| Step | Hyp | Ref
| Expression |
| 1 | | sseq1 3991 |
. . . . . . . . 9
⊢ (𝑥 = ∅ → (𝑥 ⊆ ℕ ↔ ∅
⊆ ℕ)) |
| 2 | 1 | 3anbi1d 1441 |
. . . . . . . 8
⊢ (𝑥 = ∅ → ((𝑥 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ↔
(∅ ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) |
| 3 | | raleq 3307 |
. . . . . . . 8
⊢ (𝑥 = ∅ → (∀𝑚 ∈ 𝑥 ((𝐹‘𝑚) gcd 𝑁) = 1 ↔ ∀𝑚 ∈ ∅ ((𝐹‘𝑚) gcd 𝑁) = 1)) |
| 4 | | difeq1 4101 |
. . . . . . . . . 10
⊢ (𝑥 = ∅ → (𝑥 ∖ {𝑚}) = (∅ ∖ {𝑚})) |
| 5 | 4 | raleqdv 3310 |
. . . . . . . . 9
⊢ (𝑥 = ∅ → (∀𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ↔ ∀𝑛 ∈ (∅ ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1)) |
| 6 | 5 | raleqbi1dv 3322 |
. . . . . . . 8
⊢ (𝑥 = ∅ → (∀𝑚 ∈ 𝑥 ∀𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ↔ ∀𝑚 ∈ ∅ ∀𝑛 ∈ (∅ ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1)) |
| 7 | 2, 3, 6 | 3anbi123d 1437 |
. . . . . . 7
⊢ (𝑥 = ∅ → (((𝑥 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧
∀𝑚 ∈ 𝑥 ((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ 𝑥 ∀𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) ↔ ((∅ ⊆ ℕ
∧ 𝑁 ∈ ℕ
∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ ∅ ((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ ∅ ∀𝑛 ∈ (∅ ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1))) |
| 8 | | prodeq1 15926 |
. . . . . . . . 9
⊢ (𝑥 = ∅ → ∏𝑚 ∈ 𝑥 (𝐹‘𝑚) = ∏𝑚 ∈ ∅ (𝐹‘𝑚)) |
| 9 | 8 | oveq1d 7429 |
. . . . . . . 8
⊢ (𝑥 = ∅ → (∏𝑚 ∈ 𝑥 (𝐹‘𝑚) gcd 𝑁) = (∏𝑚 ∈ ∅ (𝐹‘𝑚) gcd 𝑁)) |
| 10 | 9 | eqeq1d 2736 |
. . . . . . 7
⊢ (𝑥 = ∅ → ((∏𝑚 ∈ 𝑥 (𝐹‘𝑚) gcd 𝑁) = 1 ↔ (∏𝑚 ∈ ∅ (𝐹‘𝑚) gcd 𝑁) = 1)) |
| 11 | 7, 10 | imbi12d 344 |
. . . . . 6
⊢ (𝑥 = ∅ → ((((𝑥 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧
∀𝑚 ∈ 𝑥 ((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ 𝑥 ∀𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) → (∏𝑚 ∈ 𝑥 (𝐹‘𝑚) gcd 𝑁) = 1) ↔ (((∅ ⊆ ℕ
∧ 𝑁 ∈ ℕ
∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ ∅ ((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ ∅ ∀𝑛 ∈ (∅ ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) → (∏𝑚 ∈ ∅ (𝐹‘𝑚) gcd 𝑁) = 1))) |
| 12 | | sseq1 3991 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (𝑥 ⊆ ℕ ↔ 𝑦 ⊆ ℕ)) |
| 13 | 12 | 3anbi1d 1441 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → ((𝑥 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ↔ (𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) |
| 14 | | raleq 3307 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (∀𝑚 ∈ 𝑥 ((𝐹‘𝑚) gcd 𝑁) = 1 ↔ ∀𝑚 ∈ 𝑦 ((𝐹‘𝑚) gcd 𝑁) = 1)) |
| 15 | | difeq1 4101 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → (𝑥 ∖ {𝑚}) = (𝑦 ∖ {𝑚})) |
| 16 | 15 | raleqdv 3310 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (∀𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ↔ ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1)) |
| 17 | 16 | raleqbi1dv 3322 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (∀𝑚 ∈ 𝑥 ∀𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ↔ ∀𝑚 ∈ 𝑦 ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1)) |
| 18 | 13, 14, 17 | 3anbi123d 1437 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (((𝑥 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ 𝑥 ((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ 𝑥 ∀𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) ↔ ((𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ 𝑦 ((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ 𝑦 ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1))) |
