Step | Hyp | Ref
| Expression |
1 | | sseq1 3844 |
. . . . . . . . 9
⊢ (𝑥 = ∅ → (𝑥 ⊆ ℕ ↔ ∅
⊆ ℕ)) |
2 | 1 | 3anbi1d 1513 |
. . . . . . . 8
⊢ (𝑥 = ∅ → ((𝑥 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ↔
(∅ ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) |
3 | | raleq 3329 |
. . . . . . . 8
⊢ (𝑥 = ∅ → (∀𝑚 ∈ 𝑥 ((𝐹‘𝑚) gcd 𝑁) = 1 ↔ ∀𝑚 ∈ ∅ ((𝐹‘𝑚) gcd 𝑁) = 1)) |
4 | | difeq1 3943 |
. . . . . . . . . 10
⊢ (𝑥 = ∅ → (𝑥 ∖ {𝑚}) = (∅ ∖ {𝑚})) |
5 | 4 | raleqdv 3339 |
. . . . . . . . 9
⊢ (𝑥 = ∅ → (∀𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ↔ ∀𝑛 ∈ (∅ ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1)) |
6 | 5 | raleqbi1dv 3327 |
. . . . . . . 8
⊢ (𝑥 = ∅ → (∀𝑚 ∈ 𝑥 ∀𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ↔ ∀𝑚 ∈ ∅ ∀𝑛 ∈ (∅ ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1)) |
7 | 2, 3, 6 | 3anbi123d 1509 |
. . . . . . 7
⊢ (𝑥 = ∅ → (((𝑥 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧
∀𝑚 ∈ 𝑥 ((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ 𝑥 ∀𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) ↔ ((∅ ⊆ ℕ
∧ 𝑁 ∈ ℕ
∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ ∅ ((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ ∅ ∀𝑛 ∈ (∅ ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1))) |
8 | | prodeq1 15042 |
. . . . . . . . 9
⊢ (𝑥 = ∅ → ∏𝑚 ∈ 𝑥 (𝐹‘𝑚) = ∏𝑚 ∈ ∅ (𝐹‘𝑚)) |
9 | 8 | oveq1d 6937 |
. . . . . . . 8
⊢ (𝑥 = ∅ → (∏𝑚 ∈ 𝑥 (𝐹‘𝑚) gcd 𝑁) = (∏𝑚 ∈ ∅ (𝐹‘𝑚) gcd 𝑁)) |
10 | 9 | eqeq1d 2779 |
. . . . . . 7
⊢ (𝑥 = ∅ → ((∏𝑚 ∈ 𝑥 (𝐹‘𝑚) gcd 𝑁) = 1 ↔ (∏𝑚 ∈ ∅ (𝐹‘𝑚) gcd 𝑁) = 1)) |
11 | 7, 10 | imbi12d 336 |
. . . . . 6
⊢ (𝑥 = ∅ → ((((𝑥 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧
∀𝑚 ∈ 𝑥 ((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ 𝑥 ∀𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) → (∏𝑚 ∈ 𝑥 (𝐹‘𝑚) gcd 𝑁) = 1) ↔ (((∅ ⊆ ℕ
∧ 𝑁 ∈ ℕ
∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ ∅ ((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ ∅ ∀𝑛 ∈ (∅ ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) → (∏𝑚 ∈ ∅ (𝐹‘𝑚) gcd 𝑁) = 1))) |
12 | | sseq1 3844 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (𝑥 ⊆ ℕ ↔ 𝑦 ⊆ ℕ)) |
13 | 12 | 3anbi1d 1513 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → ((𝑥 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ↔ (𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) |
14 | | raleq 3329 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (∀𝑚 ∈ 𝑥 ((𝐹‘𝑚) gcd 𝑁) = 1 ↔ ∀𝑚 ∈ 𝑦 ((𝐹‘𝑚) gcd 𝑁) = 1)) |
15 | | difeq1 3943 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → (𝑥 ∖ {𝑚}) = (𝑦 ∖ {𝑚})) |
16 | 15 | raleqdv 3339 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (∀𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ↔ ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1)) |
17 | 16 | raleqbi1dv 3327 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (∀𝑚 ∈ 𝑥 ∀𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ↔ ∀𝑚 ∈ 𝑦 ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1)) |
18 | 13, 14, 17 | 3anbi123d 1509 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (((𝑥 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ 𝑥 ((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ 𝑥 ∀𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) ↔ ((𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ 𝑦 ((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ 𝑦 ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1))) |
