MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coprmprod Structured version   Visualization version   GIF version

Theorem coprmprod 16366
Description: The product of the elements of a sequence of pairwise coprime positive integers is coprime to a positive integer which is coprime to all integers of the sequence. (Contributed by AV, 18-Aug-2020.)
Assertion
Ref Expression
coprmprod (((𝑀 ∈ Fin ∧ 𝑀 ⊆ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝐹:ℕ⟶ℕ ∧ ∀𝑚𝑀 ((𝐹𝑚) gcd 𝑁) = 1) → (∀𝑚𝑀𝑛 ∈ (𝑀 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 → (∏𝑚𝑀 (𝐹𝑚) gcd 𝑁) = 1))
Distinct variable groups:   𝑚,𝐹   𝑚,𝑀,𝑛   𝑚,𝑁,𝑛
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem coprmprod
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sseq1 3946 . . . . . . . . 9 (𝑥 = ∅ → (𝑥 ⊆ ℕ ↔ ∅ ⊆ ℕ))
213anbi1d 1439 . . . . . . . 8 (𝑥 = ∅ → ((𝑥 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ↔ (∅ ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)))
3 raleq 3342 . . . . . . . 8 (𝑥 = ∅ → (∀𝑚𝑥 ((𝐹𝑚) gcd 𝑁) = 1 ↔ ∀𝑚 ∈ ∅ ((𝐹𝑚) gcd 𝑁) = 1))
4 difeq1 4050 . . . . . . . . . 10 (𝑥 = ∅ → (𝑥 ∖ {𝑚}) = (∅ ∖ {𝑚}))
54raleqdv 3348 . . . . . . . . 9 (𝑥 = ∅ → (∀𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ↔ ∀𝑛 ∈ (∅ ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1))
65raleqbi1dv 3340 . . . . . . . 8 (𝑥 = ∅ → (∀𝑚𝑥𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ↔ ∀𝑚 ∈ ∅ ∀𝑛 ∈ (∅ ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1))
72, 3, 63anbi123d 1435 . . . . . . 7 (𝑥 = ∅ → (((𝑥 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚𝑥 ((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚𝑥𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) ↔ ((∅ ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ ∅ ((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ ∅ ∀𝑛 ∈ (∅ ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1)))
8 prodeq1 15619 . . . . . . . . 9 (𝑥 = ∅ → ∏𝑚𝑥 (𝐹𝑚) = ∏𝑚 ∈ ∅ (𝐹𝑚))
98oveq1d 7290 . . . . . . . 8 (𝑥 = ∅ → (∏𝑚𝑥 (𝐹𝑚) gcd 𝑁) = (∏𝑚 ∈ ∅ (𝐹𝑚) gcd 𝑁))
109eqeq1d 2740 . . . . . . 7 (𝑥 = ∅ → ((∏𝑚𝑥 (𝐹𝑚) gcd 𝑁) = 1 ↔ (∏𝑚 ∈ ∅ (𝐹𝑚) gcd 𝑁) = 1))
117, 10imbi12d 345 . . . . . 6 (𝑥 = ∅ → ((((𝑥 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚𝑥 ((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚𝑥𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (∏𝑚𝑥 (𝐹𝑚) gcd 𝑁) = 1) ↔ (((∅ ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ ∅ ((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ ∅ ∀𝑛 ∈ (∅ ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (∏𝑚 ∈ ∅ (𝐹𝑚) gcd 𝑁) = 1)))
12 sseq1 3946 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥 ⊆ ℕ ↔ 𝑦 ⊆ ℕ))
13123anbi1d 1439 . . . . . . . 8 (𝑥 = 𝑦 → ((𝑥 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ↔ (𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)))
14 raleq 3342 . . . . . . . 8 (𝑥 = 𝑦 → (∀𝑚𝑥 ((𝐹𝑚) gcd 𝑁) = 1 ↔ ∀𝑚𝑦 ((𝐹𝑚) gcd 𝑁) = 1))
15 difeq1 4050 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑥 ∖ {𝑚}) = (𝑦 ∖ {𝑚}))
1615raleqdv 3348 . . . . . . . . 9 (𝑥 = 𝑦 → (∀𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ↔ ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1))
