MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  catidd Structured version   Visualization version   GIF version

Theorem catidd 17697
Description: Deduce the identity arrow in a category. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
catidd.b (𝜑𝐵 = (Base‘𝐶))
catidd.h (𝜑𝐻 = (Hom ‘𝐶))
catidd.o (𝜑· = (comp‘𝐶))
catidd.c (𝜑𝐶 ∈ Cat)
catidd.1 ((𝜑𝑥𝐵) → 1 ∈ (𝑥𝐻𝑥))
catidd.2 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑓 ∈ (𝑦𝐻𝑥))) → ( 1 (⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓)
catidd.3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑓 ∈ (𝑥𝐻𝑦))) → (𝑓(⟨𝑥, 𝑥· 𝑦) 1 ) = 𝑓)
Assertion
Ref Expression
catidd (𝜑 → (Id‘𝐶) = (𝑥𝐵1 ))
Distinct variable groups:   𝑦,𝑓, 1   𝑥,𝐵   𝑥,𝑓,𝐶,𝑦   𝜑,𝑓,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑦,𝑓)   · (𝑥,𝑦,𝑓)   1 (𝑥)   𝐻(𝑥,𝑦,𝑓)

Proof of Theorem catidd
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 catidd.2 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑓 ∈ (𝑦𝐻𝑥))) → ( 1 (⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓)
21ex 412 . . . . . . . . . 10 (𝜑 → ((𝑥𝐵𝑦𝐵𝑓 ∈ (𝑦𝐻𝑥)) → ( 1 (⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓))
3 catidd.b . . . . . . . . . . . 12 (𝜑𝐵 = (Base‘𝐶))
43eleq2d 2821 . . . . . . . . . . 11 (𝜑 → (𝑥𝐵𝑥 ∈ (Base‘𝐶)))
53eleq2d 2821 . . . . . . . . . . 11 (𝜑 → (𝑦𝐵𝑦 ∈ (Base‘𝐶)))
6 catidd.h . . . . . . . . . . . . 13 (𝜑𝐻 = (Hom ‘𝐶))
76oveqd 7427 . . . . . . . . . . . 12 (𝜑 → (𝑦𝐻𝑥) = (𝑦(Hom ‘𝐶)𝑥))
87eleq2d 2821 . . . . . . . . . . 11 (𝜑 → (𝑓 ∈ (𝑦𝐻𝑥) ↔ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)))
94, 5, 83anbi123d 1438 . . . . . . . . . 10 (𝜑 → ((𝑥𝐵𝑦𝐵𝑓 ∈ (𝑦𝐻𝑥)) ↔ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥))))
10 catidd.o . . . . . . . . . . . . 13 (𝜑· = (comp‘𝐶))
1110oveqd 7427 . . . . . . . . . . . 12 (𝜑 → (⟨𝑦, 𝑥· 𝑥) = (⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥))
1211oveqd 7427 . . . . . . . . . . 11 (𝜑 → ( 1 (⟨𝑦, 𝑥· 𝑥)𝑓) = ( 1 (⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓))
1312eqeq1d 2738 . . . . . . . . . 10 (𝜑 → (( 1 (⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ↔ ( 1 (⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓))
142, 9, 133imtr3d 293 . . . . . . . . 9 (𝜑 → ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → ( 1 (⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓))
15143expd 1354 . . . . . . . 8 (𝜑 → (𝑥 ∈ (Base‘𝐶) → (𝑦 ∈ (Base‘𝐶) → (𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥) → ( 1 (⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓))))
1615imp41 425 . . . . . . 7 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → ( 1 (⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓)
1716ralrimiva 3133 . . . . . 6 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) → ∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)( 1 (⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓)
18 catidd.3 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑓 ∈ (𝑥𝐻𝑦))) → (𝑓(⟨𝑥, 𝑥· 𝑦) 1 ) = 𝑓)
1918ex 412 . . . . . . . . . 10 (𝜑 → ((𝑥𝐵𝑦𝐵𝑓 ∈ (𝑥𝐻𝑦)) → (𝑓(⟨𝑥, 𝑥· 𝑦) 1 ) = 𝑓))
206oveqd 7427 . . . . . . . . . . . 12 (𝜑 → (𝑥𝐻𝑦) = (𝑥(Hom ‘𝐶)𝑦))
2120eleq2d 2821 . . . . . . . . . . 11 (𝜑 → (𝑓 ∈ (𝑥𝐻𝑦) ↔ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)))
224, 5, 213anbi123d 1438 . . . . . . . . . 10 (𝜑 → ((𝑥𝐵𝑦𝐵𝑓 ∈ (𝑥𝐻𝑦)) ↔ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))))
2310oveqd 7427 . . . . . . . . . . . 12 (𝜑 → (⟨𝑥, 𝑥· 𝑦) = (⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦))
2423oveqd 7427 . . . . . . . . . . 11 (𝜑 → (𝑓(⟨𝑥, 𝑥· 𝑦) 1 ) = (𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦) 1 ))
2524eqeq1d 2738 . . . . . . . . . 10 (𝜑 → ((𝑓(⟨𝑥, 𝑥· 𝑦) 1 ) = 𝑓 ↔ (𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦) 1 ) = 𝑓))
2619, 22, 253imtr3d 293 . . . . . . . . 9 (𝜑 → ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦) 1 ) = 𝑓))
27263expd 1354 . . . . . . . 8 (𝜑 → (𝑥 ∈ (Base‘𝐶) → (𝑦 ∈ (Base‘𝐶) → (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) → (𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦) 1 ) = 𝑓))))
2827imp41 425 . . . . . . 7 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦) 1 ) = 𝑓)
2928ralrimiva 3133 . . . . . 6 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) → ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦) 1 ) = 𝑓)
