MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltexprlem3 Structured version   Visualization version   GIF version

Theorem ltexprlem3 10725
Description: Lemma for Proposition 9-3.5(iv) of [Gleason] p. 123. (Contributed by NM, 6-Apr-1996.) (New usage is discouraged.)
Hypothesis
Ref Expression
ltexprlem.1 𝐶 = {𝑥 ∣ ∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)}
Assertion
Ref Expression
ltexprlem3 (𝐵P → (𝑥𝐶 → ∀𝑧(𝑧 <Q 𝑥𝑧𝐶)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑧
Allowed substitution hint:   𝐶(𝑦)

Proof of Theorem ltexprlem3
StepHypRef Expression
1 elprnq 10678 . . . . . . . . . 10 ((𝐵P ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → (𝑦 +Q 𝑥) ∈ Q)
2 addnqf 10635 . . . . . . . . . . . . 13 +Q :(Q × Q)⟶Q
32fdmi 6596 . . . . . . . . . . . 12 dom +Q = (Q × Q)
4 0nnq 10611 . . . . . . . . . . . 12 ¬ ∅ ∈ Q
53, 4ndmovrcl 7436 . . . . . . . . . . 11 ((𝑦 +Q 𝑥) ∈ Q → (𝑦Q𝑥Q))
65simpld 494 . . . . . . . . . 10 ((𝑦 +Q 𝑥) ∈ Q𝑦Q)
7 ltanq 10658 . . . . . . . . . 10 (𝑦Q → (𝑧 <Q 𝑥 ↔ (𝑦 +Q 𝑧) <Q (𝑦 +Q 𝑥)))
81, 6, 73syl 18 . . . . . . . . 9 ((𝐵P ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → (𝑧 <Q 𝑥 ↔ (𝑦 +Q 𝑧) <Q (𝑦 +Q 𝑥)))
9 prcdnq 10680 . . . . . . . . 9 ((𝐵P ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → ((𝑦 +Q 𝑧) <Q (𝑦 +Q 𝑥) → (𝑦 +Q 𝑧) ∈ 𝐵))
108, 9sylbid 239 . . . . . . . 8 ((𝐵P ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → (𝑧 <Q 𝑥 → (𝑦 +Q 𝑧) ∈ 𝐵))
1110impancom 451 . . . . . . 7 ((𝐵P𝑧 <Q 𝑥) → ((𝑦 +Q 𝑥) ∈ 𝐵 → (𝑦 +Q 𝑧) ∈ 𝐵))
1211anim2d 611 . . . . . 6 ((𝐵P𝑧 <Q 𝑥) → ((¬ 𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → (¬ 𝑦𝐴 ∧ (𝑦 +Q 𝑧) ∈ 𝐵)))
1312eximdv 1921 . . . . 5 ((𝐵P𝑧 <Q 𝑥) → (∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → ∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑧) ∈ 𝐵)))
14 ltexprlem.1 . . . . . 6 𝐶 = {𝑥 ∣ ∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)}
1514abeq2i 2874 . . . . 5 (𝑥𝐶 ↔ ∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵))
16 vex 3426 . . . . . 6 𝑧 ∈ V
17 oveq2 7263 . . . . . . . . 9 (𝑥 = 𝑧 → (𝑦 +Q 𝑥) = (𝑦 +Q 𝑧))
1817eleq1d 2823 . . . . . . . 8 (𝑥 = 𝑧 → ((𝑦 +Q 𝑥) ∈ 𝐵 ↔ (𝑦 +Q 𝑧) ∈ 𝐵))
1918anbi2d 628 . . . . . . 7 (𝑥 = 𝑧 → ((¬ 𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵) ↔ (¬ 𝑦𝐴 ∧ (𝑦 +Q 𝑧) ∈ 𝐵)))
2019exbidv 1925 . . . . . 6 (𝑥 = 𝑧 → (∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵) ↔ ∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑧) ∈ 𝐵)))
2116, 20, 14elab2 3606 . . . . 5 (𝑧𝐶 ↔ ∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑧) ∈ 𝐵))
2213, 15, 213imtr4g 295 . . . 4 ((𝐵P𝑧 <Q 𝑥) → (𝑥𝐶𝑧𝐶))
2322ex 412 . . 3 (𝐵P → (𝑧 <Q 𝑥 → (𝑥𝐶𝑧𝐶)))
2423com23 86 . 2 (𝐵P → (𝑥𝐶 → (𝑧 <Q 𝑥𝑧𝐶)))
2524alrimdv 1933 1 (𝐵P → (𝑥𝐶 → ∀𝑧(𝑧 <Q 𝑥𝑧𝐶)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wal 1537   = wceq 1539  wex 1783  wcel 2108  {cab 2715   class class class wbr 5070   × cxp 5578  (class class class)co 7255  Qcnq 10539   +Q cplq 10542   <Q cltq 10545  Pcnp 10546
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-omul 8272  df-er 8456  df-ni 10559  df-pli 10560  df-mi 10561  df-lti 10562  df-plpq 10595  df-ltpq 10597  df-enq 10598  df-nq 10599  df-erq 10600  df-plq 10601  df-1nq 10603  df-ltnq 10605  df-np 10668
This theorem is referenced by:  ltexprlem5  10727
  Copyright terms: Public domain W3C validator