19 | | prodeq1 15042 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → ∏𝑚 ∈ 𝑥 (𝐹‘𝑚) = ∏𝑚 ∈ 𝑦 (𝐹‘𝑚)) |
20 | 19 | oveq1d 6937 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (∏𝑚 ∈ 𝑥 (𝐹‘𝑚) gcd 𝑁) = (∏𝑚 ∈ 𝑦 (𝐹‘𝑚) gcd 𝑁)) |
21 | 20 | eqeq1d 2779 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → ((∏𝑚 ∈ 𝑥 (𝐹‘𝑚) gcd 𝑁) = 1 ↔ (∏𝑚 ∈ 𝑦 (𝐹‘𝑚) gcd 𝑁) = 1)) |
22 | 18, 21 | imbi12d 336 |
. . . . . 6
⊢ (𝑥 = 𝑦 → ((((𝑥 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ 𝑥 ((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ 𝑥 ∀𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) → (∏𝑚 ∈ 𝑥 (𝐹‘𝑚) gcd 𝑁) = 1) ↔ (((𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ 𝑦 ((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ 𝑦 ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) → (∏𝑚 ∈ 𝑦 (𝐹‘𝑚) gcd 𝑁) = 1))) |
23 | | sseq1 3844 |
. . . . . . . . 9
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (𝑥 ⊆ ℕ ↔ (𝑦 ∪ {𝑧}) ⊆ ℕ)) |
24 | 23 | 3anbi1d 1513 |
. . . . . . . 8
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → ((𝑥 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ↔ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) |
25 | | raleq 3329 |
. . . . . . . 8
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (∀𝑚 ∈ 𝑥 ((𝐹‘𝑚) gcd 𝑁) = 1 ↔ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹‘𝑚) gcd 𝑁) = 1)) |
26 | | difeq1 3943 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (𝑥 ∖ {𝑚}) = ((𝑦 ∪ {𝑧}) ∖ {𝑚})) |
27 | 26 | raleqdv 3339 |
. . . . . . . . 9
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (∀𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ↔ ∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1)) |
28 | 27 | raleqbi1dv 3327 |
. . . . . . . 8
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (∀𝑚 ∈ 𝑥 ∀𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ↔ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1)) |
29 | 24, 25, 28 | 3anbi123d 1509 |
. . . . . . 7
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (((𝑥 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ 𝑥 ((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ 𝑥 ∀𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) ↔ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1))) |
30 | | prodeq1 15042 |
. . . . . . . . 9
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → ∏𝑚 ∈ 𝑥 (𝐹‘𝑚) = ∏𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹‘𝑚)) |
31 | 30 | oveq1d 6937 |
. . . . . . . 8
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (∏𝑚 ∈ 𝑥 (𝐹‘𝑚) gcd 𝑁) = (∏𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹‘𝑚) gcd 𝑁)) |
32 | 31 | eqeq1d 2779 |
. . . . . . 7
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → ((∏𝑚 ∈ 𝑥 (𝐹‘𝑚) gcd 𝑁) = 1 ↔ (∏𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹‘𝑚) gcd 𝑁) = 1)) |
33 | 29, 32 | imbi12d 336 |
. . . . . 6
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → ((((𝑥 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ 𝑥 ((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ 𝑥 ∀𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) → (∏𝑚 ∈ 𝑥 (𝐹‘𝑚) gcd 𝑁) = 1) ↔ ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) → (∏𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹‘𝑚) gcd 𝑁) = 1))) |
34 | | sseq1 3844 |
. . . . . . . . 9
⊢ (𝑥 = 𝑀 → (𝑥 ⊆ ℕ ↔ 𝑀 ⊆ ℕ)) |
35 | 34 | 3anbi1d 1513 |
. . . . . . . 8
⊢ (𝑥 = 𝑀 → ((𝑥 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ↔ (𝑀 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) |
