MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coprmprod Structured version   Visualization version   GIF version

Theorem coprmprod 16572
Description: The product of the elements of a sequence of pairwise coprime positive integers is coprime to a positive integer which is coprime to all integers of the sequence. (Contributed by AV, 18-Aug-2020.)
Assertion
Ref Expression
coprmprod (((𝑀 ∈ Fin ∧ 𝑀 ⊆ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝐹:ℕ⟶ℕ ∧ ∀𝑚𝑀 ((𝐹𝑚) gcd 𝑁) = 1) → (∀𝑚𝑀𝑛 ∈ (𝑀 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 → (∏𝑚𝑀 (𝐹𝑚) gcd 𝑁) = 1))
Distinct variable groups:   𝑚,𝐹   𝑚,𝑀,𝑛   𝑚,𝑁,𝑛
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem coprmprod
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sseq1 3955 . . . . . . . . 9 (𝑥 = ∅ → (𝑥 ⊆ ℕ ↔ ∅ ⊆ ℕ))
213anbi1d 1442 . . . . . . . 8 (𝑥 = ∅ → ((𝑥 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ↔ (∅ ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)))
3 raleq 3289 . . . . . . . 8 (𝑥 = ∅ → (∀𝑚𝑥 ((𝐹𝑚) gcd 𝑁) = 1 ↔ ∀𝑚 ∈ ∅ ((𝐹𝑚) gcd 𝑁) = 1))
4 difeq1 4066 . . . . . . . . . 10 (𝑥 = ∅ → (𝑥 ∖ {𝑚}) = (∅ ∖ {𝑚}))
54raleqdv 3292 . . . . . . . . 9 (𝑥 = ∅ → (∀𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ↔ ∀𝑛 ∈ (∅ ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1))
65raleqbi1dv 3304 . . . . . . . 8 (𝑥 = ∅ → (∀𝑚𝑥𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ↔ ∀𝑚 ∈ ∅ ∀𝑛 ∈ (∅ ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1))
72, 3, 63anbi123d 1438 . . . . . . 7 (𝑥 = ∅ → (((𝑥 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚𝑥 ((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚𝑥𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) ↔ ((∅ ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ ∅ ((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ ∅ ∀𝑛 ∈ (∅ ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1)))
8 prodeq1 15814 . . . . . . . . 9 (𝑥 = ∅ → ∏𝑚𝑥 (𝐹𝑚) = ∏𝑚 ∈ ∅ (𝐹𝑚))
98oveq1d 7361 . . . . . . . 8 (𝑥 = ∅ → (∏𝑚𝑥 (𝐹𝑚) gcd 𝑁) = (∏𝑚 ∈ ∅ (𝐹𝑚) gcd 𝑁))
109eqeq1d 2733 . . . . . . 7 (𝑥 = ∅ → ((∏𝑚𝑥 (𝐹𝑚) gcd 𝑁) = 1 ↔ (∏𝑚 ∈ ∅ (𝐹𝑚) gcd 𝑁) = 1))
117, 10imbi12d 344 . . . . . 6 (𝑥 = ∅ → ((((𝑥 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚𝑥 ((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚𝑥𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (∏𝑚𝑥 (𝐹𝑚) gcd 𝑁) = 1) ↔ (((∅ ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ ∅ ((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ ∅ ∀𝑛 ∈ (∅ ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (∏𝑚 ∈ ∅ (𝐹𝑚) gcd 𝑁) = 1)))
12 sseq1 3955 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥 ⊆ ℕ ↔ 𝑦 ⊆ ℕ))
13123anbi1d 1442 . . . . . . . 8 (𝑥 = 𝑦 → ((𝑥 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ↔ (𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)))
14 raleq 3289 . . . . . . . 8 (𝑥 = 𝑦 → (∀𝑚𝑥 ((𝐹𝑚) gcd 𝑁) = 1 ↔ ∀𝑚𝑦 ((𝐹𝑚) gcd 𝑁) = 1))
15 difeq1 4066 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑥 ∖ {𝑚}) = (𝑦 ∖ {𝑚}))
1615raleqdv 3292 . . . . . . . . 9 (𝑥 = 𝑦 → (∀𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ↔ ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1))
