Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege81 Structured version   Visualization version   GIF version

Theorem frege81 43847
Description: If 𝑋 has a property 𝐴 that is hereditary in the 𝑅 -sequence, and if 𝑌 follows 𝑋 in the 𝑅-sequence, then 𝑌 has property 𝐴. This is a form of induction attributed to Jakob Bernoulli. Proposition 81 of [Frege1879] p. 63. (Contributed by RP, 1-Jul-2020.) (Revised by RP, 5-Jul-2020.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
frege81.x 𝑋𝑈
frege81.y 𝑌𝑉
frege81.r 𝑅𝑊
frege81.a 𝐴𝐵
Assertion
Ref Expression
frege81 (𝑋𝐴 → (𝑅 hereditary 𝐴 → (𝑋(t+‘𝑅)𝑌𝑌𝐴)))

Proof of Theorem frege81
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 frege81.x . . . 4 𝑋𝑈
2 vex 3486 . . . 4 𝑎 ∈ V
31, 2frege74 43840 . . 3 (𝑋𝐴 → (𝑅 hereditary 𝐴 → (𝑋𝑅𝑎𝑎𝐴)))
43alrimdv 1928 . 2 (𝑋𝐴 → (𝑅 hereditary 𝐴 → ∀𝑎(𝑋𝑅𝑎𝑎𝐴)))
5 frege81.y . . 3 𝑌𝑉
6 frege81.r . . 3 𝑅𝑊
7 frege81.a . . 3 𝐴𝐵
81, 5, 6, 7frege80 43846 . 2 ((𝑋𝐴 → (𝑅 hereditary 𝐴 → ∀𝑎(𝑋𝑅𝑎𝑎𝐴))) → (𝑋𝐴 → (𝑅 hereditary 𝐴 → (𝑋(t+‘𝑅)𝑌𝑌𝐴))))
94, 8ax-mp 5 1 (𝑋𝐴 → (𝑅 hereditary 𝐴 → (𝑋(t+‘𝑅)𝑌𝑌𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1535  wcel 2103  Vcvv 3482   class class class wbr 5169  cfv 6572  t+ctcl 15030   hereditary whe 43675
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2105  ax-9 2113  ax-10 2136  ax-11 2153  ax-12 2173  ax-ext 2705  ax-rep 5306  ax-sep 5320  ax-nul 5327  ax-pow 5386  ax-pr 5450  ax-un 7766  ax-cnex 11236  ax-resscn 11237  ax-1cn 11238  ax-icn 11239  ax-addcl 11240  ax-addrcl 11241  ax-mulcl 11242  ax-mulrcl 11243  ax-mulcom 11244  ax-addass 11245  ax-mulass 11246  ax-distr 11247  ax-i2m1 11248  ax-1ne0 11249  ax-1rid 11250  ax-rnegex 11251  ax-rrecex 11252  ax-cnre 11253  ax-pre-lttri 11254  ax-pre-lttrn 11255  ax-pre-ltadd 11256  ax-pre-mulgt0 11257  ax-frege1 43693  ax-frege2 43694  ax-frege8 43712  ax-frege52a 43760  ax-frege58b 43804
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-ifp 1064  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2890  df-ne 2943  df-nel 3049  df-ral 3064  df-rex 3073  df-reu 3384  df-rab 3439  df-v 3484  df-sbc 3799  df-csb 3916  df-dif 3973  df-un 3975  df-in 3977  df-ss 3987  df-pss 3990  df-nul 4348  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4973  df-iun 5021  df-br 5170  df-opab 5232  df-mpt 5253  df-tr 5287  df-id 5597  df-eprel 5603  df-po 5611  df-so 5612  df-fr 5654  df-we 5656  df-xp 5705  df-rel 5706  df-cnv 5707  df-co 5708  df-dm 5709  df-rn 5710  df-res 5711  df-ima 5712  df-pred 6331  df-ord 6397  df-on 6398  df-lim 6399  df-suc 6400  df-iota 6524  df-fun 6574  df-fn 6575  df-f 6576  df-f1 6577  df-fo 6578  df-f1o 6579  df-fv 6580  df-riota 7401  df-ov 7448  df-oprab 7449  df-mpo 7450  df-om 7900  df-2nd 8027  df-frecs 8318  df-wrecs 8349  df-recs 8423  df-rdg 8462  df-er 8759  df-en 9000  df-dom 9001  df-sdom 9002  df-pnf 11322  df-mnf 11323  df-xr 11324  df-ltxr 11325  df-le 11326  df-sub 11518  df-neg 11519  df-nn 12290  df-2 12352  df-n0 12550  df-z 12636  df-uz 12900  df-seq 14049  df-trcl 15032  df-relexp 15065  df-he 43676
This theorem is referenced by:  frege82  43848  frege84  43850
  Copyright terms: Public domain W3C validator