𝑁 = (LSpan‘𝑌)
dia2dimlem6.i 𝐼 = ((DIsoA‘𝐾)‘𝑊)
dia2dimlem6.q 𝑄 = ((𝑃 𝑈) ((𝐹𝑃) 𝑉))
dia2dimlem6.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
dia2dimlem6.u (𝜑 → (𝑈𝐴𝑈 𝑊))
dia2dimlem6.v (𝜑 → (𝑉𝐴𝑉 𝑊))
dia2dimlem6.p (𝜑 → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
dia2dimlem6.f (𝜑 → (𝐹𝑇 ∧ (𝐹𝑃) ≠ 𝑃))
dia2dimlem6.rf (𝜑 → (𝑅𝐹) (𝑈 𝑉))
dia2dimlem6.uv (𝜑𝑈𝑉)
dia2dimlem6.ru (𝜑 → (𝑅𝐹) ≠ 𝑈)
dia2dimlem6.rv (𝜑 → (𝑅𝐹) ≠ 𝑉)
Assertion
Ref Expression
dia2dimlem6 (𝜑𝐹 ∈ ((𝐼𝑈) (𝐼𝑉)))

Proof of Theorem dia2dimlem6
Dummy variables 𝑔 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dia2dimlem6.k . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 dia2dimlem6.l . . . 4 = (le‘𝐾)
3 dia2dimlem6.j . . . 4 = (join‘𝐾)
4 dia2dimlem6.m . . . 4 = (meet‘𝐾)
5 dia2dimlem6.a . . . 4 𝐴 = (Atoms‘𝐾)
6 dia2dimlem6.h . . . 4 𝐻 = (LHyp‘𝐾)
7 dia2dimlem6.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
8 dia2dimlem6.r . . . 4 𝑅 = ((trL‘𝐾)‘𝑊)
9 dia2dimlem6.q . . . 4 𝑄 = ((𝑃 𝑈) ((𝐹𝑃) 𝑉))
10 dia2dimlem6.u . . . 4 (𝜑 → (𝑈𝐴𝑈 𝑊))
11 dia2dimlem6.v . . . 4 (𝜑 → (𝑉𝐴𝑉 𝑊))
12 dia2dimlem6.p . . . 4 (𝜑 → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
13 dia2dimlem6.f . . . 4 (𝜑 → (𝐹𝑇 ∧ (𝐹𝑃) ≠ 𝑃))
14 dia2dimlem6.rf . . . 4 (𝜑 → (𝑅𝐹) (𝑈 𝑉))
15 dia2dimlem6.uv . . . 4 (𝜑𝑈𝑉)
16 dia2dimlem6.ru . . . 4 (𝜑 → (𝑅𝐹) ≠ 𝑈)
172, 3, 4, 5, 6, 7, 8, 9, 1, 10, 11, 12, 13, 14, 15, 16dia2dimlem1 41041 . . 3 (𝜑 → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
1813simpld 494 . . . 4 (𝜑𝐹𝑇)
192, 5, 6, 7ltrnel 40116 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊))
201, 18, 12, 19syl3anc 1372 . . 3 (𝜑 → ((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊))
212, 5, 6, 7cdleme50ex 40536 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ ((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊)) → ∃𝑑𝑇 (𝑑𝑄) = (𝐹𝑃))
221, 17, 20, 21syl3anc 1372 . 2 (𝜑 → ∃𝑑𝑇 (𝑑𝑄) = (𝐹𝑃))
232, 5, 6, 7cdleme50ex 40536 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ∃𝑔𝑇 (𝑔𝑃) = 𝑄)
241, 12, 17, 23syl3anc 1372 . . . 4 (𝜑 → ∃𝑔𝑇 (𝑔𝑃) = 𝑄)