1716raleqbi1dv 3304 . . . . . . . 8 (𝑥 = 𝑦 → (∀𝑚𝑥𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ↔ ∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1))
1813, 14, 173anbi123d 1438 . . . . . . 7 (𝑥 = 𝑦 → (((𝑥 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚𝑥 ((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚𝑥𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) ↔ ((𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚𝑦 ((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1)))
19 prodeq1 15814 . . . . . . . . 9 (𝑥 = 𝑦 → ∏𝑚𝑥 (𝐹𝑚) = ∏𝑚𝑦 (𝐹𝑚))
2019oveq1d 7361 . . . . . . . 8 (𝑥 = 𝑦 → (∏𝑚𝑥 (𝐹𝑚) gcd 𝑁) = (∏𝑚𝑦 (𝐹𝑚) gcd 𝑁))
2120eqeq1d 2733 . . . . . . 7 (𝑥 = 𝑦 → ((∏𝑚𝑥 (𝐹𝑚) gcd 𝑁) = 1 ↔ (∏𝑚𝑦 (𝐹𝑚) gcd 𝑁) = 1))
2218, 21imbi12d 344 . . . . . 6 (𝑥 = 𝑦 → ((((𝑥 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚𝑥 ((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚𝑥𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (∏𝑚𝑥 (𝐹𝑚) gcd 𝑁) = 1) ↔ (((𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚𝑦 ((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (∏𝑚𝑦 (𝐹𝑚) gcd 𝑁) = 1)))
23 sseq1 3955 . . . . . . . . 9 (𝑥 = (𝑦 ∪ {𝑧}) → (𝑥 ⊆ ℕ ↔ (𝑦 ∪ {𝑧}) ⊆ ℕ))
24233anbi1d 1442 . . . . . . . 8 (𝑥 = (𝑦 ∪ {𝑧}) → ((𝑥 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ↔ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)))
25 raleq 3289 . . . . . . . 8 (𝑥 = (𝑦 ∪ {𝑧}) → (∀𝑚𝑥 ((𝐹𝑚) gcd 𝑁) = 1 ↔ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹𝑚) gcd 𝑁) = 1))
26 difeq1 4066 . . . . . . . . . 10 (𝑥 = (𝑦 ∪ {𝑧}) → (𝑥 ∖ {𝑚}) = ((𝑦 ∪ {𝑧}) ∖ {𝑚}))
2726raleqdv 3292 . . . . . . . . 9 (𝑥 = (𝑦 ∪ {𝑧}) → (∀𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ↔ ∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1))
2827raleqbi1dv 3304 . . . . . . . 8 (𝑥 = (𝑦 ∪ {𝑧}) → (∀𝑚𝑥𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ↔ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1))
2924, 25, 283anbi123d 1438 . . . . . . 7 (𝑥 = (𝑦 ∪ {𝑧}) → (((𝑥 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚𝑥 ((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚𝑥𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) ↔ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1)))
30 prodeq1 15814 . . . . . . . . 9 (𝑥 = (𝑦 ∪ {𝑧}) → ∏𝑚𝑥 (𝐹𝑚) = ∏𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚))
3130oveq1d 7361 . . . . . . . 8 (𝑥 = (𝑦 ∪ {𝑧}) → (∏𝑚𝑥 (𝐹𝑚) gcd 𝑁) = (∏𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) gcd 𝑁))
3231eqeq1d 2733 . . . . . . 7 (𝑥 = (𝑦 ∪ {𝑧}) → ((∏𝑚𝑥 (𝐹𝑚) gcd 𝑁) = 1 ↔ (∏𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) gcd 𝑁) = 1))
3329, 32imbi12d 344 . . . . . 6 (𝑥 = (𝑦 ∪ {𝑧}) → ((((𝑥 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚𝑥 ((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚𝑥𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (∏𝑚𝑥 (𝐹𝑚) gcd 𝑁) = 1) ↔ ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (∏𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) gcd 𝑁) = 1)))
34 sseq1 3955 . . . . . . . . 9 (𝑥 = 𝑀 → (𝑥 ⊆ ℕ ↔ 𝑀 ⊆ ℕ))
35343anbi1d 1442 . . . . . . . 8 (𝑥 = 𝑀 → ((𝑥 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ↔ (𝑀 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)))