36 | | raleq 3329 |
. . . . . . . 8
⊢ (𝑥 = 𝑀 → (∀𝑚 ∈ 𝑥 ((𝐹‘𝑚) gcd 𝑁) = 1 ↔ ∀𝑚 ∈ 𝑀 ((𝐹‘𝑚) gcd 𝑁) = 1)) |
37 | | difeq1 3943 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑀 → (𝑥 ∖ {𝑚}) = (𝑀 ∖ {𝑚})) |
38 | 37 | raleqdv 3339 |
. . . . . . . . 9
⊢ (𝑥 = 𝑀 → (∀𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ↔ ∀𝑛 ∈ (𝑀 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1)) |
39 | 38 | raleqbi1dv 3327 |
. . . . . . . 8
⊢ (𝑥 = 𝑀 → (∀𝑚 ∈ 𝑥 ∀𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ↔ ∀𝑚 ∈ 𝑀 ∀𝑛 ∈ (𝑀 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1)) |
40 | 35, 36, 39 | 3anbi123d 1509 |
. . . . . . 7
⊢ (𝑥 = 𝑀 → (((𝑥 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ 𝑥 ((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ 𝑥 ∀𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) ↔ ((𝑀 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ 𝑀 ((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ 𝑀 ∀𝑛 ∈ (𝑀 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1))) |
41 | | prodeq1 15042 |
. . . . . . . . 9
⊢ (𝑥 = 𝑀 → ∏𝑚 ∈ 𝑥 (𝐹‘𝑚) = ∏𝑚 ∈ 𝑀 (𝐹‘𝑚)) |
42 | 41 | oveq1d 6937 |
. . . . . . . 8
⊢ (𝑥 = 𝑀 → (∏𝑚 ∈ 𝑥 (𝐹‘𝑚) gcd 𝑁) = (∏𝑚 ∈ 𝑀 (𝐹‘𝑚) gcd 𝑁)) |
43 | 42 | eqeq1d 2779 |
. . . . . . 7
⊢ (𝑥 = 𝑀 → ((∏𝑚 ∈ 𝑥 (𝐹‘𝑚) gcd 𝑁) = 1 ↔ (∏𝑚 ∈ 𝑀 (𝐹‘𝑚) gcd 𝑁) = 1)) |
44 | 40, 43 | imbi12d 336 |
. . . . . 6
⊢ (𝑥 = 𝑀 → ((((𝑥 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ 𝑥 ((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ 𝑥 ∀𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) → (∏𝑚 ∈ 𝑥 (𝐹‘𝑚) gcd 𝑁) = 1) ↔ (((𝑀 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ 𝑀 ((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ 𝑀 ∀𝑛 ∈ (𝑀 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) → (∏𝑚 ∈ 𝑀 (𝐹‘𝑚) gcd 𝑁) = 1))) |
45 | | prod0 15076 |
. . . . . . . . . . 11
⊢
∏𝑚 ∈
∅ (𝐹‘𝑚) = 1 |
46 | 45 | a1i 11 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ →
∏𝑚 ∈ ∅
(𝐹‘𝑚) = 1) |
47 | 46 | oveq1d 6937 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ →
(∏𝑚 ∈ ∅
(𝐹‘𝑚) gcd 𝑁) = (1 gcd 𝑁)) |
48 | | nnz 11751 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℤ) |
49 | | 1gcd 15660 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℤ → (1 gcd
𝑁) = 1) |
50 | 48, 49 | syl 17 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ → (1 gcd
𝑁) = 1) |
51 | 47, 50 | eqtrd 2813 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ →
(∏𝑚 ∈ ∅
(𝐹‘𝑚) gcd 𝑁) = 1) |
52 | 51 | 3ad2ant2 1125 |
. . . . . . 7
⊢ ((∅
⊆ ℕ ∧ 𝑁
∈ ℕ ∧ 𝐹:ℕ⟶ℕ) →
(∏𝑚 ∈ ∅
(𝐹‘𝑚) gcd 𝑁) = 1) |
53 | 52 | 3ad2ant1 1124 |
. . . . . 6
⊢
(((∅ ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ ∅ ((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ ∅ ∀𝑛 ∈ (∅ ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) → (∏𝑚 ∈ ∅ (𝐹‘𝑚) gcd 𝑁) = 1) |
54 | | nfv 1957 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑚(((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) |
55 | | nfcv 2933 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑚(𝐹‘𝑧) |
56 | | simprl 761 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → 𝑦 ∈ Fin) |
57 | | unss 4009 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑦 ⊆ ℕ ∧ {𝑧} ⊆ ℕ) ↔ (𝑦 ∪ {𝑧}) ⊆ ℕ) |
58 | | vex 3400 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝑧 ∈ V |
59 | 58 | snss 4548 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑧 ∈ ℕ ↔ {𝑧} ⊆
ℕ) |
60 | 59 | biimpri 220 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ({𝑧} ⊆ ℕ → 𝑧 ∈
ℕ) |