| 19 | | prodeq1 15926 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → ∏𝑚 ∈ 𝑥 (𝐹‘𝑚) = ∏𝑚 ∈ 𝑦 (𝐹‘𝑚)) |
| 20 | 19 | oveq1d 7429 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (∏𝑚 ∈ 𝑥 (𝐹‘𝑚) gcd 𝑁) = (∏𝑚 ∈ 𝑦 (𝐹‘𝑚) gcd 𝑁)) |
| 21 | 20 | eqeq1d 2736 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → ((∏𝑚 ∈ 𝑥 (𝐹‘𝑚) gcd 𝑁) = 1 ↔ (∏𝑚 ∈ 𝑦 (𝐹‘𝑚) gcd 𝑁) = 1)) |
| 22 | 18, 21 | imbi12d 344 |
. . . . . 6
⊢ (𝑥 = 𝑦 → ((((𝑥 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ 𝑥 ((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ 𝑥 ∀𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) → (∏𝑚 ∈ 𝑥 (𝐹‘𝑚) gcd 𝑁) = 1) ↔ (((𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ 𝑦 ((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ 𝑦 ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) → (∏𝑚 ∈ 𝑦 (𝐹‘𝑚) gcd 𝑁) = 1))) |
| 23 | | sseq1 3991 |
. . . . . . . . 9
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (𝑥 ⊆ ℕ ↔ (𝑦 ∪ {𝑧}) ⊆ ℕ)) |
| 24 | 23 | 3anbi1d 1441 |
. . . . . . . 8
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → ((𝑥 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ↔ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) |
| 25 | | raleq 3307 |
. . . . . . . 8
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (∀𝑚 ∈ 𝑥 ((𝐹‘𝑚) gcd 𝑁) = 1 ↔ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹‘𝑚) gcd 𝑁) = 1)) |
| 26 | | difeq1 4101 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (𝑥 ∖ {𝑚}) = ((𝑦 ∪ {𝑧}) ∖ {𝑚})) |
| 27 | 26 | raleqdv 3310 |
. . . . . . . . 9
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (∀𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ↔ ∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1)) |
| 28 | 27 | raleqbi1dv 3322 |
. . . . . . . 8
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (∀𝑚 ∈ 𝑥 ∀𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ↔ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1)) |
| 29 | 24, 25, 28 | 3anbi123d 1437 |
. . . . . . 7
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (((𝑥 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ 𝑥 ((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ 𝑥 ∀𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) ↔ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1))) |
| 30 | | prodeq1 15926 |
. . . . . . . . 9
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → ∏𝑚 ∈ 𝑥 (𝐹‘𝑚) = ∏𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹‘𝑚)) |
| 31 | 30 | oveq1d 7429 |
. . . . . . . 8
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (∏𝑚 ∈ 𝑥 (𝐹‘𝑚) gcd 𝑁) = (∏𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹‘𝑚) gcd 𝑁)) |
| 32 | 31 | eqeq1d 2736 |
. . . . . . 7
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → ((∏𝑚 ∈ 𝑥 (𝐹‘𝑚) gcd 𝑁) = 1 ↔ (∏𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹‘𝑚) gcd 𝑁) = 1)) |
| 33 | 29, 32 | imbi12d 344 |
. . . . . 6
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → ((((𝑥 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ 𝑥 ((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ 𝑥 ∀𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) → (∏𝑚 ∈ 𝑥 (𝐹‘𝑚) gcd 𝑁) = 1) ↔ ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) → (∏𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹‘𝑚) gcd 𝑁) = 1))) |
| 34 | | sseq1 3991 |
. . . . . . . . 9
⊢ (𝑥 = 𝑀 → (𝑥 ⊆ ℕ ↔ 𝑀 ⊆ ℕ)) |
| 35 | 34 | 3anbi1d 1441 |