36 raleq 3289 . . . . . . . 8 (𝑥 = 𝑀 → (∀𝑚𝑥 ((𝐹𝑚) gcd 𝑁) = 1 ↔ ∀𝑚𝑀 ((𝐹𝑚) gcd 𝑁) = 1))
37 difeq1 4066 . . . . . . . . . 10 (𝑥 = 𝑀 → (𝑥 ∖ {𝑚}) = (𝑀 ∖ {𝑚}))
3837raleqdv 3292 . . . . . . . . 9 (𝑥 = 𝑀 → (∀𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ↔ ∀𝑛 ∈ (𝑀 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1))
3938raleqbi1dv 3304 . . . . . . . 8 (𝑥 = 𝑀 → (∀𝑚𝑥𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ↔ ∀𝑚𝑀𝑛 ∈ (𝑀 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1))
4035, 36, 393anbi123d 1438 . . . . . . 7 (𝑥 = 𝑀 → (((𝑥 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚𝑥 ((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚𝑥𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) ↔ ((𝑀 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚𝑀 ((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚𝑀𝑛 ∈ (𝑀 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1)))
41 prodeq1 15814 . . . . . . . . 9 (𝑥 = 𝑀 → ∏𝑚𝑥 (𝐹𝑚) = ∏𝑚𝑀 (𝐹𝑚))
4241oveq1d 7361 . . . . . . . 8 (𝑥 = 𝑀 → (∏𝑚𝑥 (𝐹𝑚) gcd 𝑁) = (∏𝑚𝑀 (𝐹𝑚) gcd 𝑁))
4342eqeq1d 2733 . . . . . . 7 (𝑥 = 𝑀 → ((∏𝑚𝑥 (𝐹𝑚) gcd 𝑁) = 1 ↔ (∏𝑚𝑀 (𝐹𝑚) gcd 𝑁) = 1))
4440, 43imbi12d 344 . . . . . 6 (𝑥 = 𝑀 → ((((𝑥 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚𝑥 ((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚𝑥𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (∏𝑚𝑥 (𝐹𝑚) gcd 𝑁) = 1) ↔ (((𝑀 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚𝑀 ((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚𝑀𝑛 ∈ (𝑀 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (∏𝑚𝑀 (𝐹𝑚) gcd 𝑁) = 1)))
45 prod0 15850 . . . . . . . . . . 11 𝑚 ∈ ∅ (𝐹𝑚) = 1
4645a1i 11 . . . . . . . . . 10 (𝑁 ∈ ℕ → ∏𝑚 ∈ ∅ (𝐹𝑚) = 1)
4746oveq1d 7361 . . . . . . . . 9 (𝑁 ∈ ℕ → (∏𝑚 ∈ ∅ (𝐹𝑚) gcd 𝑁) = (1 gcd 𝑁))
48 nnz 12489 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
49 1gcd 16444 . . . . . . . . . 10 (𝑁 ∈ ℤ → (1 gcd 𝑁) = 1)
5048, 49syl 17 . . . . . . . . 9 (𝑁 ∈ ℕ → (1 gcd 𝑁) = 1)
5147, 50eqtrd 2766 . . . . . . . 8 (𝑁 ∈ ℕ → (∏𝑚 ∈ ∅ (𝐹𝑚) gcd 𝑁) = 1)
52513ad2ant2 1134 . . . . . . 7 ((∅ ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) → (∏𝑚 ∈ ∅ (𝐹𝑚) gcd 𝑁) = 1)
53523ad2ant1 1133 . . . . . 6 (((∅ ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ ∅ ((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ ∅ ∀𝑛 ∈ (∅ ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (∏𝑚 ∈ ∅ (𝐹𝑚) gcd 𝑁) = 1)
54 nfv 1915 . . . . . . . . . . . . . . . 16 𝑚(((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦))
55 nfcv 2894 . . . . . . . . . . . . . . . 16 𝑚(𝐹𝑧)
56 simprl 770 . . . . . . . . . . . . . . . 16 ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → 𝑦 ∈ Fin)
57 unss 4137 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ⊆ ℕ ∧ {𝑧} ⊆ ℕ) ↔ (𝑦 ∪ {𝑧}) ⊆ ℕ)
58 vex 3440 . . . . . . . . . . . . . . . . . . . . . 22 𝑧 ∈ V
5958snss 4734 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ ℕ ↔ {𝑧} ⊆ ℕ)
6059biimpri 228 . . . . . . . . . . . . . . . . . . . 20 ({𝑧} ⊆ ℕ → 𝑧 ∈ ℕ)
6160adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ⊆ ℕ ∧ {𝑧} ⊆ ℕ) → 𝑧 ∈ ℕ)
