Step | Hyp | Ref
| Expression |
1 | | catidd.2 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑓 ∈ (𝑦𝐻𝑥))) → ( 1 (〈𝑦, 𝑥〉 · 𝑥)𝑓) = 𝑓) |
2 | 1 | ex 413 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑓 ∈ (𝑦𝐻𝑥)) → ( 1 (〈𝑦, 𝑥〉 · 𝑥)𝑓) = 𝑓)) |
3 | | catidd.b |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐵 = (Base‘𝐶)) |
4 | 3 | eleq2d 2824 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑥 ∈ 𝐵 ↔ 𝑥 ∈ (Base‘𝐶))) |
5 | 3 | eleq2d 2824 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑦 ∈ 𝐵 ↔ 𝑦 ∈ (Base‘𝐶))) |
6 | | catidd.h |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) |
7 | 6 | oveqd 7292 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑦𝐻𝑥) = (𝑦(Hom ‘𝐶)𝑥)) |
8 | 7 | eleq2d 2824 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑓 ∈ (𝑦𝐻𝑥) ↔ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥))) |
9 | 4, 5, 8 | 3anbi123d 1435 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑓 ∈ (𝑦𝐻𝑥)) ↔ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)))) |
10 | | catidd.o |
. . . . . . . . . . . . 13
⊢ (𝜑 → · = (comp‘𝐶)) |
11 | 10 | oveqd 7292 |
. . . . . . . . . . . 12
⊢ (𝜑 → (〈𝑦, 𝑥〉 · 𝑥) = (〈𝑦, 𝑥〉(comp‘𝐶)𝑥)) |
12 | 11 | oveqd 7292 |
. . . . . . . . . . 11
⊢ (𝜑 → ( 1 (〈𝑦, 𝑥〉 · 𝑥)𝑓) = ( 1 (〈𝑦, 𝑥〉(comp‘𝐶)𝑥)𝑓)) |
13 | 12 | eqeq1d 2740 |
. . . . . . . . . 10
⊢ (𝜑 → (( 1 (〈𝑦, 𝑥〉 · 𝑥)𝑓) = 𝑓 ↔ ( 1 (〈𝑦, 𝑥〉(comp‘𝐶)𝑥)𝑓) = 𝑓)) |
14 | 2, 9, 13 | 3imtr3d 293 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → ( 1 (〈𝑦, 𝑥〉(comp‘𝐶)𝑥)𝑓) = 𝑓)) |
15 | 14 | 3expd 1352 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ (Base‘𝐶) → (𝑦 ∈ (Base‘𝐶) → (𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥) → ( 1 (〈𝑦, 𝑥〉(comp‘𝐶)𝑥)𝑓) = 𝑓)))) |
16 | 15 | imp41 426 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → ( 1 (〈𝑦, 𝑥〉(comp‘𝐶)𝑥)𝑓) = 𝑓) |
17 | 16 | ralrimiva 3103 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) → ∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)( 1 (〈𝑦, 𝑥〉(comp‘𝐶)𝑥)𝑓) = 𝑓) |
18 | | catidd.3 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑓 ∈ (𝑥𝐻𝑦))) → (𝑓(〈𝑥, 𝑥〉 · 𝑦) 1 ) = 𝑓) |
19 | 18 | ex 413 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑓 ∈ (𝑥𝐻𝑦)) → (𝑓(〈𝑥, 𝑥〉 · 𝑦) 1 ) = 𝑓)) |
20 | 6 | oveqd 7292 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑥𝐻𝑦) = (𝑥(Hom ‘𝐶)𝑦)) |
21 | 20 | eleq2d 2824 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑓 ∈ (𝑥𝐻𝑦) ↔ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) |
22 | 4, 5, 21 | 3anbi123d 1435 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑓 ∈ (𝑥𝐻𝑦)) ↔ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)))) |
23 | 10 | oveqd 7292 |
. . . . . . . . . . . 12
⊢ (𝜑 → (〈𝑥, 𝑥〉 · 𝑦) = (〈𝑥, 𝑥〉(comp‘𝐶)𝑦)) |
24 | 23 | oveqd 7292 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑓(〈𝑥, 𝑥〉 · 𝑦) 1 ) = (𝑓(〈𝑥, 𝑥〉(comp‘𝐶)𝑦) 1 )) |