61 | 60 | adantl 475 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑦 ⊆ ℕ ∧ {𝑧} ⊆ ℕ) → 𝑧 ∈
ℕ) |
62 | 57, 61 | sylbir 227 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 ∪ {𝑧}) ⊆ ℕ → 𝑧 ∈ ℕ) |
63 | 62 | 3ad2ant1 1124 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) → 𝑧 ∈
ℕ) |
64 | 63 | adantr 474 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → 𝑧 ∈ ℕ) |
65 | | simprr 763 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → ¬ 𝑧 ∈ 𝑦) |
66 | | simpll3 1230 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧
(𝑦 ∈ Fin ∧ ¬
𝑧 ∈ 𝑦)) ∧ 𝑚 ∈ 𝑦) → 𝐹:ℕ⟶ℕ) |
67 | | simpl 476 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑦 ⊆ ℕ ∧ {𝑧} ⊆ ℕ) → 𝑦 ⊆
ℕ) |
68 | 57, 67 | sylbir 227 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑦 ∪ {𝑧}) ⊆ ℕ → 𝑦 ⊆ ℕ) |
69 | 68 | 3ad2ant1 1124 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) → 𝑦 ⊆
ℕ) |
70 | 69 | adantr 474 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → 𝑦 ⊆ ℕ) |
71 | 70 | sselda 3820 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧
(𝑦 ∈ Fin ∧ ¬
𝑧 ∈ 𝑦)) ∧ 𝑚 ∈ 𝑦) → 𝑚 ∈ ℕ) |
72 | 66, 71 | ffvelrnd 6624 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧
(𝑦 ∈ Fin ∧ ¬
𝑧 ∈ 𝑦)) ∧ 𝑚 ∈ 𝑦) → (𝐹‘𝑚) ∈ ℕ) |
73 | 72 | nncnd 11392 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧
(𝑦 ∈ Fin ∧ ¬
𝑧 ∈ 𝑦)) ∧ 𝑚 ∈ 𝑦) → (𝐹‘𝑚) ∈ ℂ) |
74 | | fveq2 6446 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 = 𝑧 → (𝐹‘𝑚) = (𝐹‘𝑧)) |
75 | | simpr 479 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝐹:ℕ⟶ℕ) → 𝐹:ℕ⟶ℕ) |
76 | 62 | adantr 474 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝐹:ℕ⟶ℕ) → 𝑧 ∈
ℕ) |
77 | 75, 76 | ffvelrnd 6624 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝐹:ℕ⟶ℕ) → (𝐹‘𝑧) ∈ ℕ) |
78 | 77 | 3adant2 1122 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) → (𝐹‘𝑧) ∈ ℕ) |
79 | 78 | adantr 474 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → (𝐹‘𝑧) ∈ ℕ) |
80 | 79 | nncnd 11392 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → (𝐹‘𝑧) ∈ ℂ) |
81 | 54, 55, 56, 64, 65, 73, 74, 80 | fprodsplitsn 15122 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → ∏𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹‘𝑚) = (∏𝑚 ∈ 𝑦 (𝐹‘𝑚) · (𝐹‘𝑧))) |
82 | 81 | oveq1d 6937 |
. . . . . . . . . . . . . 14
⊢ ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → (∏𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹‘𝑚) gcd 𝑁) = ((∏𝑚 ∈ 𝑦 (𝐹‘𝑚) · (𝐹‘𝑧)) gcd 𝑁)) |
83 | 56, 72 | fprodnncl 15088 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → ∏𝑚 ∈ 𝑦 (𝐹‘𝑚) ∈ ℕ) |
84 | 83 | nnzd 11833 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → ∏𝑚 ∈ 𝑦 (𝐹‘𝑚) ∈ ℤ) |
85 | 79 | nnzd 11833 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → (𝐹‘𝑧) ∈ ℤ) |
86 | 84, 85 | zmulcld 11840 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → (∏𝑚 ∈ 𝑦 (𝐹‘𝑚) · (𝐹‘𝑧)) ∈ ℤ) |
87 | 48 | 3ad2ant2 1125 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) → 𝑁 ∈
ℤ) |
88 | 87 | adantr 474 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → 𝑁 ∈ ℤ) |
89 | | gcdcom 15641 |
. . . . . . . . . . . . . . 15
⊢
(((∏𝑚 ∈
𝑦 (𝐹‘𝑚) · (𝐹‘𝑧)) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((∏𝑚 ∈ 𝑦 (𝐹‘𝑚) · (𝐹‘𝑧)) gcd 𝑁) = (𝑁 gcd (∏𝑚 ∈ 𝑦 (𝐹‘𝑚) · (𝐹‘𝑧)))) |
90 | 86, 88, 89 | syl2anc 579 |
. . . . . . . . . . . . . 14
⊢ ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → ((∏𝑚 ∈ 𝑦 (𝐹‘𝑚) · (𝐹‘𝑧)) gcd 𝑁) = (𝑁 gcd (∏𝑚 ∈ 𝑦 (𝐹‘𝑚) · (𝐹‘𝑧)))) |
91 | 82, 90 | eqtrd 2813 |
. . . . . . . . . . . . 13