6257, 61sylbir 235 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∪ {𝑧}) ⊆ ℕ → 𝑧 ∈ ℕ)
63623ad2ant1 1133 . . . . . . . . . . . . . . . . 17 (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) → 𝑧 ∈ ℕ)
6463adantr 480 . . . . . . . . . . . . . . . 16 ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → 𝑧 ∈ ℕ)
65 simprr 772 . . . . . . . . . . . . . . . 16 ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → ¬ 𝑧𝑦)
66 simpll3 1215 . . . . . . . . . . . . . . . . . 18 (((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) ∧ 𝑚𝑦) → 𝐹:ℕ⟶ℕ)
67 simpl 482 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ⊆ ℕ ∧ {𝑧} ⊆ ℕ) → 𝑦 ⊆ ℕ)
6857, 67sylbir 235 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 ∪ {𝑧}) ⊆ ℕ → 𝑦 ⊆ ℕ)
69683ad2ant1 1133 . . . . . . . . . . . . . . . . . . . 20 (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) → 𝑦 ⊆ ℕ)
7069adantr 480 . . . . . . . . . . . . . . . . . . 19 ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → 𝑦 ⊆ ℕ)
7170sselda 3929 . . . . . . . . . . . . . . . . . 18 (((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) ∧ 𝑚𝑦) → 𝑚 ∈ ℕ)
7266, 71ffvelcdmd 7018 . . . . . . . . . . . . . . . . 17 (((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) ∧ 𝑚𝑦) → (𝐹𝑚) ∈ ℕ)
7372nncnd 12141 . . . . . . . . . . . . . . . 16 (((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) ∧ 𝑚𝑦) → (𝐹𝑚) ∈ ℂ)
74 fveq2 6822 . . . . . . . . . . . . . . . 16 (𝑚 = 𝑧 → (𝐹𝑚) = (𝐹𝑧))
75 simpr 484 . . . . . . . . . . . . . . . . . . . 20 (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝐹:ℕ⟶ℕ) → 𝐹:ℕ⟶ℕ)
7662adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝐹:ℕ⟶ℕ) → 𝑧 ∈ ℕ)
7775, 76ffvelcdmd 7018 . . . . . . . . . . . . . . . . . . 19 (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝐹:ℕ⟶ℕ) → (𝐹𝑧) ∈ ℕ)
78773adant2 1131 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) → (𝐹𝑧) ∈ ℕ)
7978adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → (𝐹𝑧) ∈ ℕ)
8079nncnd 12141 . . . . . . . . . . . . . . . 16 ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → (𝐹𝑧) ∈ ℂ)
8154, 55, 56, 64, 65, 73, 74, 80fprodsplitsn 15896 . . . . . . . . . . . . . . 15 ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → ∏𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) = (∏𝑚𝑦 (𝐹𝑚) · (𝐹𝑧)))
8281oveq1d 7361 . . . . . . . . . . . . . 14 ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → (∏𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) gcd 𝑁) = ((∏𝑚𝑦 (𝐹𝑚) · (𝐹𝑧)) gcd 𝑁))
8356, 72fprodnncl 15862 . . . . . . . . . . . . . . . . 17 ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → ∏𝑚𝑦 (𝐹𝑚) ∈ ℕ)
8483nnzd 12495 . . . . . . . . . . . . . . . 16 ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → ∏𝑚𝑦 (𝐹𝑚) ∈ ℤ)
8579nnzd 12495 . . . . . . . . . . . . . . . 16 ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → (𝐹𝑧) ∈ ℤ)
8684, 85zmulcld 12583 . . . . . . . . . . . . . . 15 ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → (∏𝑚𝑦 (𝐹𝑚) · (𝐹𝑧)) ∈ ℤ)
87483ad2ant2 1134 . . . . . . . . . . . . . . . 16 (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) → 𝑁 ∈ ℤ)
8887adantr 480 . . . . . . . . . . . . . . 15 ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → 𝑁 ∈ ℤ)