25 | 24 | eqeq1d 2740 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑓(〈𝑥, 𝑥〉 · 𝑦) 1 ) = 𝑓 ↔ (𝑓(〈𝑥, 𝑥〉(comp‘𝐶)𝑦) 1 ) = 𝑓)) |
26 | 19, 22, 25 | 3imtr3d 293 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (𝑓(〈𝑥, 𝑥〉(comp‘𝐶)𝑦) 1 ) = 𝑓)) |
27 | 26 | 3expd 1352 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ (Base‘𝐶) → (𝑦 ∈ (Base‘𝐶) → (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) → (𝑓(〈𝑥, 𝑥〉(comp‘𝐶)𝑦) 1 ) = 𝑓)))) |
28 | 27 | imp41 426 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (𝑓(〈𝑥, 𝑥〉(comp‘𝐶)𝑦) 1 ) = 𝑓) |
29 | 28 | ralrimiva 3103 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) → ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(〈𝑥, 𝑥〉(comp‘𝐶)𝑦) 1 ) = 𝑓) |
30 | 17, 29 | jca 512 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) → (∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)( 1 (〈𝑦, 𝑥〉(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(〈𝑥, 𝑥〉(comp‘𝐶)𝑦) 1 ) = 𝑓)) |
31 | 30 | ralrimiva 3103 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → ∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)( 1 (〈𝑦, 𝑥〉(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(〈𝑥, 𝑥〉(comp‘𝐶)𝑦) 1 ) = 𝑓)) |
32 | | catidd.1 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 1 ∈ (𝑥𝐻𝑥)) |
33 | 32 | ex 413 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ 𝐵 → 1 ∈ (𝑥𝐻𝑥))) |
34 | 6 | oveqd 7292 |
. . . . . . . 8
⊢ (𝜑 → (𝑥𝐻𝑥) = (𝑥(Hom ‘𝐶)𝑥)) |
35 | 34 | eleq2d 2824 |
. . . . . . 7
⊢ (𝜑 → ( 1 ∈ (𝑥𝐻𝑥) ↔ 1 ∈ (𝑥(Hom ‘𝐶)𝑥))) |
36 | 33, 4, 35 | 3imtr3d 293 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ (Base‘𝐶) → 1 ∈ (𝑥(Hom ‘𝐶)𝑥))) |
37 | 36 | imp 407 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → 1 ∈ (𝑥(Hom ‘𝐶)𝑥)) |
38 | | eqid 2738 |
. . . . . 6
⊢
(Base‘𝐶) =
(Base‘𝐶) |
39 | | eqid 2738 |
. . . . . 6
⊢ (Hom
‘𝐶) = (Hom
‘𝐶) |
40 | | eqid 2738 |
. . . . . 6
⊢
(comp‘𝐶) =
(comp‘𝐶) |
41 | | catidd.c |
. . . . . . 7
⊢ (𝜑 → 𝐶 ∈ Cat) |
42 | 41 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → 𝐶 ∈ Cat) |
43 | | simpr 485 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶)) |
44 | 38, 39, 40, 42, 43 | catideu 17384 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → ∃!𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(〈𝑦, 𝑥〉(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(〈𝑥, 𝑥〉(comp‘𝐶)𝑦)𝑔) = 𝑓)) |
45 | | oveq1 7282 |
. . . . . . . . . 10
⊢ (𝑔 = 1 → (𝑔(〈𝑦, 𝑥〉(comp‘𝐶)𝑥)𝑓) = ( 1 (〈𝑦, 𝑥〉(comp‘𝐶)𝑥)𝑓)) |
46 | 45 | eqeq1d 2740 |
. . . . . . . . 9
⊢ (𝑔 = 1 → ((𝑔(〈𝑦, 𝑥〉(comp‘𝐶)𝑥)𝑓) = 𝑓 ↔ ( 1 (〈𝑦, 𝑥〉(comp‘𝐶)𝑥)𝑓) = 𝑓)) |
47 | 46 | ralbidv 3112 |
. . . . . . . 8
⊢ (𝑔 = 1 → (∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(〈𝑦, 𝑥〉(comp‘𝐶)𝑥)𝑓) = 𝑓 ↔ ∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)( 1 (〈𝑦, 𝑥〉(comp‘𝐶)𝑥)𝑓) = 𝑓)) |
48 | | oveq2 7283 |
. . . . . . . . . 10
⊢ (𝑔 = 1 → (𝑓(〈𝑥, 𝑥〉(comp‘𝐶)𝑦)𝑔) = (𝑓(〈𝑥, 𝑥〉(comp‘𝐶)𝑦) 1 )) |
