MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  catidd Structured version   Visualization version   GIF version

Theorem catidd 16654
Description: Deduce the identity arrow in a category. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
catidd.b (𝜑𝐵 = (Base‘𝐶))
catidd.h (𝜑𝐻 = (Hom ‘𝐶))
catidd.o (𝜑· = (comp‘𝐶))
catidd.c (𝜑𝐶 ∈ Cat)
catidd.1 ((𝜑𝑥𝐵) → 1 ∈ (𝑥𝐻𝑥))
catidd.2 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑓 ∈ (𝑦𝐻𝑥))) → ( 1 (⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓)
catidd.3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑓 ∈ (𝑥𝐻𝑦))) → (𝑓(⟨𝑥, 𝑥· 𝑦) 1 ) = 𝑓)
Assertion
Ref Expression
catidd (𝜑 → (Id‘𝐶) = (𝑥𝐵1 ))
Distinct variable groups:   𝑦,𝑓, 1   𝑥,𝐵   𝑥,𝑓,𝐶,𝑦   𝜑,𝑓,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑦,𝑓)   · (𝑥,𝑦,𝑓)   1 (𝑥)   𝐻(𝑥,𝑦,𝑓)

Proof of Theorem catidd
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 catidd.2 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑓 ∈ (𝑦𝐻𝑥))) → ( 1 (⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓)
21ex 402 . . . . . . . . . 10 (𝜑 → ((𝑥𝐵𝑦𝐵𝑓 ∈ (𝑦𝐻𝑥)) → ( 1 (⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓))
3 catidd.b . . . . . . . . . . . 12 (𝜑𝐵 = (Base‘𝐶))
43eleq2d 2865 . . . . . . . . . . 11 (𝜑 → (𝑥𝐵𝑥 ∈ (Base‘𝐶)))
53eleq2d 2865 . . . . . . . . . . 11 (𝜑 → (𝑦𝐵𝑦 ∈ (Base‘𝐶)))
6 catidd.h . . . . . . . . . . . . 13 (𝜑𝐻 = (Hom ‘𝐶))
76oveqd 6896 . . . . . . . . . . . 12 (𝜑 → (𝑦𝐻𝑥) = (𝑦(Hom ‘𝐶)𝑥))
87eleq2d 2865 . . . . . . . . . . 11 (𝜑 → (𝑓 ∈ (𝑦𝐻𝑥) ↔ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)))
94, 5, 83anbi123d 1561 . . . . . . . . . 10 (𝜑 → ((𝑥𝐵𝑦𝐵𝑓 ∈ (𝑦𝐻𝑥)) ↔ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥))))
10 catidd.o . . . . . . . . . . . . 13 (𝜑· = (comp‘𝐶))
1110oveqd 6896 . . . . . . . . . . . 12 (𝜑 → (⟨𝑦, 𝑥· 𝑥) = (⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥))
1211oveqd 6896 . . . . . . . . . . 11 (𝜑 → ( 1 (⟨𝑦, 𝑥· 𝑥)𝑓) = ( 1 (⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓))
1312eqeq1d 2802 . . . . . . . . . 10 (𝜑 → (( 1 (⟨𝑦, 𝑥· 𝑥)𝑓) = 𝑓 ↔ ( 1 (⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓))
142, 9, 133imtr3d 285 . . . . . . . . 9 (𝜑 → ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → ( 1 (⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓))
15143expd 1463 . . . . . . . 8 (𝜑 → (𝑥 ∈ (Base‘𝐶) → (𝑦 ∈ (Base‘𝐶) → (𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥) → ( 1 (⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓))))
1615imp41 417 . . . . . . 7 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → ( 1 (⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓)
1716ralrimiva 3148 . . . . . 6 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) → ∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)( 1 (⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓)
18 catidd.3 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑓 ∈ (𝑥𝐻𝑦))) → (𝑓(⟨𝑥, 𝑥· 𝑦) 1 ) = 𝑓)
1918ex 402 . . . . . . . . . 10 (𝜑 → ((𝑥𝐵𝑦𝐵𝑓 ∈ (𝑥𝐻𝑦)) → (𝑓(⟨𝑥, 𝑥· 𝑦) 1 ) = 𝑓))
206oveqd 6896 . . . . . . . . . . . 12 (𝜑 → (𝑥𝐻𝑦) = (𝑥(Hom ‘𝐶)𝑦))
2120eleq2d 2865 . . . . . . . . . . 11 (𝜑 → (𝑓 ∈ (𝑥𝐻𝑦) ↔ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)))
224, 5, 213anbi123d 1561 . . . . . . . . . 10 (𝜑 → ((𝑥𝐵𝑦𝐵𝑓 ∈ (𝑥𝐻𝑦)) ↔ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))))
2310oveqd 6896 . . . . . . . . . . . 12 (𝜑 → (⟨𝑥, 𝑥· 𝑦) = (⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦))
2423oveqd 6896 . . . . . . . . . . 11 (𝜑 → (𝑓(⟨𝑥, 𝑥· 𝑦) 1 ) = (𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦) 1 ))
2524eqeq1d 2802 . . . . . . . . . 10 (𝜑 → ((𝑓(⟨𝑥, 𝑥· 𝑦) 1 ) = 𝑓 ↔ (𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦) 1 ) = 𝑓))
2619, 22, 253imtr3d 285 . . . . . . . . 9 (𝜑 → ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦) 1 ) = 𝑓))
27263expd 1463 . . . . . . . 8 (𝜑 → (𝑥 ∈ (Base‘𝐶) → (𝑦 ∈ (Base‘𝐶) → (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) → (𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦) 1 ) = 𝑓))))
2827imp41 417 . . . . . . 7 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦) 1 ) = 𝑓)
2928ralrimiva 3148 . . . . . 6 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) → ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦) 1 ) = 𝑓)
3017, 29jca 508 . . . . 5 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) → (∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)( 1 (⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦) 1 ) = 𝑓))
3130ralrimiva 3148 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐶)) → ∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)( 1 (⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦) 1 ) = 𝑓))