8986, 88gcdcomd 16425 . . . . . . . . . . . . . 14 ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → ((∏𝑚𝑦 (𝐹𝑚) · (𝐹𝑧)) gcd 𝑁) = (𝑁 gcd (∏𝑚𝑦 (𝐹𝑚) · (𝐹𝑧))))
9082, 89eqtrd 2766 . . . . . . . . . . . . 13 ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → (∏𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) gcd 𝑁) = (𝑁 gcd (∏𝑚𝑦 (𝐹𝑚) · (𝐹𝑧))))
9190ex 412 . . . . . . . . . . . 12 (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) → ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (∏𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) gcd 𝑁) = (𝑁 gcd (∏𝑚𝑦 (𝐹𝑚) · (𝐹𝑧)))))
92913ad2ant1 1133 . . . . . . . . . . 11 ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (∏𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) gcd 𝑁) = (𝑁 gcd (∏𝑚𝑦 (𝐹𝑚) · (𝐹𝑧)))))
9392com12 32 . . . . . . . . . 10 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (∏𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) gcd 𝑁) = (𝑁 gcd (∏𝑚𝑦 (𝐹𝑚) · (𝐹𝑧)))))
9493adantr 480 . . . . . . . . 9 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (((𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚𝑦 ((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (∏𝑚𝑦 (𝐹𝑚) gcd 𝑁) = 1)) → ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (∏𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) gcd 𝑁) = (𝑁 gcd (∏𝑚𝑦 (𝐹𝑚) · (𝐹𝑧)))))
9594imp 406 . . . . . . . 8 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (((𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚𝑦 ((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (∏𝑚𝑦 (𝐹𝑚) gcd 𝑁) = 1)) ∧ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1)) → (∏𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) gcd 𝑁) = (𝑁 gcd (∏𝑚𝑦 (𝐹𝑚) · (𝐹𝑧))))
96 simpl2 1193 . . . . . . . . . . . . . . 15 ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → 𝑁 ∈ ℕ)
9796, 83, 793jca 1128 . . . . . . . . . . . . . 14 ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → (𝑁 ∈ ℕ ∧ ∏𝑚𝑦 (𝐹𝑚) ∈ ℕ ∧ (𝐹𝑧) ∈ ℕ))
9897ex 412 . . . . . . . . . . . . 13 (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) → ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (𝑁 ∈ ℕ ∧ ∏𝑚𝑦 (𝐹𝑚) ∈ ℕ ∧ (𝐹𝑧) ∈ ℕ)))
99983ad2ant1 1133 . . . . . . . . . . . 12 ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (𝑁 ∈ ℕ ∧ ∏𝑚𝑦 (𝐹𝑚) ∈ ℕ ∧ (𝐹𝑧) ∈ ℕ)))
10099com12 32 . . . . . . . . . . 11 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (𝑁 ∈ ℕ ∧ ∏𝑚𝑦 (𝐹𝑚) ∈ ℕ ∧ (𝐹𝑧) ∈ ℕ)))
101100adantr 480 . . . . . . . . . 10 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (((𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚𝑦 ((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (∏𝑚𝑦 (𝐹𝑚) gcd 𝑁) = 1)) → ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (𝑁 ∈ ℕ ∧ ∏𝑚𝑦 (𝐹𝑚) ∈ ℕ ∧ (𝐹𝑧) ∈ ℕ)))
102101imp 406 . . . . . . . . 9 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (((𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚𝑦 ((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (∏𝑚𝑦 (𝐹𝑚) gcd 𝑁) = 1)) ∧ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1)) → (𝑁 ∈ ℕ ∧ ∏𝑚𝑦 (𝐹𝑚) ∈ ℕ ∧ (𝐹𝑧) ∈ ℕ))
10388, 84gcdcomd 16425 . . . . . . . . . . . . . . 15 ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → (𝑁 gcd ∏𝑚𝑦 (𝐹𝑚)) = (∏𝑚𝑦 (𝐹𝑚) gcd 𝑁))