49 | 48 | eqeq1d 2740 |
. . . . . . . . 9
⊢ (𝑔 = 1 → ((𝑓(〈𝑥, 𝑥〉(comp‘𝐶)𝑦)𝑔) = 𝑓 ↔ (𝑓(〈𝑥, 𝑥〉(comp‘𝐶)𝑦) 1 ) = 𝑓)) |
50 | 49 | ralbidv 3112 |
. . . . . . . 8
⊢ (𝑔 = 1 → (∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(〈𝑥, 𝑥〉(comp‘𝐶)𝑦)𝑔) = 𝑓 ↔ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(〈𝑥, 𝑥〉(comp‘𝐶)𝑦) 1 ) = 𝑓)) |
51 | 47, 50 | anbi12d 631 |
. . . . . . 7
⊢ (𝑔 = 1 → ((∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(〈𝑦, 𝑥〉(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(〈𝑥, 𝑥〉(comp‘𝐶)𝑦)𝑔) = 𝑓) ↔ (∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)( 1 (〈𝑦, 𝑥〉(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(〈𝑥, 𝑥〉(comp‘𝐶)𝑦) 1 ) = 𝑓))) |
52 | 51 | ralbidv 3112 |
. . . . . 6
⊢ (𝑔 = 1 → (∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(〈𝑦, 𝑥〉(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(〈𝑥, 𝑥〉(comp‘𝐶)𝑦)𝑔) = 𝑓) ↔ ∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)( 1 (〈𝑦, 𝑥〉(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(〈𝑥, 𝑥〉(comp‘𝐶)𝑦) 1 ) = 𝑓))) |
53 | 52 | riota2 7258 |
. . . . 5
⊢ (( 1 ∈ (𝑥(Hom ‘𝐶)𝑥) ∧ ∃!𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(〈𝑦, 𝑥〉(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(〈𝑥, 𝑥〉(comp‘𝐶)𝑦)𝑔) = 𝑓)) → (∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)( 1 (〈𝑦, 𝑥〉(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(〈𝑥, 𝑥〉(comp‘𝐶)𝑦) 1 ) = 𝑓) ↔ (℩𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(〈𝑦, 𝑥〉(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(〈𝑥, 𝑥〉(comp‘𝐶)𝑦)𝑔) = 𝑓)) = 1 )) |
54 | 37, 44, 53 | syl2anc 584 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → (∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)( 1 (〈𝑦, 𝑥〉(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(〈𝑥, 𝑥〉(comp‘𝐶)𝑦) 1 ) = 𝑓) ↔ (℩𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(〈𝑦, 𝑥〉(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(〈𝑥, 𝑥〉(comp‘𝐶)𝑦)𝑔) = 𝑓)) = 1 )) |
55 | 31, 54 | mpbid 231 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → (℩𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(〈𝑦, 𝑥〉(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(〈𝑥, 𝑥〉(comp‘𝐶)𝑦)𝑔) = 𝑓)) = 1 ) |
56 | 55 | mpteq2dva 5174 |
. 2
⊢ (𝜑 → (𝑥 ∈ (Base‘𝐶) ↦ (℩𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(〈𝑦, 𝑥〉(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(〈𝑥, 𝑥〉(comp‘𝐶)𝑦)𝑔) = 𝑓))) = (𝑥 ∈ (Base‘𝐶) ↦ 1 )) |
57 | | eqid 2738 |
. . 3
⊢
(Id‘𝐶) =
(Id‘𝐶) |
58 | 38, 39, 40, 41, 57 | cidfval 17385 |
. 2
⊢ (𝜑 → (Id‘𝐶) = (𝑥 ∈ (Base‘𝐶) ↦ (℩𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(〈𝑦, 𝑥〉(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(〈𝑥, 𝑥〉(comp‘𝐶)𝑦)𝑔) = 𝑓)))) |
59 | 3 | mpteq1d 5169 |
. 2
⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 1 ) = (𝑥 ∈ (Base‘𝐶) ↦ 1 )) |
60 | 56, 58, 59 | 3eqtr4d 2788 |
1
⊢ (𝜑 → (Id‘𝐶) = (𝑥 ∈ 𝐵 ↦ 1 )) |