⊢ ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → (∏𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹‘𝑚) gcd 𝑁) = (𝑁 gcd (∏𝑚 ∈ 𝑦 (𝐹‘𝑚) · (𝐹‘𝑧)))) |
92 | 91 | ex 403 |
. . . . . . . . . . . 12
⊢ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) → ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → (∏𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹‘𝑚) gcd 𝑁) = (𝑁 gcd (∏𝑚 ∈ 𝑦 (𝐹‘𝑚) · (𝐹‘𝑧))))) |
93 | 92 | 3ad2ant1 1124 |
. . . . . . . . . . 11
⊢ ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) → ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → (∏𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹‘𝑚) gcd 𝑁) = (𝑁 gcd (∏𝑚 ∈ 𝑦 (𝐹‘𝑚) · (𝐹‘𝑧))))) |
94 | 93 | com12 32 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) → (∏𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹‘𝑚) gcd 𝑁) = (𝑁 gcd (∏𝑚 ∈ 𝑦 (𝐹‘𝑚) · (𝐹‘𝑧))))) |
95 | 94 | adantr 474 |
. . . . . . . . 9
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (((𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ 𝑦 ((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ 𝑦 ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) → (∏𝑚 ∈ 𝑦 (𝐹‘𝑚) gcd 𝑁) = 1)) → ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) → (∏𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹‘𝑚) gcd 𝑁) = (𝑁 gcd (∏𝑚 ∈ 𝑦 (𝐹‘𝑚) · (𝐹‘𝑧))))) |
96 | 95 | imp 397 |
. . . . . . . 8
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (((𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ 𝑦 ((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ 𝑦 ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) → (∏𝑚 ∈ 𝑦 (𝐹‘𝑚) gcd 𝑁) = 1)) ∧ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1)) → (∏𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹‘𝑚) gcd 𝑁) = (𝑁 gcd (∏𝑚 ∈ 𝑦 (𝐹‘𝑚) · (𝐹‘𝑧)))) |
97 | | simpl2 1201 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → 𝑁 ∈ ℕ) |
98 | 97, 83, 79 | 3jca 1119 |
. . . . . . . . . . . . . 14
⊢ ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → (𝑁 ∈ ℕ ∧ ∏𝑚 ∈ 𝑦 (𝐹‘𝑚) ∈ ℕ ∧ (𝐹‘𝑧) ∈ ℕ)) |
99 | 98 | ex 403 |
. . . . . . . . . . . . 13
⊢ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) → ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → (𝑁 ∈ ℕ ∧ ∏𝑚 ∈ 𝑦 (𝐹‘𝑚) ∈ ℕ ∧ (𝐹‘𝑧) ∈ ℕ))) |
100 | 99 | 3ad2ant1 1124 |
. . . . . . . . . . . 12
⊢ ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) → ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → (𝑁 ∈ ℕ ∧ ∏𝑚 ∈ 𝑦 (𝐹‘𝑚) ∈ ℕ ∧ (𝐹‘𝑧) ∈ ℕ))) |
101 | 100 | com12 32 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) → (𝑁 ∈ ℕ ∧ ∏𝑚 ∈ 𝑦 (𝐹‘𝑚) ∈ ℕ ∧ (𝐹‘𝑧) ∈ ℕ))) |
102 | 101 | adantr 474 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (((𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ 𝑦 ((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ 𝑦 ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) → (∏𝑚 ∈ 𝑦 (𝐹‘𝑚) gcd 𝑁) = 1)) → ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) → (𝑁 ∈ ℕ ∧ ∏𝑚 ∈ 𝑦 (𝐹‘𝑚) ∈ ℕ ∧ (𝐹‘𝑧) ∈ ℕ))) |
103 | 102 | imp 397 |
. . . . . . . . 9
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (((𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ 𝑦 ((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ 𝑦 ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) → (∏𝑚 ∈ 𝑦 (𝐹‘𝑚) gcd 𝑁) = 1)) ∧ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1)) → (𝑁 ∈ ℕ ∧ ∏𝑚 ∈ 𝑦 (𝐹‘𝑚) ∈ ℕ ∧ (𝐹‘𝑧) ∈ ℕ)) |
104 | | gcdcom 15641 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ ℤ ∧
