![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dia2dimlem6 | Structured version Visualization version GIF version |
Description: Lemma for dia2dim 41038. Eliminate auxiliary translations 𝐺 and 𝐷. (Contributed by NM, 8-Sep-2014.) |
Ref | Expression |
---|---|
dia2dimlem6.l | ⊢ ≤ = (le‘𝐾) |
dia2dimlem6.j | ⊢ ∨ = (join‘𝐾) |
dia2dimlem6.m | ⊢ ∧ = (meet‘𝐾) |
dia2dimlem6.a | ⊢ 𝐴 = (Atoms‘𝐾) |
dia2dimlem6.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dia2dimlem6.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
dia2dimlem6.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
dia2dimlem6.y | ⊢ 𝑌 = ((DVecA‘𝐾)‘𝑊) |
dia2dimlem6.s | ⊢ 𝑆 = (LSubSp‘𝑌) |
dia2dimlem6.pl | ⊢ ⊕ = (LSSum‘𝑌) |
dia2dimlem6.n | ⊢ 𝑁 = (LSpan‘𝑌) |
dia2dimlem6.i | ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) |
dia2dimlem6.q | ⊢ 𝑄 = ((𝑃 ∨ 𝑈) ∧ ((𝐹‘𝑃) ∨ 𝑉)) |
dia2dimlem6.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
dia2dimlem6.u | ⊢ (𝜑 → (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) |
dia2dimlem6.v | ⊢ (𝜑 → (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) |
dia2dimlem6.p | ⊢ (𝜑 → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
dia2dimlem6.f | ⊢ (𝜑 → (𝐹 ∈ 𝑇 ∧ (𝐹‘𝑃) ≠ 𝑃)) |
dia2dimlem6.rf | ⊢ (𝜑 → (𝑅‘𝐹) ≤ (𝑈 ∨ 𝑉)) |
dia2dimlem6.uv | ⊢ (𝜑 → 𝑈 ≠ 𝑉) |
dia2dimlem6.ru | ⊢ (𝜑 → (𝑅‘𝐹) ≠ 𝑈) |
dia2dimlem6.rv | ⊢ (𝜑 → (𝑅‘𝐹) ≠ 𝑉) |
Ref | Expression |
---|---|
dia2dimlem6 | ⊢ (𝜑 → 𝐹 ∈ ((𝐼‘𝑈) ⊕ (𝐼‘𝑉))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dia2dimlem6.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
2 | dia2dimlem6.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
3 | dia2dimlem6.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
4 | dia2dimlem6.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
5 | dia2dimlem6.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
6 | dia2dimlem6.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
7 | dia2dimlem6.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
8 | dia2dimlem6.r | . . . 4 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
9 | dia2dimlem6.q | . . . 4 ⊢ 𝑄 = ((𝑃 ∨ 𝑈) ∧ ((𝐹‘𝑃) ∨ 𝑉)) | |
10 | dia2dimlem6.u | . . . 4 ⊢ (𝜑 → (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) | |
11 | dia2dimlem6.v | . . . 4 ⊢ (𝜑 → (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) | |
12 | dia2dimlem6.p | . . . 4 ⊢ (𝜑 → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) | |
13 | dia2dimlem6.f | . . . 4 ⊢ (𝜑 → (𝐹 ∈ 𝑇 ∧ (𝐹‘𝑃) ≠ 𝑃)) | |