32 catidd.1 . . . . . . . 8 ((𝜑𝑥𝐵) → 1 ∈ (𝑥𝐻𝑥))
3332ex 402 . . . . . . 7 (𝜑 → (𝑥𝐵1 ∈ (𝑥𝐻𝑥)))
346oveqd 6896 . . . . . . . 8 (𝜑 → (𝑥𝐻𝑥) = (𝑥(Hom ‘𝐶)𝑥))
3534eleq2d 2865 . . . . . . 7 (𝜑 → ( 1 ∈ (𝑥𝐻𝑥) ↔ 1 ∈ (𝑥(Hom ‘𝐶)𝑥)))
3633, 4, 353imtr3d 285 . . . . . 6 (𝜑 → (𝑥 ∈ (Base‘𝐶) → 1 ∈ (𝑥(Hom ‘𝐶)𝑥)))
3736imp 396 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → 1 ∈ (𝑥(Hom ‘𝐶)𝑥))
38 eqid 2800 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
39 eqid 2800 . . . . . 6 (Hom ‘𝐶) = (Hom ‘𝐶)
40 eqid 2800 . . . . . 6 (comp‘𝐶) = (comp‘𝐶)
41 catidd.c . . . . . . 7 (𝜑𝐶 ∈ Cat)
4241adantr 473 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐶 ∈ Cat)
43 simpr 478 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶))
4438, 39, 40, 42, 43catideu 16649 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ∃!𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓))
45 oveq1 6886 . . . . . . . . . 10 (𝑔 = 1 → (𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = ( 1 (⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓))
4645eqeq1d 2802 . . . . . . . . 9 (𝑔 = 1 → ((𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ↔ ( 1 (⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓))
4746ralbidv 3168 . . . . . . . 8 (𝑔 = 1 → (∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ↔ ∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)( 1 (⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓))
48 oveq2 6887 . . . . . . . . . 10 (𝑔 = 1 → (𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = (𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦) 1 ))
4948eqeq1d 2802 . . . . . . . . 9 (𝑔 = 1 → ((𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓 ↔ (𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦) 1 ) = 𝑓))
5049ralbidv 3168 . . . . . . . 8 (𝑔 = 1 → (∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓 ↔ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦) 1 ) = 𝑓))
5147, 50anbi12d 625 . . . . . . 7 (𝑔 = 1 → ((∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓) ↔ (∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)( 1 (⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦) 1 ) = 𝑓)))
5251ralbidv 3168 . . . . . 6 (𝑔 = 1 → (∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓) ↔ ∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)( 1 (⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦) 1 ) = 𝑓)))
5352riota2 6862 . . . . 5 (( 1 ∈ (𝑥(Hom ‘𝐶)𝑥) ∧ ∃!𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓)) → (∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)( 1 (⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦) 1 ) = 𝑓) ↔ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓)) = 1 ))
5437, 44, 53syl2anc 580 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐶)) → (∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)( 1 (⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦) 1 ) = 𝑓) ↔ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓)) = 1 ))
5531, 54mpbid 224 . . 3 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓)) = 1 )
5655mpteq2dva 4938 . 2 (𝜑 → (𝑥 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓))) = (𝑥 ∈ (Base‘𝐶) ↦ 1 ))
57 eqid 2800 . . 3 (Id‘𝐶) = (Id‘𝐶)
5838, 39, 40, 41, 57cidfval 16650 . 2 (𝜑 → (Id‘𝐶) = (𝑥 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓))))
593mpteq1d 4932 . 2 (𝜑 → (𝑥𝐵1 ) = (𝑥 ∈ (Base‘𝐶) ↦ 1 ))
6056, 58, 593eqtr4d 2844 1 (𝜑 → (Id‘𝐶) = (𝑥𝐵1 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385  w3a 1108   = wceq 1653  wcel 2157  wral 3090  ∃!wreu 3092  cop 4375  cmpt 4923  cfv 6102  crio 6839  (class class class)co 6879  Basecbs 16183  Hom chom 16277  compcco 16278  Catccat 16638  Idccid 16639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2378  ax-ext 2778  ax-rep 4965  ax-sep 4976  ax-nul 4984  ax-pr 5098
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2592  df-eu 2610  df-clab 2787  df-cleq 2793  df-clel 2796  df-nfc 2931  df-ne 2973  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3388  df-sbc 3635  df-csb 3730  df-dif 3773  df-un 3775  df-in 3777  df-ss 3784  df-nul 4117  df-if 4279  df-sn 4370  df-pr 4372  df-op 4376  df-uni 4630  df-iun 4713  df-br 4845  df-opab 4907  df-mpt 4924  df-id 5221  df-xp 5319  df-rel 5320  df-cnv 5321  df-co 5322  df-dm 5323  df-rn 5324  df-res 5325  df-ima 5326  df-iota 6065  df-fun 6104  df-fn 6105  df-f 6106  df-f1 6107  df-fo 6108  df-f1o 6109  df-fv 6110  df-riota 6840  df-ov 6882  df-cat 16642  df-cid 16643
This theorem is referenced by:  iscatd2  16655
  Copyright terms: Public domain W3C validator