. . . . . . . 8
⊢ (𝑥 = 𝑀 → ((𝑥 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ↔ (𝑀 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) |
| 36 | | raleq 3307 |
. . . . . . . 8
⊢ (𝑥 = 𝑀 → (∀𝑚 ∈ 𝑥 ((𝐹‘𝑚) gcd 𝑁) = 1 ↔ ∀𝑚 ∈ 𝑀 ((𝐹‘𝑚) gcd 𝑁) = 1)) |
| 37 | | difeq1 4101 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑀 → (𝑥 ∖ {𝑚}) = (𝑀 ∖ {𝑚})) |
| 38 | 37 | raleqdv 3310 |
. . . . . . . . 9
⊢ (𝑥 = 𝑀 → (∀𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ↔ ∀𝑛 ∈ (𝑀 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1)) |
| 39 | 38 | raleqbi1dv 3322 |
. . . . . . . 8
⊢ (𝑥 = 𝑀 → (∀𝑚 ∈ 𝑥 ∀𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ↔ ∀𝑚 ∈ 𝑀 ∀𝑛 ∈ (𝑀 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1)) |
| 40 | 35, 36, 39 | 3anbi123d 1437 |
. . . . . . 7
⊢ (𝑥 = 𝑀 → (((𝑥 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ 𝑥 ((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ 𝑥 ∀𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) ↔ ((𝑀 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ 𝑀 ((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ 𝑀 ∀𝑛 ∈ (𝑀 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1))) |
| 41 | | prodeq1 15926 |
. . . . . . . . 9
⊢ (𝑥 = 𝑀 → ∏𝑚 ∈ 𝑥 (𝐹‘𝑚) = ∏𝑚 ∈ 𝑀 (𝐹‘𝑚)) |
| 42 | 41 | oveq1d 7429 |
. . . . . . . 8
⊢ (𝑥 = 𝑀 → (∏𝑚 ∈ 𝑥 (𝐹‘𝑚) gcd 𝑁) = (∏𝑚 ∈ 𝑀 (𝐹‘𝑚) gcd 𝑁)) |
| 43 | 42 | eqeq1d 2736 |
. . . . . . 7
⊢ (𝑥 = 𝑀 → ((∏𝑚 ∈ 𝑥 (𝐹‘𝑚) gcd 𝑁) = 1 ↔ (∏𝑚 ∈ 𝑀 (𝐹‘𝑚) gcd 𝑁) = 1)) |
| 44 | 40, 43 | imbi12d 344 |
. . . . . 6
⊢ (𝑥 = 𝑀 → ((((𝑥 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ 𝑥 ((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ 𝑥 ∀𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) → (∏𝑚 ∈ 𝑥 (𝐹‘𝑚) gcd 𝑁) = 1) ↔ (((𝑀 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ 𝑀 ((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ 𝑀 ∀𝑛 ∈ (𝑀 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) → (∏𝑚 ∈ 𝑀 (𝐹‘𝑚) gcd 𝑁) = 1))) |
| 45 | | prod0 15962 |
. . . . . . . . . . 11
⊢
∏𝑚 ∈
∅ (𝐹‘𝑚) = 1 |
| 46 | 45 | a1i 11 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ →
∏𝑚 ∈ ∅
(𝐹‘𝑚) = 1) |
| 47 | 46 | oveq1d 7429 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ →
(∏𝑚 ∈ ∅
(𝐹‘𝑚) gcd 𝑁) = (1 gcd 𝑁)) |
| 48 | | nnz 12618 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℤ) |
| 49 | | 1gcd 16553 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℤ → (1 gcd
𝑁) = 1) |
| 50 | 48, 49 | syl 17 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ → (1 gcd
𝑁) = 1) |
| 51 | 47, 50 | eqtrd 2769 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ →
(∏𝑚 ∈ ∅
(𝐹‘𝑚) gcd 𝑁) = 1) |
| 52 | 51 | 3ad2ant2 1134 |
. . . . . . 7
⊢ ((∅
⊆ ℕ ∧ 𝑁
∈ ℕ ∧ 𝐹:ℕ⟶ℕ) →
(∏𝑚 ∈ ∅
(𝐹‘𝑚) gcd 𝑁) = 1) |
| 53 | 52 | 3ad2ant1 1133 |
. . . . . 6
⊢
(((∅ ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ ∅ ((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ ∅ ∀𝑛 ∈ (∅ ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) → (∏𝑚 ∈ ∅ (𝐹‘𝑚) gcd 𝑁) = 1) |
| 54 | | nfv 1913 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑚(((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) |
| 55 | | nfcv 2897 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑚(𝐹‘𝑧) |
| 56 | | simprl 770 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → 𝑦 ∈ Fin) |
| 57 | | unss 4172 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑦 ⊆ ℕ ∧ {𝑧} ⊆ ℕ) ↔ (𝑦 ∪ {𝑧}) ⊆ ℕ) |
| 58 | | vex 3468 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝑧 ∈ V |
| 59 | 58 | snss 4767 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑧 ∈ ℕ ↔ {𝑧} ⊆
ℕ) |
| 60 | 59 | biimpri 228 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ({𝑧} ⊆ ℕ → 𝑧 ∈
ℕ) |
| 61 | 60 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑦 ⊆ ℕ ∧ {𝑧} ⊆ ℕ) → 𝑧 ∈
ℕ) |
| 62 | 57, 61 | sylbir 235 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 ∪ {𝑧}) ⊆ ℕ → 𝑧 ∈ ℕ) |
| 63 | 62 | 3ad2ant1 1133 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) → 𝑧 ∈
ℕ) |
| 64 | 63 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → 𝑧 ∈ ℕ) |
| 65 | | simprr 772 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → ¬ 𝑧 ∈ 𝑦) |
| 66 | | simpll3 1214 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧
(𝑦 ∈ Fin ∧ ¬
𝑧 ∈ 𝑦)) ∧ 𝑚 ∈ 𝑦) → 𝐹:ℕ⟶ℕ) |
| 67 | | simpl 482 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑦 ⊆ ℕ ∧ {𝑧} ⊆ ℕ) → 𝑦 ⊆
ℕ) |
| 68 | 57, 67 | sylbir 235 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑦 ∪ {𝑧}) ⊆ ℕ → 𝑦 ⊆ ℕ) |
| 69 | 68 | 3ad2ant1 1133 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) → 𝑦 ⊆
ℕ) |
| 70 | 69 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → 𝑦 ⊆ ℕ) |
| 71 | 70 | sselda 3965 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧
(𝑦 ∈ Fin ∧ ¬
𝑧 ∈ 𝑦)) ∧ 𝑚 ∈ 𝑦) → 𝑚 ∈ ℕ) |
| 72 | 66, 71 | ffvelcdmd 7086 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧
(𝑦 ∈ Fin ∧ ¬
𝑧 ∈ 𝑦)) ∧ 𝑚 ∈ 𝑦) → (𝐹‘𝑚) ∈ ℕ) |
| 73 | 72 | nncnd 12265 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧
(𝑦 ∈ Fin ∧ ¬
𝑧 ∈ 𝑦)) ∧ 𝑚 ∈ 𝑦) → (𝐹‘𝑚) ∈ ℂ) |
| 74 | | fveq2 6887 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 = 𝑧 → (𝐹‘𝑚) = (𝐹‘𝑧)) |
| 75 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝐹:ℕ⟶ℕ) → 𝐹:ℕ⟶ℕ) |
| 76 | 62 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝐹:ℕ⟶ℕ) → 𝑧 ∈
ℕ) |
| 77 | 75, 76 | ffvelcdmd 7086 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝐹:ℕ⟶ℕ) → (𝐹‘𝑧) ∈ ℕ) |
| 78 | 77 | 3adant2 1131 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) → (𝐹‘𝑧) ∈ ℕ) |
| 79 | 78 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → (𝐹‘𝑧) ∈ ℕ) |
| 80 | 79 | nncnd 12265 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → (𝐹‘𝑧) ∈ ℂ) |
| 81 | 54, 55, 56, 64, 65, 73, 74, 80 | fprodsplitsn 16008 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → ∏𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹‘𝑚) = (∏𝑚 ∈ 𝑦 (𝐹‘𝑚) · (𝐹‘𝑧))) |
| 82 | 81 | oveq1d 7429 |
. . . . . . . . . . . . . 14
⊢ ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → (∏𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹‘𝑚) gcd 𝑁) = ((∏𝑚 ∈ 𝑦 (𝐹‘𝑚) · (𝐹‘𝑧)) gcd 𝑁)) |
| 83 | 56, 72 | fprodnncl 15974 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → ∏𝑚 ∈ 𝑦 (𝐹‘𝑚) ∈ ℕ) |
| 84 | 83 | nnzd 12624 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → ∏𝑚 ∈ 𝑦 (𝐹‘𝑚) ∈ ℤ) |
| 85 | 79 | nnzd 12624 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → (𝐹‘𝑧) ∈ ℤ) |
| 86 | 84, 85 | zmulcld 12712 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → (∏𝑚 ∈ 𝑦 (𝐹‘𝑚) · (𝐹‘𝑧)) ∈ ℤ) |
| 87 | 48 | 3ad2ant2 1134 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) → 𝑁 ∈
ℤ) |
| 88 | 87 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → 𝑁 ∈ ℤ) |
| 89 | 86, 88 | gcdcomd 16534 |
. . . . . . . . . . . . . 14
⊢ ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → ((∏𝑚 ∈ 𝑦 (𝐹‘𝑚) · (𝐹‘𝑧)) gcd 𝑁) = (𝑁 gcd (∏𝑚 ∈ 𝑦 (𝐹‘𝑚) · (𝐹‘𝑧)))) |
| 90 | 82, 89 | eqtrd 2769 |
