MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltexprlem3 Structured version   Visualization version   GIF version

Theorem ltexprlem3 11078
Description: Lemma for Proposition 9-3.5(iv) of [Gleason] p. 123. (Contributed by NM, 6-Apr-1996.) (New usage is discouraged.)
Hypothesis
Ref Expression
ltexprlem.1 𝐶 = {𝑥 ∣ ∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)}
Assertion
Ref Expression
ltexprlem3 (𝐵P → (𝑥𝐶 → ∀𝑧(𝑧 <Q 𝑥𝑧𝐶)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑧
Allowed substitution hint:   𝐶(𝑦)

Proof of Theorem ltexprlem3
StepHypRef Expression
1 elprnq 11031 . . . . . . . . . 10 ((𝐵P ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → (𝑦 +Q 𝑥) ∈ Q)
2 addnqf 10988 . . . . . . . . . . . . 13 +Q :(Q × Q)⟶Q
32fdmi 6747 . . . . . . . . . . . 12 dom +Q = (Q × Q)
4 0nnq 10964 . . . . . . . . . . . 12 ¬ ∅ ∈ Q
53, 4ndmovrcl 7619 . . . . . . . . . . 11 ((𝑦 +Q 𝑥) ∈ Q → (𝑦Q𝑥Q))
65simpld 494 . . . . . . . . . 10 ((𝑦 +Q 𝑥) ∈ Q𝑦Q)
7 ltanq 11011 . . . . . . . . . 10 (𝑦Q → (𝑧 <Q 𝑥 ↔ (𝑦 +Q 𝑧) <Q (𝑦 +Q 𝑥)))
81, 6, 73syl 18 . . . . . . . . 9 ((𝐵P ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → (𝑧 <Q 𝑥 ↔ (𝑦 +Q 𝑧) <Q (𝑦 +Q 𝑥)))
9 prcdnq 11033 . . . . . . . . 9 ((𝐵P ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → ((𝑦 +Q 𝑧) <Q (𝑦 +Q 𝑥) → (𝑦 +Q 𝑧) ∈ 𝐵))
108, 9sylbid 240 . . . . . . . 8 ((𝐵P ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → (𝑧 <Q 𝑥 → (𝑦 +Q 𝑧) ∈ 𝐵))
1110impancom 451 . . . . . . 7 ((𝐵P𝑧 <Q 𝑥) → ((𝑦 +Q 𝑥) ∈ 𝐵 → (𝑦 +Q 𝑧) ∈ 𝐵))
1211anim2d 612 . . . . . 6 ((𝐵P𝑧 <Q 𝑥) → ((¬ 𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → (¬ 𝑦𝐴 ∧ (𝑦 +Q 𝑧) ∈ 𝐵)))
1312eximdv 1917 . . . . 5 ((𝐵P𝑧 <Q 𝑥) → (∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → ∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑧) ∈ 𝐵)))
14 ltexprlem.1 . . . . . 6 𝐶 = {𝑥 ∣ ∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)}
1514eqabri 2885 . . . . 5 (𝑥𝐶 ↔ ∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵))
16 vex 3484 . . . . . 6 𝑧 ∈ V
17 oveq2 7439 . . . . . . . . 9 (𝑥 = 𝑧 → (𝑦 +Q 𝑥) = (𝑦 +Q 𝑧))
1817eleq1d 2826 . . . . . . . 8 (𝑥 = 𝑧 → ((𝑦 +Q 𝑥) ∈ 𝐵 ↔ (𝑦 +Q 𝑧) ∈ 𝐵))
1918anbi2d 630 . . . . . . 7 (𝑥 = 𝑧 → ((¬ 𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵) ↔ (¬ 𝑦𝐴 ∧ (𝑦 +Q 𝑧) ∈ 𝐵)))
2019exbidv 1921 . . . . . 6 (𝑥 = 𝑧 → (∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵) ↔ ∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑧) ∈ 𝐵)))
2116, 20, 14elab2 3682 . . . . 5 (𝑧𝐶 ↔ ∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑧) ∈ 𝐵))
2213, 15, 213imtr4g 296 . . . 4 ((𝐵P𝑧 <Q 𝑥) → (𝑥𝐶𝑧𝐶))
2322ex 412 . . 3 (𝐵P → (𝑧 <Q 𝑥 → (𝑥𝐶𝑧𝐶)))
2423com23 86 . 2 (𝐵P → (𝑥𝐶 → (𝑧 <Q 𝑥𝑧𝐶)))
2524alrimdv 1929 1 (𝐵P → (𝑥𝐶 → ∀𝑧(𝑧 <Q 𝑥𝑧𝐶)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wex 1779  wcel 2108  {cab 2714   class class class wbr 5143   × cxp 5683  (class class class)co 7431  Qcnq 10892   +Q cplq 10895   <Q cltq 10898  Pcnp 10899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-oadd 8510  df-omul 8511  df-er 8745  df-ni 10912  df-pli 10913  df-mi 10914  df-lti 10915  df-plpq 10948  df-ltpq 10950  df-enq 10951  df-nq 10952  df-erq 10953  df-plq 10954  df-1nq 10956  df-ltnq 10958  df-np 11021
This theorem is referenced by:  ltexprlem5  11080
  Copyright terms: Public domain W3C validator