104103ex 412 . . . . . . . . . . . . . 14 (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) → ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (𝑁 gcd ∏𝑚𝑦 (𝐹𝑚)) = (∏𝑚𝑦 (𝐹𝑚) gcd 𝑁)))
1051043ad2ant1 1133 . . . . . . . . . . . . 13 ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (𝑁 gcd ∏𝑚𝑦 (𝐹𝑚)) = (∏𝑚𝑦 (𝐹𝑚) gcd 𝑁)))
106105com12 32 . . . . . . . . . . . 12 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (𝑁 gcd ∏𝑚𝑦 (𝐹𝑚)) = (∏𝑚𝑦 (𝐹𝑚) gcd 𝑁)))
107106adantr 480 . . . . . . . . . . 11 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (((𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚𝑦 ((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (∏𝑚𝑦 (𝐹𝑚) gcd 𝑁) = 1)) → ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (𝑁 gcd ∏𝑚𝑦 (𝐹𝑚)) = (∏𝑚𝑦 (𝐹𝑚) gcd 𝑁)))
108107imp 406 . . . . . . . . . 10 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (((𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚𝑦 ((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (∏𝑚𝑦 (𝐹𝑚) gcd 𝑁) = 1)) ∧ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1)) → (𝑁 gcd ∏𝑚𝑦 (𝐹𝑚)) = (∏𝑚𝑦 (𝐹𝑚) gcd 𝑁))
10968a1i 11 . . . . . . . . . . . . . 14 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → ((𝑦 ∪ {𝑧}) ⊆ ℕ → 𝑦 ⊆ ℕ))
110 idd 24 . . . . . . . . . . . . . 14 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (𝑁 ∈ ℕ → 𝑁 ∈ ℕ))
111 idd 24 . . . . . . . . . . . . . 14 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (𝐹:ℕ⟶ℕ → 𝐹:ℕ⟶ℕ))
112109, 110, 1113anim123d 1445 . . . . . . . . . . . . 13 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) → (𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)))
113 ssun1 4125 . . . . . . . . . . . . . 14 𝑦 ⊆ (𝑦 ∪ {𝑧})
114 ssralv 3998 . . . . . . . . . . . . . 14 (𝑦 ⊆ (𝑦 ∪ {𝑧}) → (∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹𝑚) gcd 𝑁) = 1 → ∀𝑚𝑦 ((𝐹𝑚) gcd 𝑁) = 1))
115113, 114mp1i 13 . . . . . . . . . . . . 13 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹𝑚) gcd 𝑁) = 1 → ∀𝑚𝑦 ((𝐹𝑚) gcd 𝑁) = 1))
116 ssralv 3998 . . . . . . . . . . . . . . 15 (𝑦 ⊆ (𝑦 ∪ {𝑧}) → (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 → ∀𝑚𝑦𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1))
117113, 116mp1i 13 . . . . . . . . . . . . . 14 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 → ∀𝑚𝑦𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1))
118113a1i 11 . . . . . . . . . . . . . . . . 17 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑚𝑦) → 𝑦 ⊆ (𝑦 ∪ {𝑧}))
119118ssdifd 4092 . . . . . . . . . . . . . . . 16 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑚𝑦) → (𝑦 ∖ {𝑚}) ⊆ ((𝑦 ∪ {𝑧}) ∖ {𝑚}))
120 ssralv 3998 . . . . . . . . . . . . . . . 16 ((𝑦 ∖ {𝑚}) ⊆ ((𝑦 ∪ {𝑧}) ∖ {𝑚}) → (∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 → ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1))
121119, 120syl 17 . . . . . . . . . . . . . . 15 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑚𝑦) → (∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 → ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1))