. . . . . . . . . . . . 13
⊢ ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → (∏𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹‘𝑚) gcd 𝑁) = (𝑁 gcd (∏𝑚 ∈ 𝑦 (𝐹‘𝑚) · (𝐹‘𝑧)))) |
| 91 | 90 | ex 412 |
. . . . . . . . . . . 12
⊢ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) → ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → (∏𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹‘𝑚) gcd 𝑁) = (𝑁 gcd (∏𝑚 ∈ 𝑦 (𝐹‘𝑚) · (𝐹‘𝑧))))) |
| 92 | 91 | 3ad2ant1 1133 |
. . . . . . . . . . 11
⊢ ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) → ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → (∏𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹‘𝑚) gcd 𝑁) = (𝑁 gcd (∏𝑚 ∈ 𝑦 (𝐹‘𝑚) · (𝐹‘𝑧))))) |
| 93 | 92 | com12 32 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) → (∏𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹‘𝑚) gcd 𝑁) = (𝑁 gcd (∏𝑚 ∈ 𝑦 (𝐹‘𝑚) · (𝐹‘𝑧))))) |
| 94 | 93 | adantr 480 |
. . . . . . . . 9
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (((𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ 𝑦 ((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ 𝑦 ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) → (∏𝑚 ∈ 𝑦 (𝐹‘𝑚) gcd 𝑁) = 1)) → ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) → (∏𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹‘𝑚) gcd 𝑁) = (𝑁 gcd (∏𝑚 ∈ 𝑦 (𝐹‘𝑚) · (𝐹‘𝑧))))) |
| 95 | 94 | imp 406 |
. . . . . . . 8
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (((𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ 𝑦 ((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ 𝑦 ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) → (∏𝑚 ∈ 𝑦 (𝐹‘𝑚) gcd 𝑁) = 1)) ∧ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1)) → (∏𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹‘𝑚) gcd 𝑁) = (𝑁 gcd (∏𝑚 ∈ 𝑦 (𝐹‘𝑚) · (𝐹‘𝑧)))) |
| 96 | | simpl2 1192 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → 𝑁 ∈ ℕ) |
| 97 | 96, 83, 79 | 3jca 1128 |
. . . . . . . . . . . . . 14
⊢ ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → (𝑁 ∈ ℕ ∧ ∏𝑚 ∈ 𝑦 (𝐹‘𝑚) ∈ ℕ ∧ (𝐹‘𝑧) ∈ ℕ)) |
| 98 | 97 | ex 412 |
. . . . . . . . . . . . 13
⊢ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) → ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → (𝑁 ∈ ℕ ∧ ∏𝑚 ∈ 𝑦 (𝐹‘𝑚) ∈ ℕ ∧ (𝐹‘𝑧) ∈ ℕ))) |
| 99 | 98 | 3ad2ant1 1133 |
. . . . . . . . . . . 12
⊢ ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) → ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → (𝑁 ∈ ℕ ∧ ∏𝑚 ∈ 𝑦 (𝐹‘𝑚) ∈ ℕ ∧ (𝐹‘𝑧) ∈ ℕ))) |
| 100 | 99 | com12 32 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) → (𝑁 ∈ ℕ ∧ ∏𝑚 ∈ 𝑦 (𝐹‘𝑚) ∈ ℕ ∧ (𝐹‘𝑧) ∈ ℕ))) |
| 101 | 100 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (((𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ 𝑦 ((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ 𝑦 ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) → (∏𝑚 ∈ 𝑦 (𝐹‘𝑚) gcd 𝑁) = 1)) → ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) → (𝑁 ∈ ℕ ∧ ∏𝑚 ∈ 𝑦 (𝐹‘𝑚) ∈ ℕ ∧ (𝐹‘𝑧) ∈ ℕ))) |
| 102 | 101 | imp 406 |
. . . . . . . . 9
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (((𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ 𝑦 ((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ 𝑦 ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) → (∏𝑚 ∈ 𝑦 (𝐹‘𝑚) gcd 𝑁) = 1)) ∧ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1)) → (𝑁 ∈ ℕ ∧ ∏𝑚 ∈ 𝑦 (𝐹‘𝑚) ∈ ℕ ∧ (𝐹‘𝑧) ∈ ℕ)) |
