![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ltexprlem3 | Structured version Visualization version GIF version |
Description: Lemma for Proposition 9-3.5(iv) of [Gleason] p. 123. (Contributed by NM, 6-Apr-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ltexprlem.1 | ⊢ 𝐶 = {𝑥 ∣ ∃𝑦(¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)} |
Ref | Expression |
---|---|
ltexprlem3 | ⊢ (𝐵 ∈ P → (𝑥 ∈ 𝐶 → ∀𝑧(𝑧 <Q 𝑥 → 𝑧 ∈ 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elprnq 11060 | . . . . . . . . . 10 ⊢ ((𝐵 ∈ P ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → (𝑦 +Q 𝑥) ∈ Q) | |
2 | addnqf 11017 | . . . . . . . . . . . . 13 ⊢ +Q :(Q × Q)⟶Q | |
3 | 2 | fdmi 6758 | . . . . . . . . . . . 12 ⊢ dom +Q = (Q × Q) |
4 | 0nnq 10993 | . . . . . . . . . . . 12 ⊢ ¬ ∅ ∈ Q | |
5 | 3, 4 | ndmovrcl 7636 | . . . . . . . . . . 11 ⊢ ((𝑦 +Q 𝑥) ∈ Q → (𝑦 ∈ Q ∧ 𝑥 ∈ Q)) |
6 | 5 | simpld 494 | . . . . . . . . . 10 ⊢ ((𝑦 +Q 𝑥) ∈ Q → 𝑦 ∈ Q) |
7 | ltanq 11040 | . . . . . . . . . 10 ⊢ (𝑦 ∈ Q → (𝑧 <Q 𝑥 ↔ (𝑦 +Q 𝑧) <Q (𝑦 +Q 𝑥))) | |
8 | 1, 6, 7 | 3syl 18 | . . . . . . . . 9 ⊢ ((𝐵 ∈ P ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → (𝑧 <Q 𝑥 ↔ (𝑦 +Q 𝑧) <Q (𝑦 +Q 𝑥))) |
9 | prcdnq 11062 | . . . . . . . . 9 ⊢ ((𝐵 ∈ P ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → ((𝑦 +Q 𝑧) <Q (𝑦 +Q 𝑥) → (𝑦 +Q 𝑧) ∈ 𝐵)) | |
10 | 8, 9 | sylbid 240 | . . . . . . . 8 ⊢ ((𝐵 ∈ P ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → (𝑧 <Q 𝑥 → (𝑦 +Q 𝑧) ∈ 𝐵)) |
11 | 10 | impancom 451 | . . . . . . 7 ⊢ ((𝐵 ∈ P ∧ 𝑧 <Q 𝑥) → ((𝑦 +Q 𝑥) ∈ 𝐵 → (𝑦 +Q 𝑧) ∈ 𝐵)) |
12 | 11 | anim2d 611 | . . . . . 6 ⊢ ((𝐵 ∈ P ∧ 𝑧 <Q 𝑥) → ((¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → (¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑧) ∈ 𝐵))) |
13 | 12 | eximdv 1916 | . . . . 5 ⊢ ((𝐵 ∈ P ∧ 𝑧 <Q 𝑥) → (∃𝑦(¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → ∃𝑦(¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑧) ∈ 𝐵))) |
14 | ltexprlem.1 | . . . . . 6 ⊢ 𝐶 = {𝑥 ∣ ∃𝑦(¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)} | |
15 | 14 | eqabri 2888 | . . . . 5 ⊢ (𝑥 ∈ 𝐶 ↔ ∃𝑦(¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)) |
16 | vex 3492 | . . . . . 6 ⊢ 𝑧 ∈ V | |
17 | oveq2 7456 | . . . . . . . . 9 ⊢ (𝑥 = 𝑧 → (𝑦 +Q 𝑥) = (𝑦 +Q 𝑧)) | |
18 | 17 | eleq1d 2829 | . . . . . . . 8 ⊢ (𝑥 = 𝑧 → ((𝑦 +Q 𝑥) ∈ 𝐵 ↔ (𝑦 +Q 𝑧) ∈ 𝐵)) |
19 | 18 | anbi2d 629 | . . . . . . 7 ⊢ (𝑥 = 𝑧 → ((¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵) ↔ (¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑧) ∈ 𝐵))) |
20 | 19 | exbidv 1920 | . . . . . 6 ⊢ (𝑥 = 𝑧 → (∃𝑦(¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵) ↔ ∃𝑦(¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑧) ∈ 𝐵))) |
21 | 16, 20, 14 | elab2 3698 | . . . . 5 ⊢ (𝑧 ∈ 𝐶 ↔ ∃𝑦(¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑧) ∈ 𝐵)) |
22 | 13, 15, 21 | 3imtr4g 296 | . . . 4 ⊢ ((𝐵 ∈ P ∧ 𝑧 <Q 𝑥) → (𝑥 ∈ 𝐶 → 𝑧 ∈ 𝐶)) |
23 | 22 | ex 412 | . . 3 ⊢ (𝐵 ∈ P → (𝑧 <Q 𝑥 → (𝑥 ∈ 𝐶 → 𝑧 ∈ 𝐶))) |
24 | 23 | com23 86 | . 2 ⊢ (𝐵 ∈ P → (𝑥 ∈ 𝐶 → (𝑧 <Q 𝑥 → 𝑧 ∈ 𝐶))) |
25 | 24 | alrimdv 1928 | 1 ⊢ (𝐵 ∈ P → (𝑥 ∈ 𝐶 → ∀𝑧(𝑧 <Q 𝑥 → 𝑧 ∈ 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1535 = wceq 1537 ∃wex 1777 ∈ wcel 2108 {cab 2717 class class class wbr 5166 × cxp 5698 (class class class)co 7448 Qcnq 10921 +Q cplq 10924 <Q cltq 10927 Pcnp 10928 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-oadd 8526 df-omul 8527 df-er 8763 df-ni 10941 df-pli 10942 df-mi 10943 df-lti 10944 df-plpq 10977 df-ltpq 10979 df-enq 10980 df-nq 10981 df-erq 10982 df-plq 10983 df-1nq 10985 df-ltnq 10987 df-np 11050 |
This theorem is referenced by: ltexprlem5 11109 |
Copyright terms: Public domain | W3C validator |