![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege81 | Structured version Visualization version GIF version |
Description: If 𝑋 has a property 𝐴 that is hereditary in the 𝑅 -sequence, and if 𝑌 follows 𝑋 in the 𝑅-sequence, then 𝑌 has property 𝐴. This is a form of induction attributed to Jakob Bernoulli. Proposition 81 of [Frege1879] p. 63. (Contributed by RP, 1-Jul-2020.) (Revised by RP, 5-Jul-2020.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
frege81.x | ⊢ 𝑋 ∈ 𝑈 |
frege81.y | ⊢ 𝑌 ∈ 𝑉 |
frege81.r | ⊢ 𝑅 ∈ 𝑊 |
frege81.a | ⊢ 𝐴 ∈ 𝐵 |
Ref | Expression |
---|---|
frege81 | ⊢ (𝑋 ∈ 𝐴 → (𝑅 hereditary 𝐴 → (𝑋(t+‘𝑅)𝑌 → 𝑌 ∈ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege81.x | . . . 4 ⊢ 𝑋 ∈ 𝑈 | |
2 | vex 3478 | . . . 4 ⊢ 𝑎 ∈ V | |
3 | 1, 2 | frege74 42678 | . . 3 ⊢ (𝑋 ∈ 𝐴 → (𝑅 hereditary 𝐴 → (𝑋𝑅𝑎 → 𝑎 ∈ 𝐴))) |
4 | 3 | alrimdv 1932 | . 2 ⊢ (𝑋 ∈ 𝐴 → (𝑅 hereditary 𝐴 → ∀𝑎(𝑋𝑅𝑎 → 𝑎 ∈ 𝐴))) |
5 | frege81.y | . . 3 ⊢ 𝑌 ∈ 𝑉 | |
6 | frege81.r | . . 3 ⊢ 𝑅 ∈ 𝑊 | |
7 | frege81.a | . . 3 ⊢ 𝐴 ∈ 𝐵 | |
8 | 1, 5, 6, 7 | frege80 42684 | . 2 ⊢ ((𝑋 ∈ 𝐴 → (𝑅 hereditary 𝐴 → ∀𝑎(𝑋𝑅𝑎 → 𝑎 ∈ 𝐴))) → (𝑋 ∈ 𝐴 → (𝑅 hereditary 𝐴 → (𝑋(t+‘𝑅)𝑌 → 𝑌 ∈ 𝐴)))) |
9 | 4, 8 | ax-mp 5 | 1 ⊢ (𝑋 ∈ 𝐴 → (𝑅 hereditary 𝐴 → (𝑋(t+‘𝑅)𝑌 → 𝑌 ∈ 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1539 ∈ wcel 2106 Vcvv 3474 class class class wbr 5148 ‘cfv 6543 t+ctcl 14931 hereditary whe 42513 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-frege1 42531 ax-frege2 42532 ax-frege8 42550 ax-frege52a 42598 ax-frege58b 42642 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-ifp 1062 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-2 12274 df-n0 12472 df-z 12558 df-uz 12822 df-seq 13966 df-trcl 14933 df-relexp 14966 df-he 42514 |
This theorem is referenced by: frege82 42686 frege84 42688 |
Copyright terms: Public domain | W3C validator |