| 103 | 88, 84 | gcdcomd 16534 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → (𝑁 gcd ∏𝑚 ∈ 𝑦 (𝐹‘𝑚)) = (∏𝑚 ∈ 𝑦 (𝐹‘𝑚) gcd 𝑁)) |
| 104 | 103 | ex 412 |
. . . . . . . . . . . . . 14
⊢ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) → ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → (𝑁 gcd ∏𝑚 ∈ 𝑦 (𝐹‘𝑚)) = (∏𝑚 ∈ 𝑦 (𝐹‘𝑚) gcd 𝑁))) |
| 105 | 104 | 3ad2ant1 1133 |
. . . . . . . . . . . . 13
⊢ ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) → ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → (𝑁 gcd ∏𝑚 ∈ 𝑦 (𝐹‘𝑚)) = (∏𝑚 ∈ 𝑦 (𝐹‘𝑚) gcd 𝑁))) |
| 106 | 105 | com12 32 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) → (𝑁 gcd ∏𝑚 ∈ 𝑦 (𝐹‘𝑚)) = (∏𝑚 ∈ 𝑦 (𝐹‘𝑚) gcd 𝑁))) |
| 107 | 106 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (((𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ 𝑦 ((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ 𝑦 ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) → (∏𝑚 ∈ 𝑦 (𝐹‘𝑚) gcd 𝑁) = 1)) → ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) → (𝑁 gcd ∏𝑚 ∈ 𝑦 (𝐹‘𝑚)) = (∏𝑚 ∈ 𝑦 (𝐹‘𝑚) gcd 𝑁))) |
| 108 | 107 | imp 406 |
. . . . . . . . . 10
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (((𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ 𝑦 ((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ 𝑦 ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) → (∏𝑚 ∈ 𝑦 (𝐹‘𝑚) gcd 𝑁) = 1)) ∧ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1)) → (𝑁 gcd ∏𝑚 ∈ 𝑦 (𝐹‘𝑚)) = (∏𝑚 ∈ 𝑦 (𝐹‘𝑚) gcd 𝑁)) |
| 109 | 68 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → ((𝑦 ∪ {𝑧}) ⊆ ℕ → 𝑦 ⊆ ℕ)) |
| 110 | | idd 24 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → (𝑁 ∈ ℕ → 𝑁 ∈ ℕ)) |
| 111 | | idd 24 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → (𝐹:ℕ⟶ℕ → 𝐹:ℕ⟶ℕ)) |
| 112 | 109, 110,
111 | 3anim123d 1444 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) → (𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) |
| 113 | | ssun1 4160 |
. . . . . . . . . . . . . 14
⊢ 𝑦 ⊆ (𝑦 ∪ {𝑧}) |
| 114 | | ssralv 4034 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ⊆ (𝑦 ∪ {𝑧}) → (∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹‘𝑚) gcd 𝑁) = 1 → ∀𝑚 ∈ 𝑦 ((𝐹‘𝑚) gcd 𝑁) = 1)) |
| 115 | 113, 114 | mp1i 13 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → (∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹‘𝑚) gcd 𝑁) = 1 → ∀𝑚 ∈ 𝑦 ((𝐹‘𝑚) gcd 𝑁) = 1)) |
| 116 | | ssralv 4034 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ⊆ (𝑦 ∪ {𝑧}) → (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 → ∀𝑚 ∈ 𝑦 ∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1)) |
| 117 | 113, 116 | mp1i 13 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 → ∀𝑚 ∈ 𝑦 ∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1)) |
| 118 | 113 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑚 ∈ 𝑦) → 𝑦 ⊆ (𝑦 ∪ {𝑧})) |
| 119 | 118 | ssdifd 4127 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑚 ∈ 𝑦) → (𝑦 ∖ {𝑚}) ⊆ ((𝑦 ∪ {𝑧}) ∖ {𝑚})) |
| 120 | | ssralv 4034 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 ∖ {𝑚}) ⊆ ((𝑦 ∪ {𝑧}) ∖ {𝑚}) → (∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 → ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1)) |
| 121 | 119, 120 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑚 ∈ 𝑦) → (∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 → ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1)) |