∏𝑚 ∈ 𝑦 (𝐹‘𝑚) ∈ ℤ) → (𝑁 gcd ∏𝑚 ∈ 𝑦 (𝐹‘𝑚)) = (∏𝑚 ∈ 𝑦 (𝐹‘𝑚) gcd 𝑁)) |
105 | 88, 84, 104 | syl2anc 579 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → (𝑁 gcd ∏𝑚 ∈ 𝑦 (𝐹‘𝑚)) = (∏𝑚 ∈ 𝑦 (𝐹‘𝑚) gcd 𝑁)) |
106 | 105 | ex 403 |
. . . . . . . . . . . . . 14
⊢ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) → ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → (𝑁 gcd ∏𝑚 ∈ 𝑦 (𝐹‘𝑚)) = (∏𝑚 ∈ 𝑦 (𝐹‘𝑚) gcd 𝑁))) |
107 | 106 | 3ad2ant1 1124 |
. . . . . . . . . . . . 13
⊢ ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) → ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → (𝑁 gcd ∏𝑚 ∈ 𝑦 (𝐹‘𝑚)) = (∏𝑚 ∈ 𝑦 (𝐹‘𝑚) gcd 𝑁))) |
108 | 107 | com12 32 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) → (𝑁 gcd ∏𝑚 ∈ 𝑦 (𝐹‘𝑚)) = (∏𝑚 ∈ 𝑦 (𝐹‘𝑚) gcd 𝑁))) |
109 | 108 | adantr 474 |
. . . . . . . . . . 11
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (((𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ 𝑦 ((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ 𝑦 ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) → (∏𝑚 ∈ 𝑦 (𝐹‘𝑚) gcd 𝑁) = 1)) → ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) → (𝑁 gcd ∏𝑚 ∈ 𝑦 (𝐹‘𝑚)) = (∏𝑚 ∈ 𝑦 (𝐹‘𝑚) gcd 𝑁))) |
110 | 109 | imp 397 |
. . . . . . . . . 10
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (((𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ 𝑦 ((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ 𝑦 ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) → (∏𝑚 ∈ 𝑦 (𝐹‘𝑚) gcd 𝑁) = 1)) ∧ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1)) → (𝑁 gcd ∏𝑚 ∈ 𝑦 (𝐹‘𝑚)) = (∏𝑚 ∈ 𝑦 (𝐹‘𝑚) gcd 𝑁)) |
111 | 68 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → ((𝑦 ∪ {𝑧}) ⊆ ℕ → 𝑦 ⊆ ℕ)) |
112 | | idd 24 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → (𝑁 ∈ ℕ → 𝑁 ∈ ℕ)) |
113 | | idd 24 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → (𝐹:ℕ⟶ℕ → 𝐹:ℕ⟶ℕ)) |
114 | 111, 112,
113 | 3anim123d 1516 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) → (𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) |
115 | | ssun1 3998 |
. . . . . . . . . . . . . 14
⊢ 𝑦 ⊆ (𝑦 ∪ {𝑧}) |
116 | | ssralv 3884 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ⊆ (𝑦 ∪ {𝑧}) → (∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹‘𝑚) gcd 𝑁) = 1 → ∀𝑚 ∈ 𝑦 ((𝐹‘𝑚) gcd 𝑁) = 1)) |
117 | 115, 116 | mp1i 13 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → (∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹‘𝑚) gcd 𝑁) = 1 → ∀𝑚 ∈ 𝑦 ((𝐹‘𝑚) gcd 𝑁) = 1)) |
118 | | ssralv 3884 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ⊆ (𝑦 ∪ {𝑧}) → (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 → ∀𝑚 ∈ 𝑦 ∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1)) |
119 | 115, 118 | mp1i 13 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 → ∀𝑚 ∈ 𝑦 ∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1)) |
120 | 115 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑚 ∈ 𝑦) → 𝑦 ⊆ (𝑦 ∪ {𝑧})) |
121 | 120 | ssdifd 3968 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑚 ∈ 𝑦) → (𝑦 ∖ {𝑚}) ⊆ ((𝑦 ∪ {𝑧}) ∖ {𝑚})) |
122 | | ssralv 3884 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 ∖ {𝑚}) ⊆ ((𝑦 ∪ {𝑧}) ∖ {𝑚}) → (∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 → ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1)) |
123 | 121, 122 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑚 ∈ 𝑦) → (∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 → ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1)) |