3017, 29jca 511 . . . . 5 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) → (∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)( 1 (⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦) 1 ) = 𝑓))
3130ralrimiva 3133 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐶)) → ∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)( 1 (⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦) 1 ) = 𝑓))
32 catidd.1 . . . . . . . 8 ((𝜑𝑥𝐵) → 1 ∈ (𝑥𝐻𝑥))
3332ex 412 . . . . . . 7 (𝜑 → (𝑥𝐵1 ∈ (𝑥𝐻𝑥)))
346oveqd 7427 . . . . . . . 8 (𝜑 → (𝑥𝐻𝑥) = (𝑥(Hom ‘𝐶)𝑥))
3534eleq2d 2821 . . . . . . 7 (𝜑 → ( 1 ∈ (𝑥𝐻𝑥) ↔ 1 ∈ (𝑥(Hom ‘𝐶)𝑥)))
3633, 4, 353imtr3d 293 . . . . . 6 (𝜑 → (𝑥 ∈ (Base‘𝐶) → 1 ∈ (𝑥(Hom ‘𝐶)𝑥)))
3736imp 406 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → 1 ∈ (𝑥(Hom ‘𝐶)𝑥))
38 eqid 2736 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
39 eqid 2736 . . . . . 6 (Hom ‘𝐶) = (Hom ‘𝐶)
40 eqid 2736 . . . . . 6 (comp‘𝐶) = (comp‘𝐶)
41 catidd.c . . . . . . 7 (𝜑𝐶 ∈ Cat)
4241adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐶 ∈ Cat)
43 simpr 484 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶))
4438, 39, 40, 42, 43catideu 17692 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ∃!𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓))
45 oveq1 7417 . . . . . . . . . 10 (𝑔 = 1 → (𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = ( 1 (⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓))
4645eqeq1d 2738 . . . . . . . . 9 (𝑔 = 1 → ((𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ↔ ( 1 (⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓))
4746ralbidv 3164 . . . . . . . 8 (𝑔 = 1 → (∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ↔ ∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)( 1 (⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓))
48 oveq2 7418 . . . . . . . . . 10 (𝑔 = 1 → (𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = (𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦) 1 ))
4948eqeq1d 2738 . . . . . . . . 9 (𝑔 = 1 → ((𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓 ↔ (𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦) 1 ) = 𝑓))
5049ralbidv 3164 . . . . . . . 8 (𝑔 = 1 → (∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓 ↔ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦) 1 ) = 𝑓))
5147, 50anbi12d 632 . . . . . . 7 (𝑔 = 1 → ((∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓) ↔ (∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)( 1 (⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦) 1 ) = 𝑓)))
5251ralbidv 3164 . . . . . 6 (𝑔 = 1 → (∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓) ↔ ∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)( 1 (⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦) 1 ) = 𝑓)))
5352riota2 7392 . . . . 5 (( 1 ∈ (𝑥(Hom ‘𝐶)𝑥) ∧ ∃!𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓)) → (∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)( 1 (⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦) 1 ) = 𝑓) ↔ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓)) = 1 ))
5437, 44, 53syl2anc 584 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐶)) → (∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)( 1 (⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦) 1 ) = 𝑓) ↔ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓)) = 1 ))
5531, 54mpbid 232 . . 3 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓)) = 1 )
5655mpteq2dva 5219 . 2 (𝜑 → (𝑥 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓))) = (𝑥 ∈ (Base‘𝐶) ↦ 1 ))
57 eqid 2736 . . 3 (Id‘𝐶) = (Id‘𝐶)
5838, 39, 40, 41, 57cidfval 17693 . 2 (𝜑 → (Id‘𝐶) = (𝑥 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓))))
593mpteq1d 5215 . 2 (𝜑 → (𝑥𝐵1 ) = (𝑥 ∈ (Base‘𝐶) ↦ 1 ))
6056, 58, 593eqtr4d 2781 1 (𝜑 → (Id‘𝐶) = (𝑥𝐵1 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3052  ∃!wreu 3362  cop 4612  cmpt 5206  cfv 6536  crio 7366  (class class class)co 7410  Basecbs 17233  Hom chom 17287  compcco 17288  Catccat 17681  Idccid 17682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-cat 17685  df-cid 17686
This theorem is referenced by:  iscatd2  17698
  Copyright terms: Public domain W3C validator