| 122 | 121 | ralimdva 3154 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → (∀𝑚 ∈ 𝑦 ∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 → ∀𝑚 ∈ 𝑦 ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1)) |
| 123 | 117, 122 | syld 47 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 → ∀𝑚 ∈ 𝑦 ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1)) |
| 124 | 112, 115,
123 | 3anim123d 1444 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) → ((𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ 𝑦 ((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ 𝑦 ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1))) |
| 125 | 124 | imim1d 82 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → ((((𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ 𝑦 ((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ 𝑦 ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) → (∏𝑚 ∈ 𝑦 (𝐹‘𝑚) gcd 𝑁) = 1) → ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) → (∏𝑚 ∈ 𝑦 (𝐹‘𝑚) gcd 𝑁) = 1))) |
| 126 | 125 | imp31 417 |
. . . . . . . . . 10
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (((𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ 𝑦 ((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ 𝑦 ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) → (∏𝑚 ∈ 𝑦 (𝐹‘𝑚) gcd 𝑁) = 1)) ∧ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1)) → (∏𝑚 ∈ 𝑦 (𝐹‘𝑚) gcd 𝑁) = 1) |
| 127 | 108, 126 | eqtrd 2769 |
. . . . . . . . 9
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (((𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ 𝑦 ((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ 𝑦 ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) → (∏𝑚 ∈ 𝑦 (𝐹‘𝑚) gcd 𝑁) = 1)) ∧ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1)) → (𝑁 gcd ∏𝑚 ∈ 𝑦 (𝐹‘𝑚)) = 1) |
| 128 | | rpmulgcd 16577 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧
∏𝑚 ∈ 𝑦 (𝐹‘𝑚) ∈ ℕ ∧ (𝐹‘𝑧) ∈ ℕ) ∧ (𝑁 gcd ∏𝑚 ∈ 𝑦 (𝐹‘𝑚)) = 1) → (𝑁 gcd (∏𝑚 ∈ 𝑦 (𝐹‘𝑚) · (𝐹‘𝑧))) = (𝑁 gcd (𝐹‘𝑧))) |
| 129 | 102, 127,
128 | syl2anc 584 |
. . . . . . . 8
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (((𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ 𝑦 ((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ 𝑦 ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) → (∏𝑚 ∈ 𝑦 (𝐹‘𝑚) gcd 𝑁) = 1)) ∧ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1)) → (𝑁 gcd (∏𝑚 ∈ 𝑦 (𝐹‘𝑚) · (𝐹‘𝑧))) = (𝑁 gcd (𝐹‘𝑧))) |
| 130 | | vsnid 4645 |
. . . . . . . . . . . . . . 15
⊢ 𝑧 ∈ {𝑧} |
| 131 | 130 | olci 866 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈ 𝑦 ∨ 𝑧 ∈ {𝑧}) |
| 132 | | elun 4135 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈ (𝑦 ∪ {𝑧}) ↔ (𝑧 ∈ 𝑦 ∨ 𝑧 ∈ {𝑧})) |
| 133 | 131, 132 | mpbir 231 |
. . . . . . . . . . . . 13
⊢ 𝑧 ∈ (𝑦 ∪ {𝑧}) |
| 134 | 74 | oveq1d 7429 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 = 𝑧 → ((𝐹‘𝑚) gcd 𝑁) = ((𝐹‘𝑧) gcd 𝑁)) |
| 135 | 134 | eqeq1d 2736 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = 𝑧 → (((𝐹‘𝑚) gcd 𝑁) = 1 ↔ ((𝐹‘𝑧) gcd 𝑁) = 1)) |
| 136 | 135 | rspcv 3602 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ (𝑦 ∪ {𝑧}) → (∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹‘𝑚) gcd 𝑁) = 1 → ((𝐹‘𝑧) gcd 𝑁) = 1)) |
| 137 | 133, 136 | mp1i 13 |
. . . . . . . . . . . 12
⊢ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) →
(∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹‘𝑚) gcd 𝑁) = 1 → ((𝐹‘𝑧) gcd 𝑁) = 1)) |
| 138 | 137 | imp 406 |
. . . . . . . . . . 11