124 | 123 | ralimdva 3143 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → (∀𝑚 ∈ 𝑦 ∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 → ∀𝑚 ∈ 𝑦 ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1)) |
125 | 119, 124 | syld 47 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 → ∀𝑚 ∈ 𝑦 ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1)) |
126 | 114, 117,
125 | 3anim123d 1516 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) → ((𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ 𝑦 ((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ 𝑦 ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1))) |
127 | 126 | imim1d 82 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → ((((𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ 𝑦 ((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ 𝑦 ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) → (∏𝑚 ∈ 𝑦 (𝐹‘𝑚) gcd 𝑁) = 1) → ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) → (∏𝑚 ∈ 𝑦 (𝐹‘𝑚) gcd 𝑁) = 1))) |
128 | 127 | imp31 410 |
. . . . . . . . . 10
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (((𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ 𝑦 ((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ 𝑦 ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) → (∏𝑚 ∈ 𝑦 (𝐹‘𝑚) gcd 𝑁) = 1)) ∧ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1)) → (∏𝑚 ∈ 𝑦 (𝐹‘𝑚) gcd 𝑁) = 1) |
129 | 110, 128 | eqtrd 2813 |
. . . . . . . . 9
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (((𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ 𝑦 ((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ 𝑦 ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) → (∏𝑚 ∈ 𝑦 (𝐹‘𝑚) gcd 𝑁) = 1)) ∧ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1)) → (𝑁 gcd ∏𝑚 ∈ 𝑦 (𝐹‘𝑚)) = 1) |
130 | | rpmulgcd 15681 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧
∏𝑚 ∈ 𝑦 (𝐹‘𝑚) ∈ ℕ ∧ (𝐹‘𝑧) ∈ ℕ) ∧ (𝑁 gcd ∏𝑚 ∈ 𝑦 (𝐹‘𝑚)) = 1) → (𝑁 gcd (∏𝑚 ∈ 𝑦 (𝐹‘𝑚) · (𝐹‘𝑧))) = (𝑁 gcd (𝐹‘𝑧))) |
131 | 103, 129,
130 | syl2anc 579 |
. . . . . . . 8
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (((𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ 𝑦 ((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ 𝑦 ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) → (∏𝑚 ∈ 𝑦 (𝐹‘𝑚) gcd 𝑁) = 1)) ∧ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1)) → (𝑁 gcd (∏𝑚 ∈ 𝑦 (𝐹‘𝑚) · (𝐹‘𝑧))) = (𝑁 gcd (𝐹‘𝑧))) |
132 | | vsnid 4430 |
. . . . . . . . . . . . . . 15
⊢ 𝑧 ∈ {𝑧} |
133 | 132 | olci 855 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈ 𝑦 ∨ 𝑧 ∈ {𝑧}) |
134 | | elun 3975 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈ (𝑦 ∪ {𝑧}) ↔ (𝑧 ∈ 𝑦 ∨ 𝑧 ∈ {𝑧})) |
135 | 133, 134 | mpbir 223 |
. . . . . . . . . . . . 13
⊢ 𝑧 ∈ (𝑦 ∪ {𝑧}) |
136 | 74 | oveq1d 6937 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 = 𝑧 → ((𝐹‘𝑚) gcd 𝑁) = ((𝐹‘𝑧) gcd 𝑁)) |
137 | 136 | eqeq1d 2779 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = 𝑧 → (((𝐹‘𝑚) gcd 𝑁) = 1 ↔ ((𝐹‘𝑧) gcd 𝑁) = 1)) |
138 | 137 | rspcv 3506 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ (𝑦 ∪ {𝑧}) → (∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹‘𝑚) gcd 𝑁) = 1 → ((𝐹‘𝑧) gcd 𝑁) = 1)) |
139 | 135, 138 | mp1i 13 |
. . . . . . . . . . . 12
⊢ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) →
(∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹‘𝑚) gcd 𝑁) = 1 → ((𝐹‘𝑧) gcd 𝑁) = 1)) |
140 | 139 | imp 397 |
. . . . . . . . . . 11
⊢ ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹‘𝑚) gcd 𝑁) = 1) → ((𝐹‘𝑧) gcd 𝑁) = 1) |
