| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltexprlem3 | Structured version Visualization version GIF version | ||
| Description: Lemma for Proposition 9-3.5(iv) of [Gleason] p. 123. (Contributed by NM, 6-Apr-1996.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ltexprlem.1 | ⊢ 𝐶 = {𝑥 ∣ ∃𝑦(¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)} |
| Ref | Expression |
|---|---|
| ltexprlem3 | ⊢ (𝐵 ∈ P → (𝑥 ∈ 𝐶 → ∀𝑧(𝑧 <Q 𝑥 → 𝑧 ∈ 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elprnq 10944 | . . . . . . . . . 10 ⊢ ((𝐵 ∈ P ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → (𝑦 +Q 𝑥) ∈ Q) | |
| 2 | addnqf 10901 | . . . . . . . . . . . . 13 ⊢ +Q :(Q × Q)⟶Q | |
| 3 | 2 | fdmi 6699 | . . . . . . . . . . . 12 ⊢ dom +Q = (Q × Q) |
| 4 | 0nnq 10877 | . . . . . . . . . . . 12 ⊢ ¬ ∅ ∈ Q | |
| 5 | 3, 4 | ndmovrcl 7575 | . . . . . . . . . . 11 ⊢ ((𝑦 +Q 𝑥) ∈ Q → (𝑦 ∈ Q ∧ 𝑥 ∈ Q)) |
| 6 | 5 | simpld 494 | . . . . . . . . . 10 ⊢ ((𝑦 +Q 𝑥) ∈ Q → 𝑦 ∈ Q) |
| 7 | ltanq 10924 | . . . . . . . . . 10 ⊢ (𝑦 ∈ Q → (𝑧 <Q 𝑥 ↔ (𝑦 +Q 𝑧) <Q (𝑦 +Q 𝑥))) | |
| 8 | 1, 6, 7 | 3syl 18 | . . . . . . . . 9 ⊢ ((𝐵 ∈ P ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → (𝑧 <Q 𝑥 ↔ (𝑦 +Q 𝑧) <Q (𝑦 +Q 𝑥))) |
| 9 | prcdnq 10946 | . . . . . . . . 9 ⊢ ((𝐵 ∈ P ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → ((𝑦 +Q 𝑧) <Q (𝑦 +Q 𝑥) → (𝑦 +Q 𝑧) ∈ 𝐵)) | |
| 10 | 8, 9 | sylbid 240 | . . . . . . . 8 ⊢ ((𝐵 ∈ P ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → (𝑧 <Q 𝑥 → (𝑦 +Q 𝑧) ∈ 𝐵)) |
| 11 | 10 | impancom 451 | . . . . . . 7 ⊢ ((𝐵 ∈ P ∧ 𝑧 <Q 𝑥) → ((𝑦 +Q 𝑥) ∈ 𝐵 → (𝑦 +Q 𝑧) ∈ 𝐵)) |
| 12 | 11 | anim2d 612 | . . . . . 6 ⊢ ((𝐵 ∈ P ∧ 𝑧 <Q 𝑥) → ((¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → (¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑧) ∈ 𝐵))) |
| 13 | 12 | eximdv 1917 | . . . . 5 ⊢ ((𝐵 ∈ P ∧ 𝑧 <Q 𝑥) → (∃𝑦(¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → ∃𝑦(¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑧) ∈ 𝐵))) |
| 14 | ltexprlem.1 | . . . . . 6 ⊢ 𝐶 = {𝑥 ∣ ∃𝑦(¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)} | |
| 15 | 14 | eqabri 2871 | . . . . 5 ⊢ (𝑥 ∈ 𝐶 ↔ ∃𝑦(¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)) |
| 16 | vex 3451 | . . . . . 6 ⊢ 𝑧 ∈ V | |
| 17 | oveq2 7395 | . . . . . . . . 9 ⊢ (𝑥 = 𝑧 → (𝑦 +Q 𝑥) = (𝑦 +Q 𝑧)) | |
| 18 | 17 | eleq1d 2813 | . . . . . . . 8 ⊢ (𝑥 = 𝑧 → ((𝑦 +Q 𝑥) ∈ 𝐵 ↔ (𝑦 +Q 𝑧) ∈ 𝐵)) |
| 19 | 18 | anbi2d 630 | . . . . . . 7 ⊢ (𝑥 = 𝑧 → ((¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵) ↔ (¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑧) ∈ 𝐵))) |
| 20 | 19 | exbidv 1921 | . . . . . 6 ⊢ (𝑥 = 𝑧 → (∃𝑦(¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵) ↔ ∃𝑦(¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑧) ∈ 𝐵))) |
| 21 | 16, 20, 14 | elab2 3649 | . . . . 5 ⊢ (𝑧 ∈ 𝐶 ↔ ∃𝑦(¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑧) ∈ 𝐵)) |
| 22 | 13, 15, 21 | 3imtr4g 296 | . . . 4 ⊢ ((𝐵 ∈ P ∧ 𝑧 <Q 𝑥) → (𝑥 ∈ 𝐶 → 𝑧 ∈ 𝐶)) |
| 23 | 22 | ex 412 | . . 3 ⊢ (𝐵 ∈ P → (𝑧 <Q 𝑥 → (𝑥 ∈ 𝐶 → 𝑧 ∈ 𝐶))) |
| 24 | 23 | com23 86 | . 2 ⊢ (𝐵 ∈ P → (𝑥 ∈ 𝐶 → (𝑧 <Q 𝑥 → 𝑧 ∈ 𝐶))) |
| 25 | 24 | alrimdv 1929 | 1 ⊢ (𝐵 ∈ P → (𝑥 ∈ 𝐶 → ∀𝑧(𝑧 <Q 𝑥 → 𝑧 ∈ 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 ∃wex 1779 ∈ wcel 2109 {cab 2707 class class class wbr 5107 × cxp 5636 (class class class)co 7387 Qcnq 10805 +Q cplq 10808 <Q cltq 10811 Pcnp 10812 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-oadd 8438 df-omul 8439 df-er 8671 df-ni 10825 df-pli 10826 df-mi 10827 df-lti 10828 df-plpq 10861 df-ltpq 10863 df-enq 10864 df-nq 10865 df-erq 10866 df-plq 10867 df-1nq 10869 df-ltnq 10871 df-np 10934 |
| This theorem is referenced by: ltexprlem5 10993 |
| Copyright terms: Public domain | W3C validator |