1716raleqbi1dv 3340 . . . . . . . 8 (𝑥 = 𝑦 → (∀𝑚𝑥𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ↔ ∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1))
1813, 14, 173anbi123d 1435 . . . . . . 7 (𝑥 = 𝑦 → (((𝑥 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚𝑥 ((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚𝑥𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) ↔ ((𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚𝑦 ((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1)))
19 prodeq1 15619 . . . . . . . . 9 (𝑥 = 𝑦 → ∏𝑚𝑥 (𝐹𝑚) = ∏𝑚𝑦 (𝐹𝑚))
2019oveq1d 7290 . . . . . . . 8 (𝑥 = 𝑦 → (∏𝑚𝑥 (𝐹𝑚) gcd 𝑁) = (∏𝑚𝑦 (𝐹𝑚) gcd 𝑁))
2120eqeq1d 2740 . . . . . . 7 (𝑥 = 𝑦 → ((∏𝑚𝑥 (𝐹𝑚) gcd 𝑁) = 1 ↔ (∏𝑚𝑦 (𝐹𝑚) gcd 𝑁) = 1))
2218, 21imbi12d 345 . . . . . 6 (𝑥 = 𝑦 → ((((𝑥 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚𝑥 ((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚𝑥𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (∏𝑚𝑥 (𝐹𝑚) gcd 𝑁) = 1) ↔ (((𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚𝑦 ((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (∏𝑚𝑦 (𝐹𝑚) gcd 𝑁) = 1)))
23 sseq1 3946 . . . . . . . . 9 (𝑥 = (𝑦 ∪ {𝑧}) → (𝑥 ⊆ ℕ ↔ (𝑦 ∪ {𝑧}) ⊆ ℕ))
24233anbi1d 1439 . . . . . . . 8 (𝑥 = (𝑦 ∪ {𝑧}) → ((𝑥 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ↔ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)))
25 raleq 3342 . . . . . . . 8 (𝑥 = (𝑦 ∪ {𝑧}) → (∀𝑚𝑥 ((𝐹𝑚) gcd 𝑁) = 1 ↔ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹𝑚) gcd 𝑁) = 1))
26 difeq1 4050 . . . . . . . . . 10 (𝑥 = (𝑦 ∪ {𝑧}) → (𝑥 ∖ {𝑚}) = ((𝑦 ∪ {𝑧}) ∖ {𝑚}))
2726raleqdv 3348 . . . . . . . . 9 (𝑥 = (𝑦 ∪ {𝑧}) → (∀𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ↔ ∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1))
2827raleqbi1dv 3340 . . . . . . . 8 (𝑥 = (𝑦 ∪ {𝑧}) → (∀𝑚𝑥𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ↔ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1))
2924, 25, 283anbi123d 1435 . . . . . . 7 (𝑥 = (𝑦 ∪ {𝑧}) → (((𝑥 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚𝑥 ((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚𝑥𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) ↔ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1)))
30 prodeq1 15619 . . . . . . . . 9 (𝑥 = (𝑦 ∪ {𝑧}) → ∏𝑚𝑥 (𝐹𝑚) = ∏𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚))
3130oveq1d 7290 . . . . . . . 8 (𝑥 = (𝑦 ∪ {𝑧}) → (∏𝑚𝑥 (𝐹𝑚) gcd 𝑁) = (∏𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) gcd 𝑁))
3231eqeq1d 2740 . . . . . . 7 (𝑥 = (𝑦 ∪ {𝑧}) → ((∏𝑚𝑥 (𝐹𝑚) gcd 𝑁) = 1 ↔ (∏𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) gcd 𝑁) = 1))
3329, 32imbi12d 345 . . . . . 6 (𝑥 = (𝑦 ∪ {𝑧}) → ((((𝑥 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚𝑥 ((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚𝑥𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (∏𝑚𝑥 (𝐹𝑚) gcd 𝑁) = 1) ↔ ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (∏𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) gcd 𝑁) = 1)))
34 sseq1 3946 . . . . . . . . 9 (𝑥 = 𝑀 → (𝑥 ⊆ ℕ ↔ 𝑀 ⊆ ℕ))
35343anbi1d 1439 . . . . . . . 8 (𝑥 = 𝑀 → ((𝑥 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ↔ (𝑀 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)))