122121ralimdva 3144 . . . . . . . . . . . . . 14 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (∀𝑚𝑦𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 → ∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1))
123117, 122syld 47 . . . . . . . . . . . . 13 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 → ∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1))
124112, 115, 1233anim123d 1445 . . . . . . . . . . . 12 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → ((𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚𝑦 ((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1)))
125124imim1d 82 . . . . . . . . . . 11 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → ((((𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚𝑦 ((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (∏𝑚𝑦 (𝐹𝑚) gcd 𝑁) = 1) → ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (∏𝑚𝑦 (𝐹𝑚) gcd 𝑁) = 1)))
126125imp31 417 . . . . . . . . . 10 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (((𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚𝑦 ((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (∏𝑚𝑦 (𝐹𝑚) gcd 𝑁) = 1)) ∧ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1)) → (∏𝑚𝑦 (𝐹𝑚) gcd 𝑁) = 1)
127108, 126eqtrd 2766 . . . . . . . . 9 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (((𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚𝑦 ((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (∏𝑚𝑦 (𝐹𝑚) gcd 𝑁) = 1)) ∧ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1)) → (𝑁 gcd ∏𝑚𝑦 (𝐹𝑚)) = 1)
128 rpmulgcd 16468 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ ∏𝑚𝑦 (𝐹𝑚) ∈ ℕ ∧ (𝐹𝑧) ∈ ℕ) ∧ (𝑁 gcd ∏𝑚𝑦 (𝐹𝑚)) = 1) → (𝑁 gcd (∏𝑚𝑦 (𝐹𝑚) · (𝐹𝑧))) = (𝑁 gcd (𝐹𝑧)))
129102, 127, 128syl2anc 584 . . . . . . . 8 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (((𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚𝑦 ((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (∏𝑚𝑦 (𝐹𝑚) gcd 𝑁) = 1)) ∧ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1)) → (𝑁 gcd (∏𝑚𝑦 (𝐹𝑚) · (𝐹𝑧))) = (𝑁 gcd (𝐹𝑧)))
130 vsnid 4613 . . . . . . . . . . . . . . 15 𝑧 ∈ {𝑧}
131130olci 866 . . . . . . . . . . . . . 14 (𝑧𝑦𝑧 ∈ {𝑧})
132 elun 4100 . . . . . . . . . . . . . 14 (𝑧 ∈ (𝑦 ∪ {𝑧}) ↔ (𝑧𝑦𝑧 ∈ {𝑧}))
133131, 132mpbir 231 . . . . . . . . . . . . 13 𝑧 ∈ (𝑦 ∪ {𝑧})
13474oveq1d 7361 . . . . . . . . . . . . . . 15 (𝑚 = 𝑧 → ((𝐹𝑚) gcd 𝑁) = ((𝐹𝑧) gcd 𝑁))
135134eqeq1d 2733 . . . . . . . . . . . . . 14 (𝑚 = 𝑧 → (((𝐹𝑚) gcd 𝑁) = 1 ↔ ((𝐹𝑧) gcd 𝑁) = 1))
136135rspcv 3568 . . . . . . . . . . . . 13 (𝑧 ∈ (𝑦 ∪ {𝑧}) → (∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹𝑚) gcd 𝑁) = 1 → ((𝐹𝑧) gcd 𝑁) = 1))
137133, 136mp1i 13 . . . . . . . . . . . 12 (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) → (∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹𝑚) gcd 𝑁) = 1 → ((𝐹𝑧) gcd 𝑁) = 1))
138137imp 406 . . . . . . . . . . 11 ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹𝑚) gcd 𝑁) = 1) → ((𝐹𝑧) gcd 𝑁) = 1)
13978nnzd 12495 . . . . . . . . . . . . . 14 (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) → (𝐹𝑧) ∈ ℤ)
14087, 139gcdcomd 16425 . . . . . . . . . . . . 13 (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) → (𝑁 gcd (𝐹𝑧)) = ((𝐹𝑧) gcd 𝑁))
