Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ltexprlem3 | Structured version Visualization version GIF version |
Description: Lemma for Proposition 9-3.5(iv) of [Gleason] p. 123. (Contributed by NM, 6-Apr-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ltexprlem.1 | ⊢ 𝐶 = {𝑥 ∣ ∃𝑦(¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)} |
Ref | Expression |
---|---|
ltexprlem3 | ⊢ (𝐵 ∈ P → (𝑥 ∈ 𝐶 → ∀𝑧(𝑧 <Q 𝑥 → 𝑧 ∈ 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elprnq 10678 | . . . . . . . . . 10 ⊢ ((𝐵 ∈ P ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → (𝑦 +Q 𝑥) ∈ Q) | |
2 | addnqf 10635 | . . . . . . . . . . . . 13 ⊢ +Q :(Q × Q)⟶Q | |
3 | 2 | fdmi 6596 | . . . . . . . . . . . 12 ⊢ dom +Q = (Q × Q) |
4 | 0nnq 10611 | . . . . . . . . . . . 12 ⊢ ¬ ∅ ∈ Q | |
5 | 3, 4 | ndmovrcl 7436 | . . . . . . . . . . 11 ⊢ ((𝑦 +Q 𝑥) ∈ Q → (𝑦 ∈ Q ∧ 𝑥 ∈ Q)) |
6 | 5 | simpld 494 | . . . . . . . . . 10 ⊢ ((𝑦 +Q 𝑥) ∈ Q → 𝑦 ∈ Q) |
7 | ltanq 10658 | . . . . . . . . . 10 ⊢ (𝑦 ∈ Q → (𝑧 <Q 𝑥 ↔ (𝑦 +Q 𝑧) <Q (𝑦 +Q 𝑥))) | |
8 | 1, 6, 7 | 3syl 18 | . . . . . . . . 9 ⊢ ((𝐵 ∈ P ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → (𝑧 <Q 𝑥 ↔ (𝑦 +Q 𝑧) <Q (𝑦 +Q 𝑥))) |
9 | prcdnq 10680 | . . . . . . . . 9 ⊢ ((𝐵 ∈ P ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → ((𝑦 +Q 𝑧) <Q (𝑦 +Q 𝑥) → (𝑦 +Q 𝑧) ∈ 𝐵)) | |
10 | 8, 9 | sylbid 239 | . . . . . . . 8 ⊢ ((𝐵 ∈ P ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → (𝑧 <Q 𝑥 → (𝑦 +Q 𝑧) ∈ 𝐵)) |
11 | 10 | impancom 451 | . . . . . . 7 ⊢ ((𝐵 ∈ P ∧ 𝑧 <Q 𝑥) → ((𝑦 +Q 𝑥) ∈ 𝐵 → (𝑦 +Q 𝑧) ∈ 𝐵)) |
12 | 11 | anim2d 611 | . . . . . 6 ⊢ ((𝐵 ∈ P ∧ 𝑧 <Q 𝑥) → ((¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → (¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑧) ∈ 𝐵))) |
13 | 12 | eximdv 1921 | . . . . 5 ⊢ ((𝐵 ∈ P ∧ 𝑧 <Q 𝑥) → (∃𝑦(¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → ∃𝑦(¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑧) ∈ 𝐵))) |
14 | ltexprlem.1 | . . . . . 6 ⊢ 𝐶 = {𝑥 ∣ ∃𝑦(¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)} | |
15 | 14 | abeq2i 2874 | . . . . 5 ⊢ (𝑥 ∈ 𝐶 ↔ ∃𝑦(¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)) |
16 | vex 3426 | . . . . . 6 ⊢ 𝑧 ∈ V | |
17 | oveq2 7263 | . . . . . . . . 9 ⊢ (𝑥 = 𝑧 → (𝑦 +Q 𝑥) = (𝑦 +Q 𝑧)) | |
18 | 17 | eleq1d 2823 | . . . . . . . 8 ⊢ (𝑥 = 𝑧 → ((𝑦 +Q 𝑥) ∈ 𝐵 ↔ (𝑦 +Q 𝑧) ∈ 𝐵)) |
19 | 18 | anbi2d 628 | . . . . . . 7 ⊢ (𝑥 = 𝑧 → ((¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵) ↔ (¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑧) ∈ 𝐵))) |
20 | 19 | exbidv 1925 | . . . . . 6 ⊢ (𝑥 = 𝑧 → (∃𝑦(¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵) ↔ ∃𝑦(¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑧) ∈ 𝐵))) |
21 | 16, 20, 14 | elab2 3606 | . . . . 5 ⊢ (𝑧 ∈ 𝐶 ↔ ∃𝑦(¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑧) ∈ 𝐵)) |
22 | 13, 15, 21 | 3imtr4g 295 | . . . 4 ⊢ ((𝐵 ∈ P ∧ 𝑧 <Q 𝑥) → (𝑥 ∈ 𝐶 → 𝑧 ∈ 𝐶)) |
23 | 22 | ex 412 | . . 3 ⊢ (𝐵 ∈ P → (𝑧 <Q 𝑥 → (𝑥 ∈ 𝐶 → 𝑧 ∈ 𝐶))) |
24 | 23 | com23 86 | . 2 ⊢ (𝐵 ∈ P → (𝑥 ∈ 𝐶 → (𝑧 <Q 𝑥 → 𝑧 ∈ 𝐶))) |
25 | 24 | alrimdv 1933 | 1 ⊢ (𝐵 ∈ P → (𝑥 ∈ 𝐶 → ∀𝑧(𝑧 <Q 𝑥 → 𝑧 ∈ 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1537 = wceq 1539 ∃wex 1783 ∈ wcel 2108 {cab 2715 class class class wbr 5070 × cxp 5578 (class class class)co 7255 Qcnq 10539 +Q cplq 10542 <Q cltq 10545 Pcnp 10546 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-oadd 8271 df-omul 8272 df-er 8456 df-ni 10559 df-pli 10560 df-mi 10561 df-lti 10562 df-plpq 10595 df-ltpq 10597 df-enq 10598 df-nq 10599 df-erq 10600 df-plq 10601 df-1nq 10603 df-ltnq 10605 df-np 10668 |
This theorem is referenced by: ltexprlem5 10727 |
Copyright terms: Public domain | W3C validator |