36 raleq 3342 . . . . . . . 8 (𝑥 = 𝑀 → (∀𝑚𝑥 ((𝐹𝑚) gcd 𝑁) = 1 ↔ ∀𝑚𝑀 ((𝐹𝑚) gcd 𝑁) = 1))
37 difeq1 4050 . . . . . . . . . 10 (𝑥 = 𝑀 → (𝑥 ∖ {𝑚}) = (𝑀 ∖ {𝑚}))
3837raleqdv 3348 . . . . . . . . 9 (𝑥 = 𝑀 → (∀𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ↔ ∀𝑛 ∈ (𝑀 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1))
3938raleqbi1dv 3340 . . . . . . . 8 (𝑥 = 𝑀 → (∀𝑚𝑥𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ↔ ∀𝑚𝑀𝑛 ∈ (𝑀 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1))
4035, 36, 393anbi123d 1435 . . . . . . 7 (𝑥 = 𝑀 → (((𝑥 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚𝑥 ((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚𝑥𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) ↔ ((𝑀 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚𝑀 ((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚𝑀𝑛 ∈ (𝑀 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1)))
41 prodeq1 15619 . . . . . . . . 9 (𝑥 = 𝑀 → ∏𝑚𝑥 (𝐹𝑚) = ∏𝑚𝑀 (𝐹𝑚))
4241oveq1d 7290 . . . . . . . 8 (𝑥 = 𝑀 → (∏𝑚𝑥 (𝐹𝑚) gcd 𝑁) = (∏𝑚𝑀 (𝐹𝑚) gcd 𝑁))
4342eqeq1d 2740 . . . . . . 7 (𝑥 = 𝑀 → ((∏𝑚𝑥 (𝐹𝑚) gcd 𝑁) = 1 ↔ (∏𝑚𝑀 (𝐹𝑚) gcd 𝑁) = 1))
4440, 43imbi12d 345 . . . . . 6 (𝑥 = 𝑀 → ((((𝑥 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚𝑥 ((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚𝑥𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (∏𝑚𝑥 (𝐹𝑚) gcd 𝑁) = 1) ↔ (((𝑀 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚𝑀 ((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚𝑀𝑛 ∈ (𝑀 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (∏𝑚𝑀 (𝐹𝑚) gcd 𝑁) = 1)))
45 prod0 15653 . . . . . . . . . . 11 𝑚 ∈ ∅ (𝐹𝑚) = 1
4645a1i 11 . . . . . . . . . 10 (𝑁 ∈ ℕ → ∏𝑚 ∈ ∅ (𝐹𝑚) = 1)
4746oveq1d 7290 . . . . . . . . 9 (𝑁 ∈ ℕ → (∏𝑚 ∈ ∅ (𝐹𝑚) gcd 𝑁) = (1 gcd 𝑁))
48 nnz 12342 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
49 1gcd 16241 . . . . . . . . . 10 (𝑁 ∈ ℤ → (1 gcd 𝑁) = 1)
5048, 49syl 17 . . . . . . . . 9 (𝑁 ∈ ℕ → (1 gcd 𝑁) = 1)
5147, 50eqtrd 2778 . . . . . . . 8 (𝑁 ∈ ℕ → (∏𝑚 ∈ ∅ (𝐹𝑚) gcd 𝑁) = 1)
52513ad2ant2 1133 . . . . . . 7 ((∅ ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) → (∏𝑚 ∈ ∅ (𝐹𝑚) gcd 𝑁) = 1)
53523ad2ant1 1132 . . . . . 6 (((∅ ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ ∅ ((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ ∅ ∀𝑛 ∈ (∅ ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (∏𝑚 ∈ ∅ (𝐹𝑚) gcd 𝑁) = 1)
54 nfv 1917 . . . . . . . . . . . . . . . 16 𝑚(((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦))
55 nfcv 2907 . . . . . . . . . . . . . . . 16 𝑚(𝐹𝑧)
56 simprl 768 . . . . . . . . . . . . . . . 16 ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → 𝑦 ∈ Fin)
57 unss 4118 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ⊆ ℕ ∧ {𝑧} ⊆ ℕ) ↔ (𝑦 ∪ {𝑧}) ⊆ ℕ)
58 vex 3436 . . . . . . . . . . . . . . . . . . . . . 22 𝑧 ∈ V
5958snss 4719 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ ℕ ↔ {𝑧} ⊆ ℕ)
6059biimpri 227 . . . . . . . . . . . . . . . . . . . 20 ({𝑧} ⊆ ℕ → 𝑧 ∈ ℕ)
6160adantl 482 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ⊆ ℕ ∧ {𝑧} ⊆ ℕ) → 𝑧 ∈ ℕ)