14 | dia2dimlem6.rf | . . . 4 ⊢ (𝜑 → (𝑅‘𝐹) ≤ (𝑈 ∨ 𝑉)) | |
15 | dia2dimlem6.uv | . . . 4 ⊢ (𝜑 → 𝑈 ≠ 𝑉) | |
16 | dia2dimlem6.ru | . . . 4 ⊢ (𝜑 → (𝑅‘𝐹) ≠ 𝑈) | |
17 | 2, 3, 4, 5, 6, 7, 8, 9, 1, 10, 11, 12, 13, 14, 15, 16 | dia2dimlem1 41025 | . . 3 ⊢ (𝜑 → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) |
18 | 13 | simpld 494 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝑇) |
19 | 2, 5, 6, 7 | ltrnel 40100 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝐹‘𝑃) ∈ 𝐴 ∧ ¬ (𝐹‘𝑃) ≤ 𝑊)) |
20 | 1, 18, 12, 19 | syl3anc 1371 | . . 3 ⊢ (𝜑 → ((𝐹‘𝑃) ∈ 𝐴 ∧ ¬ (𝐹‘𝑃) ≤ 𝑊)) |
21 | 2, 5, 6, 7 | cdleme50ex 40520 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ ((𝐹‘𝑃) ∈ 𝐴 ∧ ¬ (𝐹‘𝑃) ≤ 𝑊)) → ∃𝑑 ∈ 𝑇 (𝑑‘𝑄) = (𝐹‘𝑃)) |
22 | 1, 17, 20, 21 | syl3anc 1371 | . 2 ⊢ (𝜑 → ∃𝑑 ∈ 𝑇 (𝑑‘𝑄) = (𝐹‘𝑃)) |
23 | 2, 5, 6, 7 | cdleme50ex 40520 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → ∃𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄) |
24 | 1, 12, 17, 23 | syl3anc 1371 | . . . 4 ⊢ (𝜑 → ∃𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄) |
25 | dia2dimlem6.y | . . . . . . . 8 ⊢ 𝑌 = ((DVecA‘𝐾)‘𝑊) | |
26 | dia2dimlem6.s | . . . . . . . 8 ⊢ 𝑆 = (LSubSp‘𝑌) | |
27 | dia2dimlem6.pl | . . . . . . . 8 ⊢ ⊕ = (LSSum‘𝑌) | |
28 | dia2dimlem6.n | . . . . . . . 8 ⊢ 𝑁 = (LSpan‘𝑌) | |
29 | dia2dimlem6.i | . . . . . . . 8 ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) | |
30 | 1 | 3ad2ant1 1133 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑔 ∈ 𝑇 ∧ (𝑔‘𝑃) = 𝑄 ∧ 𝑑 ∈ 𝑇) ∧ (𝑑‘𝑄) = (𝐹‘𝑃)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
31 | 10 | 3ad2ant1 1133 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑔 ∈ 𝑇 ∧ (𝑔‘𝑃) = 𝑄 ∧ 𝑑 ∈ 𝑇) ∧ (𝑑‘𝑄) = (𝐹‘𝑃)) → (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊)) |
32 | 11 | 3ad2ant1 1133 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑔 ∈ 𝑇 ∧ (𝑔‘𝑃) = 𝑄 ∧ 𝑑 ∈ 𝑇) ∧ (𝑑‘𝑄) = (𝐹‘𝑃)) → (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) |
33 | 12 | 3ad2ant1 1133 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑔 ∈ 𝑇 ∧ (𝑔‘𝑃) = 𝑄 ∧ 𝑑 ∈ 𝑇) ∧ (𝑑‘𝑄) = (𝐹‘𝑃)) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
34 | 13 | 3ad2ant1 1133 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑔 ∈ 𝑇 ∧ (𝑔‘𝑃) = 𝑄 ∧ 𝑑 ∈ 𝑇) ∧ (𝑑‘𝑄) = (𝐹‘𝑃)) → (𝐹 ∈ 𝑇 ∧ (𝐹‘𝑃) ≠ 𝑃)) |
35 | 14 | 3ad2ant1 1133 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑔 ∈ 𝑇 ∧ (𝑔‘𝑃) = 𝑄 ∧ 𝑑 ∈ 𝑇) ∧ (𝑑‘𝑄) = (𝐹‘𝑃)) → (𝑅‘𝐹) ≤ (𝑈 ∨ 𝑉)) |
