| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltexprlem3 | Structured version Visualization version GIF version | ||
| Description: Lemma for Proposition 9-3.5(iv) of [Gleason] p. 123. (Contributed by NM, 6-Apr-1996.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ltexprlem.1 | ⊢ 𝐶 = {𝑥 ∣ ∃𝑦(¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)} |
| Ref | Expression |
|---|---|
| ltexprlem3 | ⊢ (𝐵 ∈ P → (𝑥 ∈ 𝐶 → ∀𝑧(𝑧 <Q 𝑥 → 𝑧 ∈ 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elprnq 10877 | . . . . . . . . . 10 ⊢ ((𝐵 ∈ P ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → (𝑦 +Q 𝑥) ∈ Q) | |
| 2 | addnqf 10834 | . . . . . . . . . . . . 13 ⊢ +Q :(Q × Q)⟶Q | |
| 3 | 2 | fdmi 6657 | . . . . . . . . . . . 12 ⊢ dom +Q = (Q × Q) |
| 4 | 0nnq 10810 | . . . . . . . . . . . 12 ⊢ ¬ ∅ ∈ Q | |
| 5 | 3, 4 | ndmovrcl 7527 | . . . . . . . . . . 11 ⊢ ((𝑦 +Q 𝑥) ∈ Q → (𝑦 ∈ Q ∧ 𝑥 ∈ Q)) |
| 6 | 5 | simpld 494 | . . . . . . . . . 10 ⊢ ((𝑦 +Q 𝑥) ∈ Q → 𝑦 ∈ Q) |
| 7 | ltanq 10857 | . . . . . . . . . 10 ⊢ (𝑦 ∈ Q → (𝑧 <Q 𝑥 ↔ (𝑦 +Q 𝑧) <Q (𝑦 +Q 𝑥))) | |
| 8 | 1, 6, 7 | 3syl 18 | . . . . . . . . 9 ⊢ ((𝐵 ∈ P ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → (𝑧 <Q 𝑥 ↔ (𝑦 +Q 𝑧) <Q (𝑦 +Q 𝑥))) |
| 9 | prcdnq 10879 | . . . . . . . . 9 ⊢ ((𝐵 ∈ P ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → ((𝑦 +Q 𝑧) <Q (𝑦 +Q 𝑥) → (𝑦 +Q 𝑧) ∈ 𝐵)) | |
| 10 | 8, 9 | sylbid 240 | . . . . . . . 8 ⊢ ((𝐵 ∈ P ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → (𝑧 <Q 𝑥 → (𝑦 +Q 𝑧) ∈ 𝐵)) |
| 11 | 10 | impancom 451 | . . . . . . 7 ⊢ ((𝐵 ∈ P ∧ 𝑧 <Q 𝑥) → ((𝑦 +Q 𝑥) ∈ 𝐵 → (𝑦 +Q 𝑧) ∈ 𝐵)) |
| 12 | 11 | anim2d 612 | . . . . . 6 ⊢ ((𝐵 ∈ P ∧ 𝑧 <Q 𝑥) → ((¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → (¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑧) ∈ 𝐵))) |
| 13 | 12 | eximdv 1918 | . . . . 5 ⊢ ((𝐵 ∈ P ∧ 𝑧 <Q 𝑥) → (∃𝑦(¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → ∃𝑦(¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑧) ∈ 𝐵))) |
| 14 | ltexprlem.1 | . . . . . 6 ⊢ 𝐶 = {𝑥 ∣ ∃𝑦(¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)} | |
| 15 | 14 | eqabri 2874 | . . . . 5 ⊢ (𝑥 ∈ 𝐶 ↔ ∃𝑦(¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)) |
| 16 | vex 3440 | . . . . . 6 ⊢ 𝑧 ∈ V | |
| 17 | oveq2 7349 | . . . . . . . . 9 ⊢ (𝑥 = 𝑧 → (𝑦 +Q 𝑥) = (𝑦 +Q 𝑧)) | |
| 18 | 17 | eleq1d 2816 | . . . . . . . 8 ⊢ (𝑥 = 𝑧 → ((𝑦 +Q 𝑥) ∈ 𝐵 ↔ (𝑦 +Q 𝑧) ∈ 𝐵)) |
| 19 | 18 | anbi2d 630 | . . . . . . 7 ⊢ (𝑥 = 𝑧 → ((¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵) ↔ (¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑧) ∈ 𝐵))) |
| 20 | 19 | exbidv 1922 | . . . . . 6 ⊢ (𝑥 = 𝑧 → (∃𝑦(¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵) ↔ ∃𝑦(¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑧) ∈ 𝐵))) |
| 21 | 16, 20, 14 | elab2 3633 | . . . . 5 ⊢ (𝑧 ∈ 𝐶 ↔ ∃𝑦(¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑧) ∈ 𝐵)) |
| 22 | 13, 15, 21 | 3imtr4g 296 | . . . 4 ⊢ ((𝐵 ∈ P ∧ 𝑧 <Q 𝑥) → (𝑥 ∈ 𝐶 → 𝑧 ∈ 𝐶)) |
| 23 | 22 | ex 412 | . . 3 ⊢ (𝐵 ∈ P → (𝑧 <Q 𝑥 → (𝑥 ∈ 𝐶 → 𝑧 ∈ 𝐶))) |
| 24 | 23 | com23 86 | . 2 ⊢ (𝐵 ∈ P → (𝑥 ∈ 𝐶 → (𝑧 <Q 𝑥 → 𝑧 ∈ 𝐶))) |
| 25 | 24 | alrimdv 1930 | 1 ⊢ (𝐵 ∈ P → (𝑥 ∈ 𝐶 → ∀𝑧(𝑧 <Q 𝑥 → 𝑧 ∈ 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1539 = wceq 1541 ∃wex 1780 ∈ wcel 2111 {cab 2709 class class class wbr 5086 × cxp 5609 (class class class)co 7341 Qcnq 10738 +Q cplq 10741 <Q cltq 10744 Pcnp 10745 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-oadd 8384 df-omul 8385 df-er 8617 df-ni 10758 df-pli 10759 df-mi 10760 df-lti 10761 df-plpq 10794 df-ltpq 10796 df-enq 10797 df-nq 10798 df-erq 10799 df-plq 10800 df-1nq 10802 df-ltnq 10804 df-np 10867 |
| This theorem is referenced by: ltexprlem5 10926 |
| Copyright terms: Public domain | W3C validator |