6257, 61sylbir 234 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∪ {𝑧}) ⊆ ℕ → 𝑧 ∈ ℕ)
63623ad2ant1 1132 . . . . . . . . . . . . . . . . 17 (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) → 𝑧 ∈ ℕ)
6463adantr 481 . . . . . . . . . . . . . . . 16 ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → 𝑧 ∈ ℕ)
65 simprr 770 . . . . . . . . . . . . . . . 16 ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → ¬ 𝑧𝑦)
66 simpll3 1213 . . . . . . . . . . . . . . . . . 18 (((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) ∧ 𝑚𝑦) → 𝐹:ℕ⟶ℕ)
67 simpl 483 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ⊆ ℕ ∧ {𝑧} ⊆ ℕ) → 𝑦 ⊆ ℕ)
6857, 67sylbir 234 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 ∪ {𝑧}) ⊆ ℕ → 𝑦 ⊆ ℕ)
69683ad2ant1 1132 . . . . . . . . . . . . . . . . . . . 20 (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) → 𝑦 ⊆ ℕ)
7069adantr 481 . . . . . . . . . . . . . . . . . . 19 ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → 𝑦 ⊆ ℕ)
7170sselda 3921 . . . . . . . . . . . . . . . . . 18 (((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) ∧ 𝑚𝑦) → 𝑚 ∈ ℕ)
7266, 71ffvelrnd 6962 . . . . . . . . . . . . . . . . 17 (((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) ∧ 𝑚𝑦) → (𝐹𝑚) ∈ ℕ)
7372nncnd 11989 . . . . . . . . . . . . . . . 16 (((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) ∧ 𝑚𝑦) → (𝐹𝑚) ∈ ℂ)
74 fveq2 6774 . . . . . . . . . . . . . . . 16 (𝑚 = 𝑧 → (𝐹𝑚) = (𝐹𝑧))
75 simpr 485 . . . . . . . . . . . . . . . . . . . 20 (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝐹:ℕ⟶ℕ) → 𝐹:ℕ⟶ℕ)
7662adantr 481 . . . . . . . . . . . . . . . . . . . 20 (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝐹:ℕ⟶ℕ) → 𝑧 ∈ ℕ)
7775, 76ffvelrnd 6962 . . . . . . . . . . . . . . . . . . 19 (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝐹:ℕ⟶ℕ) → (𝐹𝑧) ∈ ℕ)
78773adant2 1130 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) → (𝐹𝑧) ∈ ℕ)
7978adantr 481 . . . . . . . . . . . . . . . . 17 ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → (𝐹𝑧) ∈ ℕ)
8079nncnd 11989 . . . . . . . . . . . . . . . 16 ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → (𝐹𝑧) ∈ ℂ)
8154, 55, 56, 64, 65, 73, 74, 80fprodsplitsn 15699 . . . . . . . . . . . . . . 15 ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → ∏𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) = (∏𝑚𝑦 (𝐹𝑚) · (𝐹𝑧)))
8281oveq1d 7290 . . . . . . . . . . . . . 14 ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → (∏𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) gcd 𝑁) = ((∏𝑚𝑦 (𝐹𝑚) · (𝐹𝑧)) gcd 𝑁))
8356, 72fprodnncl 15665 . . . . . . . . . . . . . . . . 17 ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → ∏𝑚𝑦 (𝐹𝑚) ∈ ℕ)
8483nnzd 12425 . . . . . . . . . . . . . . . 16 ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → ∏𝑚𝑦 (𝐹𝑚) ∈ ℤ)
8579nnzd 12425 . . . . . . . . . . . . . . . 16 ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → (𝐹𝑧) ∈ ℤ)
8684, 85zmulcld 12432 . . . . . . . . . . . . . . 15 ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → (∏𝑚𝑦 (𝐹𝑚) · (𝐹𝑧)) ∈ ℤ)
87483ad2ant2 1133 . . . . . . . . . . . . . . . 16 (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) → 𝑁 ∈ ℤ)