25 dia2dimlem6.y . . . . . . . 8 𝑌 = ((DVecA‘𝐾)‘𝑊)
26 dia2dimlem6.s . . . . . . . 8 𝑆 = (LSubSp‘𝑌)
27 dia2dimlem6.pl . . . . . . . 8 = (LSSum‘𝑌)
28 dia2dimlem6.n . . . . . . . 8 𝑁 = (LSpan‘𝑌)
29 dia2dimlem6.i . . . . . . . 8 𝐼 = ((DIsoA‘𝐾)‘𝑊)
3013ad2ant1 1133 . . . . . . . 8 ((𝜑 ∧ (𝑔𝑇 ∧ (𝑔𝑃) = 𝑄𝑑𝑇) ∧ (𝑑𝑄) = (𝐹𝑃)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
31103ad2ant1 1133 . . . . . . . 8 ((𝜑 ∧ (𝑔𝑇 ∧ (𝑔𝑃) = 𝑄𝑑𝑇) ∧ (𝑑𝑄) = (𝐹𝑃)) → (𝑈𝐴𝑈 𝑊))
32113ad2ant1 1133 . . . . . . . 8 ((𝜑 ∧ (𝑔𝑇 ∧ (𝑔𝑃) = 𝑄𝑑𝑇) ∧ (𝑑𝑄) = (𝐹𝑃)) → (𝑉𝐴𝑉 𝑊))
33123ad2ant1 1133 . . . . . . . 8 ((𝜑 ∧ (𝑔𝑇 ∧ (𝑔𝑃) = 𝑄𝑑𝑇) ∧ (𝑑𝑄) = (𝐹𝑃)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
34133ad2ant1 1133 . . . . . . . 8 ((𝜑 ∧ (𝑔𝑇 ∧ (𝑔𝑃) = 𝑄𝑑𝑇) ∧ (𝑑𝑄) = (𝐹𝑃)) → (𝐹𝑇 ∧ (𝐹𝑃) ≠ 𝑃))
35143ad2ant1 1133 . . . . . . . 8 ((𝜑 ∧ (𝑔𝑇 ∧ (𝑔𝑃) = 𝑄𝑑𝑇) ∧ (𝑑𝑄) = (𝐹𝑃)) → (𝑅𝐹) (𝑈 𝑉))
36153ad2ant1 1133 . . . . . . . 8 ((𝜑 ∧ (𝑔𝑇 ∧ (𝑔𝑃) = 𝑄𝑑𝑇) ∧ (𝑑𝑄) = (𝐹𝑃)) → 𝑈𝑉)
37163ad2ant1 1133 . . . . . . . 8 ((𝜑 ∧ (𝑔𝑇 ∧ (𝑔𝑃) = 𝑄𝑑𝑇) ∧ (𝑑𝑄) = (𝐹𝑃)) → (𝑅𝐹) ≠ 𝑈)
38 dia2dimlem6.rv . . . . . . . . 9 (𝜑 → (𝑅𝐹) ≠ 𝑉)
39383ad2ant1 1133 . . . . . . . 8 ((𝜑 ∧ (𝑔𝑇 ∧ (𝑔𝑃) = 𝑄𝑑𝑇) ∧ (𝑑𝑄) = (𝐹𝑃)) → (𝑅𝐹) ≠ 𝑉)
40 simp21 1206 . . . . . . . 8 ((𝜑 ∧ (𝑔𝑇 ∧ (𝑔𝑃) = 𝑄𝑑𝑇) ∧ (𝑑𝑄) = (𝐹𝑃)) → 𝑔𝑇)
41 simp22 1207 . . . . . . . 8 ((𝜑 ∧ (𝑔𝑇 ∧ (𝑔𝑃) = 𝑄𝑑𝑇) ∧ (𝑑𝑄) = (𝐹𝑃)) → (𝑔𝑃) = 𝑄)
42 simp23 1208 . . . . . . . 8 ((𝜑 ∧ (𝑔𝑇 ∧ (𝑔𝑃) = 𝑄𝑑𝑇) ∧ (𝑑𝑄) = (𝐹𝑃)) → 𝑑𝑇)
43 simp3 1138 . . . . . . . 8 ((𝜑 ∧ (𝑔𝑇 ∧ (𝑔𝑃) = 𝑄𝑑𝑇) ∧ (𝑑𝑄) = (𝐹𝑃)) → (𝑑𝑄) = (𝐹𝑃))
442, 3, 4, 5, 6, 7, 8, 25, 26, 27, 28, 29, 9, 30, 31, 32, 33, 34, 35, 36, 37, 39, 40, 41, 42, 43dia2dimlem5 41045 . . . . . . 7 ((𝜑 ∧ (𝑔𝑇 ∧ (𝑔𝑃) = 𝑄𝑑𝑇) ∧ (𝑑𝑄) = (𝐹𝑃)) → 𝐹 ∈ ((𝐼𝑈) (𝐼𝑉)))
45443exp 1119 . . . . . 6 (𝜑 → ((𝑔𝑇 ∧ (𝑔𝑃) = 𝑄𝑑𝑇) → ((𝑑𝑄) = (𝐹𝑃) → 𝐹 ∈ ((𝐼𝑈) (𝐼𝑉)))))
46453expd 1353 . . . . 5 (𝜑 → (𝑔𝑇 → ((𝑔𝑃) = 𝑄 → (𝑑𝑇 → ((𝑑𝑄) = (𝐹𝑃) → 𝐹 ∈ ((𝐼𝑈) (𝐼𝑉)))))))
4746rexlimdv 3140 . . . 4 (𝜑 → (∃𝑔𝑇 (𝑔𝑃) = 𝑄 → (𝑑𝑇 → ((𝑑𝑄) = (𝐹𝑃) → 𝐹 ∈ ((𝐼𝑈) (𝐼𝑉))))))
4824, 47mpd 15 . . 3 (𝜑 → (𝑑𝑇 → ((𝑑𝑄) = (𝐹𝑃) → 𝐹 ∈ ((𝐼𝑈) (𝐼𝑉)))))