141140eqeq1d 2733 . . . . . . . . . . . 12 (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) → ((𝑁 gcd (𝐹𝑧)) = 1 ↔ ((𝐹𝑧) gcd 𝑁) = 1))
142141adantr 480 . . . . . . . . . . 11 ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹𝑚) gcd 𝑁) = 1) → ((𝑁 gcd (𝐹𝑧)) = 1 ↔ ((𝐹𝑧) gcd 𝑁) = 1))
143138, 142mpbird 257 . . . . . . . . . 10 ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹𝑚) gcd 𝑁) = 1) → (𝑁 gcd (𝐹𝑧)) = 1)
1441433adant3 1132 . . . . . . . . 9 ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (𝑁 gcd (𝐹𝑧)) = 1)
145144adantl 481 . . . . . . . 8 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (((𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚𝑦 ((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (∏𝑚𝑦 (𝐹𝑚) gcd 𝑁) = 1)) ∧ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1)) → (𝑁 gcd (𝐹𝑧)) = 1)
14695, 129, 1453eqtrd 2770 . . . . . . 7 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (((𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚𝑦 ((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (∏𝑚𝑦 (𝐹𝑚) gcd 𝑁) = 1)) ∧ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1)) → (∏𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) gcd 𝑁) = 1)
147146exp31 419 . . . . . 6 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → ((((𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚𝑦 ((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (∏𝑚𝑦 (𝐹𝑚) gcd 𝑁) = 1) → ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (∏𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) gcd 𝑁) = 1)))
14811, 22, 33, 44, 53, 147findcard2s 9075 . . . . 5 (𝑀 ∈ Fin → (((𝑀 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚𝑀 ((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚𝑀𝑛 ∈ (𝑀 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (∏𝑚𝑀 (𝐹𝑚) gcd 𝑁) = 1))
1491483expd 1354 . . . 4 (𝑀 ∈ Fin → ((𝑀 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) → (∀𝑚𝑀 ((𝐹𝑚) gcd 𝑁) = 1 → (∀𝑚𝑀𝑛 ∈ (𝑀 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 → (∏𝑚𝑀 (𝐹𝑚) gcd 𝑁) = 1))))
1501493expd 1354 . . 3 (𝑀 ∈ Fin → (𝑀 ⊆ ℕ → (𝑁 ∈ ℕ → (𝐹:ℕ⟶ℕ → (∀𝑚𝑀 ((𝐹𝑚) gcd 𝑁) = 1 → (∀𝑚𝑀𝑛 ∈ (𝑀 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 → (∏𝑚𝑀 (𝐹𝑚) gcd 𝑁) = 1))))))
1511503imp 1110 . 2 ((𝑀 ∈ Fin ∧ 𝑀 ⊆ ℕ ∧ 𝑁 ∈ ℕ) → (𝐹:ℕ⟶ℕ → (∀𝑚𝑀 ((𝐹𝑚) gcd 𝑁) = 1 → (∀𝑚𝑀𝑛 ∈ (𝑀 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 → (∏𝑚𝑀 (𝐹𝑚) gcd 𝑁) = 1))))
1521513imp 1110 1 (((𝑀 ∈ Fin ∧ 𝑀 ⊆ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝐹:ℕ⟶ℕ ∧ ∀𝑚𝑀 ((𝐹𝑚) gcd 𝑁) = 1) → (∀𝑚𝑀𝑛 ∈ (𝑀 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 → (∏𝑚𝑀 (𝐹𝑚) gcd 𝑁) = 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2111  wral 3047  cdif 3894  cun 3895  wss 3897  c0 4280  {csn 4573  wf 6477  cfv 6481  (class class class)co 7346  Fincfn 8869  1c1 11007   · cmul 11011  cn 12125  cz 12468  cprod 15810   gcd cgcd 16405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-fz 13408  df-fzo 13555  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-prod 15811  df-dvds 16164  df-gcd 16406
This theorem is referenced by:  coprmproddvdslem  16573
  Copyright terms: Public domain W3C validator