8887adantr 481 . . . . . . . . . . . . . . 15 ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → 𝑁 ∈ ℤ)
8986, 88gcdcomd 16221 . . . . . . . . . . . . . 14 ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → ((∏𝑚𝑦 (𝐹𝑚) · (𝐹𝑧)) gcd 𝑁) = (𝑁 gcd (∏𝑚𝑦 (𝐹𝑚) · (𝐹𝑧))))
9082, 89eqtrd 2778 . . . . . . . . . . . . 13 ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → (∏𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) gcd 𝑁) = (𝑁 gcd (∏𝑚𝑦 (𝐹𝑚) · (𝐹𝑧))))
9190ex 413 . . . . . . . . . . . 12 (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) → ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (∏𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) gcd 𝑁) = (𝑁 gcd (∏𝑚𝑦 (𝐹𝑚) · (𝐹𝑧)))))
92913ad2ant1 1132 . . . . . . . . . . 11 ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (∏𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) gcd 𝑁) = (𝑁 gcd (∏𝑚𝑦 (𝐹𝑚) · (𝐹𝑧)))))
9392com12 32 . . . . . . . . . 10 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (∏𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) gcd 𝑁) = (𝑁 gcd (∏𝑚𝑦 (𝐹𝑚) · (𝐹𝑧)))))
9493adantr 481 . . . . . . . . 9 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (((𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚𝑦 ((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (∏𝑚𝑦 (𝐹𝑚) gcd 𝑁) = 1)) → ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (∏𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) gcd 𝑁) = (𝑁 gcd (∏𝑚𝑦 (𝐹𝑚) · (𝐹𝑧)))))
9594imp 407 . . . . . . . 8 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (((𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚𝑦 ((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (∏𝑚𝑦 (𝐹𝑚) gcd 𝑁) = 1)) ∧ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1)) → (∏𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) gcd 𝑁) = (𝑁 gcd (∏𝑚𝑦 (𝐹𝑚) · (𝐹𝑧))))
96 simpl2 1191 . . . . . . . . . . . . . . 15 ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → 𝑁 ∈ ℕ)
9796, 83, 793jca 1127 . . . . . . . . . . . . . 14 ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → (𝑁 ∈ ℕ ∧ ∏𝑚𝑦 (𝐹𝑚) ∈ ℕ ∧ (𝐹𝑧) ∈ ℕ))
9897ex 413 . . . . . . . . . . . . 13 (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) → ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (𝑁 ∈ ℕ ∧ ∏𝑚𝑦 (𝐹𝑚) ∈ ℕ ∧ (𝐹𝑧) ∈ ℕ)))
99983ad2ant1 1132 . . . . . . . . . . . 12 ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (𝑁 ∈ ℕ ∧ ∏𝑚𝑦 (𝐹𝑚) ∈ ℕ ∧ (𝐹𝑧) ∈ ℕ)))
10099com12 32 . . . . . . . . . . 11 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (𝑁 ∈ ℕ ∧ ∏𝑚𝑦 (𝐹𝑚) ∈ ℕ ∧ (𝐹𝑧) ∈ ℕ)))
101100adantr 481 . . . . . . . . . 10 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (((𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚𝑦 ((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (∏𝑚𝑦 (𝐹𝑚) gcd 𝑁) = 1)) → ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (𝑁 ∈ ℕ ∧ ∏𝑚𝑦 (𝐹𝑚) ∈ ℕ ∧ (𝐹𝑧) ∈ ℕ)))
102101imp 407 . . . . . . . . 9 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (((𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚𝑦 ((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (∏𝑚𝑦 (𝐹𝑚) gcd 𝑁) = 1)) ∧ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1)) → (𝑁 ∈ ℕ ∧ ∏𝑚𝑦 (𝐹𝑚) ∈ ℕ ∧ (𝐹𝑧) ∈ ℕ))