36 | 15 | 3ad2ant1 1133 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑔 ∈ 𝑇 ∧ (𝑔‘𝑃) = 𝑄 ∧ 𝑑 ∈ 𝑇) ∧ (𝑑‘𝑄) = (𝐹‘𝑃)) → 𝑈 ≠ 𝑉) |
37 | 16 | 3ad2ant1 1133 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑔 ∈ 𝑇 ∧ (𝑔‘𝑃) = 𝑄 ∧ 𝑑 ∈ 𝑇) ∧ (𝑑‘𝑄) = (𝐹‘𝑃)) → (𝑅‘𝐹) ≠ 𝑈) |
38 | dia2dimlem6.rv | . . . . . . . . 9 ⊢ (𝜑 → (𝑅‘𝐹) ≠ 𝑉) | |
39 | 38 | 3ad2ant1 1133 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑔 ∈ 𝑇 ∧ (𝑔‘𝑃) = 𝑄 ∧ 𝑑 ∈ 𝑇) ∧ (𝑑‘𝑄) = (𝐹‘𝑃)) → (𝑅‘𝐹) ≠ 𝑉) |
40 | simp21 1206 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑔 ∈ 𝑇 ∧ (𝑔‘𝑃) = 𝑄 ∧ 𝑑 ∈ 𝑇) ∧ (𝑑‘𝑄) = (𝐹‘𝑃)) → 𝑔 ∈ 𝑇) | |
41 | simp22 1207 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑔 ∈ 𝑇 ∧ (𝑔‘𝑃) = 𝑄 ∧ 𝑑 ∈ 𝑇) ∧ (𝑑‘𝑄) = (𝐹‘𝑃)) → (𝑔‘𝑃) = 𝑄) | |
42 | simp23 1208 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑔 ∈ 𝑇 ∧ (𝑔‘𝑃) = 𝑄 ∧ 𝑑 ∈ 𝑇) ∧ (𝑑‘𝑄) = (𝐹‘𝑃)) → 𝑑 ∈ 𝑇) | |
43 | simp3 1138 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑔 ∈ 𝑇 ∧ (𝑔‘𝑃) = 𝑄 ∧ 𝑑 ∈ 𝑇) ∧ (𝑑‘𝑄) = (𝐹‘𝑃)) → (𝑑‘𝑄) = (𝐹‘𝑃)) | |
44 | 2, 3, 4, 5, 6, 7, 8, 25, 26, 27, 28, 29, 9, 30, 31, 32, 33, 34, 35, 36, 37, 39, 40, 41, 42, 43 | dia2dimlem5 41029 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑔 ∈ 𝑇 ∧ (𝑔‘𝑃) = 𝑄 ∧ 𝑑 ∈ 𝑇) ∧ (𝑑‘𝑄) = (𝐹‘𝑃)) → 𝐹 ∈ ((𝐼‘𝑈) ⊕ (𝐼‘𝑉))) |
45 | 44 | 3exp 1119 | . . . . . 6 ⊢ (𝜑 → ((𝑔 ∈ 𝑇 ∧ (𝑔‘𝑃) = 𝑄 ∧ 𝑑 ∈ 𝑇) → ((𝑑‘𝑄) = (𝐹‘𝑃) → 𝐹 ∈ ((𝐼‘𝑈) ⊕ (𝐼‘𝑉))))) |
46 | 45 | 3expd 1353 | . . . . 5 ⊢ (𝜑 → (𝑔 ∈ 𝑇 → ((𝑔‘𝑃) = 𝑄 → (𝑑 ∈ 𝑇 → ((𝑑‘𝑄) = (𝐹‘𝑃) → 𝐹 ∈ ((𝐼‘𝑈) ⊕ (𝐼‘𝑉))))))) |
47 | 46 | rexlimdv 3155 | . . . 4 ⊢ (𝜑 → (∃𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄 → (𝑑 ∈ 𝑇 → ((𝑑‘𝑄) = (𝐹‘𝑃) → 𝐹 ∈ ((𝐼‘𝑈) ⊕ (𝐼‘𝑉)))))) |
48 | 24, 47 | mpd 15 | . . 3 ⊢ (𝜑 → (𝑑 ∈ 𝑇 → ((𝑑‘𝑄) = (𝐹‘𝑃) → 𝐹 ∈ ((𝐼‘𝑈) ⊕ (𝐼‘𝑉))))) |
49 | 48 | rexlimdv 3155 | . 2 ⊢ (𝜑 → (∃𝑑 ∈ 𝑇 (𝑑‘𝑄) = (𝐹‘𝑃) → 𝐹 ∈ ((𝐼‘𝑈) ⊕ (𝐼‘𝑉)))) |
50 | 22, 49 | mpd 15 | 1 ⊢ (𝜑 → 𝐹 ∈ ((𝐼‘𝑈) ⊕ (𝐼‘𝑉))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2103 ≠ wne 2942 ∃wrex 3072 class class class wbr 5176 ‘cfv 6579 (class class class)co 7454 lecple 17324 joincjn 18387 meetcmee 18388 LSSumclsm 19682 LSubSpclss 20958 LSpanclspn 20998 Atomscatm 39223 HLchlt 39310 LHypclh 39945 LTrncltrn 40062 trLctrl 40119 DVecAcdveca 40963 DIsoAcdia 40989 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2105 ax-9 2113 ax-10 2136 ax-11 2153 ax-12 2173 ax-ext 2705 ax-rep 5313 ax-sep 5327 ax-nul 5334 ax-pow 5393 ax-pr 5457 ax-un 7775 ax-cnex 11245 ax-resscn 11246 ax-1cn 11247 ax-icn 11248 ax-addcl 11249 ax-addrcl 11250 ax-mulcl 11251 ax-mulrcl 11252 ax-mulcom 11253 ax-addass 