Step | Hyp | Ref
| Expression |
1 | | dia2dimlem6.k |
. . 3
β’ (π β (πΎ β HL β§ π β π»)) |
2 | | dia2dimlem6.l |
. . . 4
β’ β€ =
(leβπΎ) |
3 | | dia2dimlem6.j |
. . . 4
β’ β¨ =
(joinβπΎ) |
4 | | dia2dimlem6.m |
. . . 4
β’ β§ =
(meetβπΎ) |
5 | | dia2dimlem6.a |
. . . 4
β’ π΄ = (AtomsβπΎ) |
6 | | dia2dimlem6.h |
. . . 4
β’ π» = (LHypβπΎ) |
7 | | dia2dimlem6.t |
. . . 4
β’ π = ((LTrnβπΎ)βπ) |
8 | | dia2dimlem6.r |
. . . 4
β’ π
= ((trLβπΎ)βπ) |
9 | | dia2dimlem6.q |
. . . 4
β’ π = ((π β¨ π) β§ ((πΉβπ) β¨ π)) |
10 | | dia2dimlem6.u |
. . . 4
β’ (π β (π β π΄ β§ π β€ π)) |
11 | | dia2dimlem6.v |
. . . 4
β’ (π β (π β π΄ β§ π β€ π)) |
12 | | dia2dimlem6.p |
. . . 4
β’ (π β (π β π΄ β§ Β¬ π β€ π)) |
13 | | dia2dimlem6.f |
. . . 4
β’ (π β (πΉ β π β§ (πΉβπ) β π)) |
14 | | dia2dimlem6.rf |
. . . 4
β’ (π β (π
βπΉ) β€ (π β¨ π)) |
15 | | dia2dimlem6.uv |
. . . 4
β’ (π β π β π) |
16 | | dia2dimlem6.ru |
. . . 4
β’ (π β (π
βπΉ) β π) |
17 | 2, 3, 4, 5, 6, 7, 8, 9, 1, 10,
11, 12, 13, 14, 15, 16 | dia2dimlem1 39935 |
. . 3
β’ (π β (π β π΄ β§ Β¬ π β€ π)) |
18 | 13 | simpld 496 |
. . . 4
β’ (π β πΉ β π) |
19 | 2, 5, 6, 7 | ltrnel 39010 |
. . . 4
β’ (((πΎ β HL β§ π β π») β§ πΉ β π β§ (π β π΄ β§ Β¬ π β€ π)) β ((πΉβπ) β π΄ β§ Β¬ (πΉβπ) β€ π)) |
20 | 1, 18, 12, 19 | syl3anc 1372 |
. . 3
β’ (π β ((πΉβπ) β π΄ β§ Β¬ (πΉβπ) β€ π)) |
21 | 2, 5, 6, 7 | cdleme50ex 39430 |
. . 3
β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ ((πΉβπ) β π΄ β§ Β¬ (πΉβπ) β€ π)) β βπ β π (πβπ) = (πΉβπ)) |
22 | 1, 17, 20, 21 | syl3anc 1372 |
. 2
β’ (π β βπ β π (πβπ) = (πΉβπ)) |
23 | 2, 5, 6, 7 | cdleme50ex 39430 |
. . . . 5
β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β βπ β π (πβπ) = π) |
24 | 1, 12, 17, 23 | syl3anc 1372 |
. . . 4
β’ (π β βπ β π (πβπ) = π) |
25 | | dia2dimlem6.y |
. . . . . . . 8
β’ π = ((DVecAβπΎ)βπ) |
26 | | dia2dimlem6.s |
. . . . . . . 8
β’ π = (LSubSpβπ) |
27 | | dia2dimlem6.pl |
. . . . . . . 8
β’ β =
(LSSumβπ) |
28 | | dia2dimlem6.n |
. . . . . . . 8
β’ π = (LSpanβπ) |
29 | | dia2dimlem6.i |
. . . . . . . 8
β’ πΌ = ((DIsoAβπΎ)βπ) |
30 | 1 | 3ad2ant1 1134 |
. . . . . . . 8
β’ ((π β§ (π β π β§ (πβπ) = π β§ π β π) β§ (πβπ) = (πΉβπ)) β (πΎ β HL β§ π β π»)) |
31 | 10 | 3ad2ant1 1134 |
. . . . . . . 8