10388, 84gcdcomd 16221 . . . . . . . . . . . . . . 15 ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → (𝑁 gcd ∏𝑚𝑦 (𝐹𝑚)) = (∏𝑚𝑦 (𝐹𝑚) gcd 𝑁))
104103ex 413 . . . . . . . . . . . . . 14 (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) → ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (𝑁 gcd ∏𝑚𝑦 (𝐹𝑚)) = (∏𝑚𝑦 (𝐹𝑚) gcd 𝑁)))
1051043ad2ant1 1132 . . . . . . . . . . . . 13 ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (𝑁 gcd ∏𝑚𝑦 (𝐹𝑚)) = (∏𝑚𝑦 (𝐹𝑚) gcd 𝑁)))
106105com12 32 . . . . . . . . . . . 12 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (𝑁 gcd ∏𝑚𝑦 (𝐹𝑚)) = (∏𝑚𝑦 (𝐹𝑚) gcd 𝑁)))
107106adantr 481 . . . . . . . . . . 11 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (((𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚𝑦 ((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (∏𝑚𝑦 (𝐹𝑚) gcd 𝑁) = 1)) → ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (𝑁 gcd ∏𝑚𝑦 (𝐹𝑚)) = (∏𝑚𝑦 (𝐹𝑚) gcd 𝑁)))
108107imp 407 . . . . . . . . . 10 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (((𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚𝑦 ((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (∏𝑚𝑦 (𝐹𝑚) gcd 𝑁) = 1)) ∧ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1)) → (𝑁 gcd ∏𝑚𝑦 (𝐹𝑚)) = (∏𝑚𝑦 (𝐹𝑚) gcd 𝑁))
10968a1i 11 . . . . . . . . . . . . . 14 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → ((𝑦 ∪ {𝑧}) ⊆ ℕ → 𝑦 ⊆ ℕ))
110 idd 24 . . . . . . . . . . . . . 14 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (𝑁 ∈ ℕ → 𝑁 ∈ ℕ))
111 idd 24 . . . . . . . . . . . . . 14 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (𝐹:ℕ⟶ℕ → 𝐹:ℕ⟶ℕ))
112109, 110, 1113anim123d 1442 . . . . . . . . . . . . 13 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) → (𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)))
113 ssun1 4106 . . . . . . . . . . . . . 14 𝑦 ⊆ (𝑦 ∪ {𝑧})
114 ssralv 3987 . . . . . . . . . . . . . 14 (𝑦 ⊆ (𝑦 ∪ {𝑧}) → (∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹𝑚) gcd 𝑁) = 1 → ∀𝑚𝑦 ((𝐹𝑚) gcd 𝑁) = 1))
115113, 114mp1i 13 . . . . . . . . . . . . 13 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹𝑚) gcd 𝑁) = 1 → ∀𝑚𝑦 ((𝐹𝑚) gcd 𝑁) = 1))
116 ssralv 3987 . . . . . . . . . . . . . . 15 (𝑦 ⊆ (𝑦 ∪ {𝑧}) → (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 → ∀𝑚𝑦𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1))
117113, 116mp1i 13 . . . . . . . . . . . . . 14 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 → ∀𝑚𝑦𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1))
118113a1i 11 . . . . . . . . . . . . . . . . 17 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑚𝑦) → 𝑦 ⊆ (𝑦 ∪ {𝑧}))
119118ssdifd 4075 . . . . . . . . . . . . . . . 16 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑚𝑦) → (𝑦 ∖ {𝑚}) ⊆ ((𝑦 ∪ {𝑧}) ∖ {𝑚}))
120 ssralv 3987 . . . . . . . . . . . . . . . 16 ((𝑦 ∖ {𝑚}) ⊆ ((𝑦 ∪ {𝑧}) ∖ {𝑚}) → (∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 → ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1))
121119, 120syl 17 . . . . . . . . . . . . . . 15 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑚𝑦) → (∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 → ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1))