141 | 78 | nnzd 11833 |
. . . . . . . . . . . . . 14
⊢ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) → (𝐹‘𝑧) ∈ ℤ) |
142 | | gcdcom 15641 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℤ ∧ (𝐹‘𝑧) ∈ ℤ) → (𝑁 gcd (𝐹‘𝑧)) = ((𝐹‘𝑧) gcd 𝑁)) |
143 | 87, 141, 142 | syl2anc 579 |
. . . . . . . . . . . . 13
⊢ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) → (𝑁 gcd (𝐹‘𝑧)) = ((𝐹‘𝑧) gcd 𝑁)) |
144 | 143 | eqeq1d 2779 |
. . . . . . . . . . . 12
⊢ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) → ((𝑁 gcd (𝐹‘𝑧)) = 1 ↔ ((𝐹‘𝑧) gcd 𝑁) = 1)) |
145 | 144 | adantr 474 |
. . . . . . . . . . 11
⊢ ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹‘𝑚) gcd 𝑁) = 1) → ((𝑁 gcd (𝐹‘𝑧)) = 1 ↔ ((𝐹‘𝑧) gcd 𝑁) = 1)) |
146 | 140, 145 | mpbird 249 |
. . . . . . . . . 10
⊢ ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹‘𝑚) gcd 𝑁) = 1) → (𝑁 gcd (𝐹‘𝑧)) = 1) |
147 | 146 | 3adant3 1123 |
. . . . . . . . 9
⊢ ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) → (𝑁 gcd (𝐹‘𝑧)) = 1) |
148 | 147 | adantl 475 |
. . . . . . . 8
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (((𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ 𝑦 ((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ 𝑦 ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) → (∏𝑚 ∈ 𝑦 (𝐹‘𝑚) gcd 𝑁) = 1)) ∧ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1)) → (𝑁 gcd (𝐹‘𝑧)) = 1) |
149 | 96, 131, 148 | 3eqtrd 2817 |
. . . . . . 7
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (((𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ 𝑦 ((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ 𝑦 ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) → (∏𝑚 ∈ 𝑦 (𝐹‘𝑚) gcd 𝑁) = 1)) ∧ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1)) → (∏𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹‘𝑚) gcd 𝑁) = 1) |
150 | 149 | exp31 412 |
. . . . . 6
⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → ((((𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ 𝑦 ((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ 𝑦 ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) → (∏𝑚 ∈ 𝑦 (𝐹‘𝑚) gcd 𝑁) = 1) → ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) → (∏𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹‘𝑚) gcd 𝑁) = 1))) |
151 | 11, 22, 33, 44, 53, 150 | findcard2s 8489 |
. . . . 5
⊢ (𝑀 ∈ Fin → (((𝑀 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧
∀𝑚 ∈ 𝑀 ((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ 𝑀 ∀𝑛 ∈ (𝑀 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) → (∏𝑚 ∈ 𝑀 (𝐹‘𝑚) gcd 𝑁) = 1)) |
152 | 151 | 3expd 1415 |
. . . 4
⊢ (𝑀 ∈ Fin → ((𝑀 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) →
(∀𝑚 ∈ 𝑀 ((𝐹‘𝑚) gcd 𝑁) = 1 → (∀𝑚 ∈ 𝑀 ∀𝑛 ∈ (𝑀 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 → (∏𝑚 ∈ 𝑀 (𝐹‘𝑚) gcd 𝑁) = 1)))) |
153 | 152 | 3expd 1415 |
. . 3
⊢ (𝑀 ∈ Fin → (𝑀 ⊆ ℕ → (𝑁 ∈ ℕ → (𝐹:ℕ⟶ℕ →
(∀𝑚 ∈ 𝑀 ((𝐹‘𝑚) gcd 𝑁) = 1 → (∀𝑚 ∈ 𝑀 ∀𝑛 ∈ (𝑀 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 → (∏𝑚 ∈ 𝑀 (𝐹‘𝑚) gcd 𝑁) = 1)))))) |
154 | 153 | 3imp 1098 |
. 2
⊢ ((𝑀 ∈ Fin ∧ 𝑀 ⊆ ℕ ∧ 𝑁 ∈ ℕ) → (𝐹:ℕ⟶ℕ →
(∀𝑚 ∈ 𝑀 ((𝐹‘𝑚) gcd 𝑁) = 1 → (∀𝑚 ∈ 𝑀 ∀𝑛 ∈ (𝑀 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 → (∏𝑚 ∈ 𝑀 (𝐹‘𝑚) gcd 𝑁) = 1)))) |
155 | 154 | 3imp 1098 |
1
⊢ (((𝑀 ∈ Fin ∧ 𝑀 ⊆ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝐹:ℕ⟶ℕ ∧
∀𝑚 ∈ 𝑀 ((𝐹‘𝑚) gcd 𝑁) = 1) → (∀𝑚 ∈ 𝑀 ∀𝑛 ∈ (𝑀 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 → (∏𝑚 ∈ 𝑀 (𝐹‘𝑚) gcd 𝑁) = 1)) |