⊢ ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹‘𝑚) gcd 𝑁) = 1) → ((𝐹‘𝑧) gcd 𝑁) = 1) |
| 139 | 78 | nnzd 12624 |
. . . . . . . . . . . . . 14
⊢ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) → (𝐹‘𝑧) ∈ ℤ) |
| 140 | 87, 139 | gcdcomd 16534 |
. . . . . . . . . . . . 13
⊢ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) → (𝑁 gcd (𝐹‘𝑧)) = ((𝐹‘𝑧) gcd 𝑁)) |
| 141 | 140 | eqeq1d 2736 |
. . . . . . . . . . . 12
⊢ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) → ((𝑁 gcd (𝐹‘𝑧)) = 1 ↔ ((𝐹‘𝑧) gcd 𝑁) = 1)) |
| 142 | 141 | adantr 480 |
. . . . . . . . . . 11
⊢ ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹‘𝑚) gcd 𝑁) = 1) → ((𝑁 gcd (𝐹‘𝑧)) = 1 ↔ ((𝐹‘𝑧) gcd 𝑁) = 1)) |
| 143 | 138, 142 | mpbird 257 |
. . . . . . . . . 10
⊢ ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹‘𝑚) gcd 𝑁) = 1) → (𝑁 gcd (𝐹‘𝑧)) = 1) |
| 144 | 143 | 3adant3 1132 |
. . . . . . . . 9
⊢ ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) → (𝑁 gcd (𝐹‘𝑧)) = 1) |
| 145 | 144 | adantl 481 |
. . . . . . . 8
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (((𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ 𝑦 ((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ 𝑦 ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) → (∏𝑚 ∈ 𝑦 (𝐹‘𝑚) gcd 𝑁) = 1)) ∧ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1)) → (𝑁 gcd (𝐹‘𝑧)) = 1) |
| 146 | 95, 129, 145 | 3eqtrd 2773 |
. . . . . . 7
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (((𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ 𝑦 ((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ 𝑦 ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) → (∏𝑚 ∈ 𝑦 (𝐹‘𝑚) gcd 𝑁) = 1)) ∧ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1)) → (∏𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹‘𝑚) gcd 𝑁) = 1) |
| 147 | 146 | exp31 419 |
. . . . . 6
⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → ((((𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ 𝑦 ((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ 𝑦 ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) → (∏𝑚 ∈ 𝑦 (𝐹‘𝑚) gcd 𝑁) = 1) → ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) → (∏𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹‘𝑚) gcd 𝑁) = 1))) |
| 148 | 11, 22, 33, 44, 53, 147 | findcard2s 9188 |
. . . . 5
⊢ (𝑀 ∈ Fin → (((𝑀 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧
∀𝑚 ∈ 𝑀 ((𝐹‘𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ 𝑀 ∀𝑛 ∈ (𝑀 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1) → (∏𝑚 ∈ 𝑀 (𝐹‘𝑚) gcd 𝑁) = 1)) |
| 149 | 148 | 3expd 1353 |
. . . 4
⊢ (𝑀 ∈ Fin → ((𝑀 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) →
(∀𝑚 ∈ 𝑀 ((𝐹‘𝑚) gcd 𝑁) = 1 → (∀𝑚 ∈ 𝑀 ∀𝑛 ∈ (𝑀 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 → (∏𝑚 ∈ 𝑀 (𝐹‘𝑚) gcd 𝑁) = 1)))) |
| 150 | 149 | 3expd 1353 |
. . 3
⊢ (𝑀 ∈ Fin → (𝑀 ⊆ ℕ → (𝑁 ∈ ℕ → (𝐹:ℕ⟶ℕ →
(∀𝑚 ∈ 𝑀 ((𝐹‘𝑚) gcd 𝑁) = 1 → (∀𝑚 ∈ 𝑀 ∀𝑛 ∈ (𝑀 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 → (∏𝑚 ∈ 𝑀 (𝐹‘𝑚) gcd 𝑁) = 1)))))) |
| 151 | 150 | 3imp 1110 |
. 2
⊢ ((𝑀 ∈ Fin ∧ 𝑀 ⊆ ℕ ∧ 𝑁 ∈ ℕ) → (𝐹:ℕ⟶ℕ →
(∀𝑚 ∈ 𝑀 ((𝐹‘𝑚) gcd 𝑁) = 1 → (∀𝑚 ∈ 𝑀 ∀𝑛 ∈ (𝑀 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 → (∏𝑚 ∈ 𝑀 (𝐹‘𝑚) gcd 𝑁) = 1)))) |
| 152 | 151 | 3imp 1110 |
1
⊢ (((𝑀 ∈ Fin ∧ 𝑀 ⊆ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝐹:ℕ⟶ℕ ∧
∀𝑚 ∈ 𝑀 ((𝐹‘𝑚) gcd 𝑁) = 1) → (∀𝑚 ∈ 𝑀 ∀𝑛 ∈ (𝑀 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 → (∏𝑚 ∈ 𝑀 (𝐹‘𝑚) gcd 𝑁) = 1)) |