122121ralimdva 3108 . . . . . . . . . . . . . 14 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (∀𝑚𝑦𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 → ∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1))
123117, 122syld 47 . . . . . . . . . . . . 13 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 → ∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1))
124112, 115, 1233anim123d 1442 . . . . . . . . . . . 12 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → ((𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚𝑦 ((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1)))
125124imim1d 82 . . . . . . . . . . 11 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → ((((𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚𝑦 ((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (∏𝑚𝑦 (𝐹𝑚) gcd 𝑁) = 1) → ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (∏𝑚𝑦 (𝐹𝑚) gcd 𝑁) = 1)))
126125imp31 418 . . . . . . . . . 10 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (((𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚𝑦 ((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (∏𝑚𝑦 (𝐹𝑚) gcd 𝑁) = 1)) ∧ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1)) → (∏𝑚𝑦 (𝐹𝑚) gcd 𝑁) = 1)
127108, 126eqtrd 2778 . . . . . . . . 9 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (((𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚𝑦 ((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (∏𝑚𝑦 (𝐹𝑚) gcd 𝑁) = 1)) ∧ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1)) → (𝑁 gcd ∏𝑚𝑦 (𝐹𝑚)) = 1)
128 rpmulgcd 16266 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ ∏𝑚𝑦 (𝐹𝑚) ∈ ℕ ∧ (𝐹𝑧) ∈ ℕ) ∧ (𝑁 gcd ∏𝑚𝑦 (𝐹𝑚)) = 1) → (𝑁 gcd (∏𝑚𝑦 (𝐹𝑚) · (𝐹𝑧))) = (𝑁 gcd (𝐹𝑧)))
129102, 127, 128syl2anc 584 . . . . . . . 8 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (((𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚𝑦 ((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (∏𝑚𝑦 (𝐹𝑚) gcd 𝑁) = 1)) ∧ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1)) → (𝑁 gcd (∏𝑚𝑦 (𝐹𝑚) · (𝐹𝑧))) = (𝑁 gcd (𝐹𝑧)))
130 vsnid 4598 . . . . . . . . . . . . . . 15 𝑧 ∈ {𝑧}
131130olci 863 . . . . . . . . . . . . . 14 (𝑧𝑦𝑧 ∈ {𝑧})
132 elun 4083 . . . . . . . . . . . . . 14 (𝑧 ∈ (𝑦 ∪ {𝑧}) ↔ (𝑧𝑦𝑧 ∈ {𝑧}))
133131, 132mpbir 230 . . . . . . . . . . . . 13 𝑧 ∈ (𝑦 ∪ {𝑧})
13474oveq1d 7290 . . . . . . . . . . . . . . 15 (𝑚 = 𝑧 → ((𝐹𝑚) gcd 𝑁) = ((𝐹𝑧) gcd 𝑁))
135134eqeq1d 2740 . . . . . . . . . . . . . 14 (𝑚 = 𝑧 → (((𝐹𝑚) gcd 𝑁) = 1 ↔ ((𝐹𝑧) gcd 𝑁) = 1))
136135rspcv 3557 . . . . . . . . . . . . 13 (𝑧 ∈ (𝑦 ∪ {𝑧}) → (∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹𝑚) gcd 𝑁) = 1 → ((𝐹𝑧) gcd 𝑁) = 1))
137133, 136mp1i 13 . . . . . . . . . . . 12 (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) → (∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹𝑚) gcd 𝑁) = 1 → ((𝐹𝑧) gcd 𝑁) = 1))
138137imp 407 . . . . . . . . . . 11 ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹𝑚) gcd 𝑁) = 1) → ((𝐹𝑧) gcd 𝑁) = 1)
13978nnzd 12425 . . . . . . . . . . . . . 14 (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) → (𝐹𝑧) ∈ ℤ)