4948rexlimdv 3140 . 2 (𝜑 → (∃𝑑𝑇 (𝑑𝑄) = (𝐹𝑃) → 𝐹 ∈ ((𝐼𝑈) (𝐼𝑉))))
5022, 49mpd 15 1 (𝜑𝐹 ∈ ((𝐼𝑈) (𝐼𝑉)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  wne 2931  wrex 3059   class class class wbr 5123  cfv 6541  (class class class)co 7413  lecple 17281  joincjn 18328  meetcmee 18329  LSSumclsm 19621  LSubSpclss 20898  LSpanclspn 20938  Atomscatm 39239  HLchlt 39326  LHypclh 39961  LTrncltrn 40078  trLctrl 40135  DVecAcdveca 40979  DIsoAcdia 41005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-riotaBAD 38929
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-iin 4974  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-tpos 8233  df-undef 8280  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-er 8727  df-map 8850  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-n0 12510  df-z 12597  df-uz 12861  df-fz 13530  df-struct 17167  df-sets 17184  df-slot 17202  df-ndx 17214  df-base 17231  df-ress 17254  df-plusg 17287  df-mulr 17288  df-sca 17290  df-vsca 17291  df-0g 17458  df-proset 18311  df-poset 18330  df-plt 18345  df-lub 18361  df-glb 18362  df-join 18363  df-meet 18364  df-p0 18440  df-p1 18441  df-lat 18447  df-clat 18514  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-grp 18924  df-minusg 18925  df-sbg 18926  df-subg 19111  df-lsm 19623  df-cmn 19769  df-abl 19770  df-mgp 20107  df-rng 20119  df-ur 20148  df-ring 20201  df-oppr 20303  df-dvdsr 20326  df-unit 20327  df-invr 20357  df-dvr 20370  df-drng 20700  df-lmod 20829  df-lss 20899  df-lsp 20939  df-lvec 21071  df-oposet 39152  df-ol 39154  df-oml 39155  df-covers 39242  df-ats 39243  df-atl 39274  df-cvlat 39298  df-hlat 39327  df-llines 39475  df-lplanes 39476  df-lvols 39477  df-lines 39478  df-psubsp 39480  df-pmap 39481  df-padd 39773  df-lhyp 39965  df-laut 39966  df-ldil 40081  df-ltrn 40082  df-trl 40136  df-tgrp 40720  df-tendo 40732  df-edring 40734  df-dveca 40980  df-disoa 41006
This theorem is referenced by:  dia2dimlem7  41047
  Copyright terms: Public domain W3C validator