11254 ax-mulass 11255 ax-distr 11256 ax-i2m1 11257 ax-1ne0 11258 ax-1rid 11259 ax-rnegex 11260 ax-rrecex 11261 ax-cnre 11262 ax-pre-lttri 11263 ax-pre-lttrn 11264 ax-pre-ltadd 11265 ax-pre-mulgt0 11266 ax-riotaBAD 38913 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2890 df-ne 2943 df-nel 3049 df-ral 3064 df-rex 3073 df-rmo 3384 df-reu 3385 df-rab 3440 df-v 3486 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4354 df-if 4555 df-pw 4630 df-sn 4655 df-pr 4657 df-tp 4659 df-op 4661 df-uni 4938 df-int 4979 df-iun 5027 df-iin 5028 df-br 5177 df-opab 5239 df-mpt 5260 df-tr 5294 df-id 5604 df-eprel 5610 df-po 5618 df-so 5619 df-fr 5661 df-we 5663 df-xp 5712 df-rel 5713 df-cnv 5714 df-co 5715 df-dm 5716 df-rn 5717 df-res 5718 df-ima 5719 df-pred 6338 df-ord 6404 df-on 6405 df-lim 6406 df-suc 6407 df-iota 6531 df-fun 6581 df-fn 6582 df-f 6583 df-f1 6584 df-fo 6585 df-f1o 6586 df-fv 6587 df-riota 7410 df-ov 7457 df-oprab 7458 df-mpo 7459 df-om 7909 df-1st 8035 df-2nd 8036 df-tpos 8272 df-undef 8319 df-frecs 8327 df-wrecs 8358 df-recs 8432 df-rdg 8471 df-1o 8527 df-er 8768 df-map 8891 df-en 9009 df-dom 9010 df-sdom 9011 df-fin 9012 df-pnf 11331 df-mnf 11332 df-xr 11333 df-ltxr 11334 df-le 11335 df-sub 11527 df-neg 11528 df-nn 12299 df-2 12361 df-3 12362 df-4 12363 df-5 12364 df-6 12365 df-n0 12559 df-z 12645 df-uz 12909 df-fz 13573 df-struct 17200 df-sets 17217 df-slot 17235 df-ndx 17247 df-base 17265 df-ress 17294 df-plusg 17330 df-mulr 17331 df-sca 17333 df-vsca 17334 df-0g 17507 df-proset 18371 df-poset 18389 df-plt 18406 df-lub 18422 df-glb 18423 df-join 18424 df-meet 18425 df-p0 18501 df-p1 18502 df-lat 18508 df-clat 18575 df-mgm 18684 df-sgrp 18763 df-mnd 18779 df-grp 18982 df-minusg 18983 df-sbg 18984 df-subg 19169 df-lsm 19684 df-cmn 19830 df-abl 19831 df-mgp 20168 df-rng 20186 df-ur 20215 df-ring 20268 df-oppr 20366 df-dvdsr 20389 df-unit 20390 df-invr 20420 df-dvr 20433 df-drng 20759 df-lmod 20888 df-lss 20959 df-lsp 20999 df-lvec 21131 df-oposet 39136 df-ol 39138 df-oml 39139 df-covers 39226 df-ats 39227 df-atl 39258 df-cvlat 39282 df-hlat 39311 df-llines 39459 df-lplanes 39460 df-lvols 39461 df-lines 39462 df-psubsp 39464 df-pmap 39465 df-padd 39757 df-lhyp 39949 df-laut 39950 df-ldil 40065 df-ltrn 40066 df-trl 40120 df-tgrp 40704 df-tendo 40716 df-edring 40718 df-dveca 40964 df-disoa 40990 |
This theorem is referenced by: dia2dimlem7 41031 |
Copyright terms: Public domain | W3C validator |