β’ ((π β§ (π β π β§ (πβπ) = π β§ π β π) β§ (πβπ) = (πΉβπ)) β (π β π΄ β§ π β€ π)) |
32 | 11 | 3ad2ant1 1134 |
. . . . . . . 8
β’ ((π β§ (π β π β§ (πβπ) = π β§ π β π) β§ (πβπ) = (πΉβπ)) β (π β π΄ β§ π β€ π)) |
33 | 12 | 3ad2ant1 1134 |
. . . . . . . 8
β’ ((π β§ (π β π β§ (πβπ) = π β§ π β π) β§ (πβπ) = (πΉβπ)) β (π β π΄ β§ Β¬ π β€ π)) |
34 | 13 | 3ad2ant1 1134 |
. . . . . . . 8
β’ ((π β§ (π β π β§ (πβπ) = π β§ π β π) β§ (πβπ) = (πΉβπ)) β (πΉ β π β§ (πΉβπ) β π)) |
35 | 14 | 3ad2ant1 1134 |
. . . . . . . 8
β’ ((π β§ (π β π β§ (πβπ) = π β§ π β π) β§ (πβπ) = (πΉβπ)) β (π
βπΉ) β€ (π β¨ π)) |
36 | 15 | 3ad2ant1 1134 |
. . . . . . . 8
β’ ((π β§ (π β π β§ (πβπ) = π β§ π β π) β§ (πβπ) = (πΉβπ)) β π β π) |
37 | 16 | 3ad2ant1 1134 |
. . . . . . . 8
β’ ((π β§ (π β π β§ (πβπ) = π β§ π β π) β§ (πβπ) = (πΉβπ)) β (π
βπΉ) β π) |
38 | | dia2dimlem6.rv |
. . . . . . . . 9
β’ (π β (π
βπΉ) β π) |
39 | 38 | 3ad2ant1 1134 |
. . . . . . . 8
β’ ((π β§ (π β π β§ (πβπ) = π β§ π β π) β§ (πβπ) = (πΉβπ)) β (π
βπΉ) β π) |
40 | | simp21 1207 |
. . . . . . . 8
β’ ((π β§ (π β π β§ (πβπ) = π β§ π β π) β§ (πβπ) = (πΉβπ)) β π β π) |
41 | | simp22 1208 |
. . . . . . . 8
β’ ((π β§ (π β π β§ (πβπ) = π β§ π β π) β§ (πβπ) = (πΉβπ)) β (πβπ) = π) |
42 | | simp23 1209 |
. . . . . . . 8
β’ ((π β§ (π β π β§ (πβπ) = π β§ π β π) β§ (πβπ) = (πΉβπ)) β π β π) |
43 | | simp3 1139 |
. . . . . . . 8
β’ ((π β§ (π β π β§ (πβπ) = π β§ π β π) β§ (πβπ) = (πΉβπ)) β (πβπ) = (πΉβπ)) |
44 | 2, 3, 4, 5, 6, 7, 8, 25, 26, 27, 28, 29, 9, 30, 31, 32, 33, 34, 35, 36, 37, 39, 40, 41, 42, 43 | dia2dimlem5 39939 |
. . . . . . 7
β’ ((π β§ (π β π β§ (πβπ) = π β§ π β π) β§ (πβπ) = (πΉβπ)) β πΉ β ((πΌβπ) β (πΌβπ))) |
45 | 44 | 3exp 1120 |
. . . . . 6
β’ (π β ((π β π β§ (πβπ) = π β§ π β π) β ((πβπ) = (πΉβπ) β πΉ β ((πΌβπ) β (πΌβπ))))) |
46 | 45 | 3expd 1354 |
. . . . 5
β’ (π β (π β π β ((πβπ) = π β (π β π β ((πβπ) = (πΉβπ) β πΉ β ((πΌβπ) β (πΌβπ))))))) |
47 | 46 | rexlimdv 3154 |
. . . 4
β’ (π β (βπ β π (πβπ) = π β (π β π β ((πβπ) = (πΉβπ) β πΉ β ((πΌβπ) β (πΌβπ)))))) |
48 | 24, 47 | mpd 15 |
. . 3
β’ (π β (π β π β ((πβπ) = (πΉβπ) β πΉ β ((πΌβπ) β (πΌβπ))))) |
49 | 48 | rexlimdv 3154 |
. 2
β’ (π β (βπ β π (πβπ) = (πΉβπ) β πΉ β ((πΌβπ) β (πΌβπ)))) |
50 | 22, 49 | mpd 15 |
1
β’ (π β πΉ β ((πΌβπ) β (πΌβπ))) |