14087, 139gcdcomd 16221 . . . . . . . . . . . . 13 (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) → (𝑁 gcd (𝐹𝑧)) = ((𝐹𝑧) gcd 𝑁))
141140eqeq1d 2740 . . . . . . . . . . . 12 (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) → ((𝑁 gcd (𝐹𝑧)) = 1 ↔ ((𝐹𝑧) gcd 𝑁) = 1))
142141adantr 481 . . . . . . . . . . 11 ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹𝑚) gcd 𝑁) = 1) → ((𝑁 gcd (𝐹𝑧)) = 1 ↔ ((𝐹𝑧) gcd 𝑁) = 1))
143138, 142mpbird 256 . . . . . . . . . 10 ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹𝑚) gcd 𝑁) = 1) → (𝑁 gcd (𝐹𝑧)) = 1)
1441433adant3 1131 . . . . . . . . 9 ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (𝑁 gcd (𝐹𝑧)) = 1)
145144adantl 482 . . . . . . . 8 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (((𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚𝑦 ((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (∏𝑚𝑦 (𝐹𝑚) gcd 𝑁) = 1)) ∧ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1)) → (𝑁 gcd (𝐹𝑧)) = 1)
14695, 129, 1453eqtrd 2782 . . . . . . 7 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (((𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚𝑦 ((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (∏𝑚𝑦 (𝐹𝑚) gcd 𝑁) = 1)) ∧ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1)) → (∏𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) gcd 𝑁) = 1)
147146exp31 420 . . . . . 6 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → ((((𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚𝑦 ((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (∏𝑚𝑦 (𝐹𝑚) gcd 𝑁) = 1) → ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (∏𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) gcd 𝑁) = 1)))
14811, 22, 33, 44, 53, 147findcard2s 8948 . . . . 5 (𝑀 ∈ Fin → (((𝑀 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚𝑀 ((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚𝑀𝑛 ∈ (𝑀 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (∏𝑚𝑀 (𝐹𝑚) gcd 𝑁) = 1))
1491483expd 1352 . . . 4 (𝑀 ∈ Fin → ((𝑀 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) → (∀𝑚𝑀 ((𝐹𝑚) gcd 𝑁) = 1 → (∀𝑚𝑀𝑛 ∈ (𝑀 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 → (∏𝑚𝑀 (𝐹𝑚) gcd 𝑁) = 1))))
1501493expd 1352 . . 3 (𝑀 ∈ Fin → (𝑀 ⊆ ℕ → (𝑁 ∈ ℕ → (𝐹:ℕ⟶ℕ → (∀𝑚𝑀 ((𝐹𝑚) gcd 𝑁) = 1 → (∀𝑚𝑀𝑛 ∈ (𝑀 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 → (∏𝑚𝑀 (𝐹𝑚) gcd 𝑁) = 1))))))
1511503imp 1110 . 2 ((𝑀 ∈ Fin ∧ 𝑀 ⊆ ℕ ∧ 𝑁 ∈ ℕ) → (𝐹:ℕ⟶ℕ → (∀𝑚𝑀 ((𝐹𝑚) gcd 𝑁) = 1 → (∀𝑚𝑀𝑛 ∈ (𝑀 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 → (∏𝑚𝑀 (𝐹𝑚) gcd 𝑁) = 1))))
1521513imp 1110 1 (((𝑀 ∈ Fin ∧ 𝑀 ⊆ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝐹:ℕ⟶ℕ ∧ ∀𝑚𝑀 ((𝐹𝑚) gcd 𝑁) = 1) → (∀𝑚𝑀𝑛 ∈ (𝑀 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 → (∏𝑚𝑀 (𝐹𝑚) gcd 𝑁) = 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  wral 3064  cdif 3884  cun 3885  wss 3887  c0 4256  {csn 4561  wf 6429  cfv 6433  (class class class)co 7275  Fincfn 8733  1c1 10872   · cmul 10876  cn 11973  cz 12319  cprod 15615   gcd cgcd 16201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-prod 15616  df-dvds 15964  df-gcd 16202
This theorem is referenced by:  coprmproddvdslem  16367
  Copyright terms: Public domain W3C validator