| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltexprlem3 | Structured version Visualization version GIF version | ||
| Description: Lemma for Proposition 9-3.5(iv) of [Gleason] p. 123. (Contributed by NM, 6-Apr-1996.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ltexprlem.1 | ⊢ 𝐶 = {𝑥 ∣ ∃𝑦(¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)} |
| Ref | Expression |
|---|---|
| ltexprlem3 | ⊢ (𝐵 ∈ P → (𝑥 ∈ 𝐶 → ∀𝑧(𝑧 <Q 𝑥 → 𝑧 ∈ 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elprnq 10951 | . . . . . . . . . 10 ⊢ ((𝐵 ∈ P ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → (𝑦 +Q 𝑥) ∈ Q) | |
| 2 | addnqf 10908 | . . . . . . . . . . . . 13 ⊢ +Q :(Q × Q)⟶Q | |
| 3 | 2 | fdmi 6702 | . . . . . . . . . . . 12 ⊢ dom +Q = (Q × Q) |
| 4 | 0nnq 10884 | . . . . . . . . . . . 12 ⊢ ¬ ∅ ∈ Q | |
| 5 | 3, 4 | ndmovrcl 7578 | . . . . . . . . . . 11 ⊢ ((𝑦 +Q 𝑥) ∈ Q → (𝑦 ∈ Q ∧ 𝑥 ∈ Q)) |
| 6 | 5 | simpld 494 | . . . . . . . . . 10 ⊢ ((𝑦 +Q 𝑥) ∈ Q → 𝑦 ∈ Q) |
| 7 | ltanq 10931 | . . . . . . . . . 10 ⊢ (𝑦 ∈ Q → (𝑧 <Q 𝑥 ↔ (𝑦 +Q 𝑧) <Q (𝑦 +Q 𝑥))) | |
| 8 | 1, 6, 7 | 3syl 18 | . . . . . . . . 9 ⊢ ((𝐵 ∈ P ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → (𝑧 <Q 𝑥 ↔ (𝑦 +Q 𝑧) <Q (𝑦 +Q 𝑥))) |
| 9 | prcdnq 10953 | . . . . . . . . 9 ⊢ ((𝐵 ∈ P ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → ((𝑦 +Q 𝑧) <Q (𝑦 +Q 𝑥) → (𝑦 +Q 𝑧) ∈ 𝐵)) | |
| 10 | 8, 9 | sylbid 240 | . . . . . . . 8 ⊢ ((𝐵 ∈ P ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → (𝑧 <Q 𝑥 → (𝑦 +Q 𝑧) ∈ 𝐵)) |
| 11 | 10 | impancom 451 | . . . . . . 7 ⊢ ((𝐵 ∈ P ∧ 𝑧 <Q 𝑥) → ((𝑦 +Q 𝑥) ∈ 𝐵 → (𝑦 +Q 𝑧) ∈ 𝐵)) |
| 12 | 11 | anim2d 612 | . . . . . 6 ⊢ ((𝐵 ∈ P ∧ 𝑧 <Q 𝑥) → ((¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → (¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑧) ∈ 𝐵))) |
| 13 | 12 | eximdv 1917 | . . . . 5 ⊢ ((𝐵 ∈ P ∧ 𝑧 <Q 𝑥) → (∃𝑦(¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → ∃𝑦(¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑧) ∈ 𝐵))) |
| 14 | ltexprlem.1 | . . . . . 6 ⊢ 𝐶 = {𝑥 ∣ ∃𝑦(¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)} | |
| 15 | 14 | eqabri 2872 | . . . . 5 ⊢ (𝑥 ∈ 𝐶 ↔ ∃𝑦(¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)) |
| 16 | vex 3454 | . . . . . 6 ⊢ 𝑧 ∈ V | |
| 17 | oveq2 7398 | . . . . . . . . 9 ⊢ (𝑥 = 𝑧 → (𝑦 +Q 𝑥) = (𝑦 +Q 𝑧)) | |
| 18 | 17 | eleq1d 2814 | . . . . . . . 8 ⊢ (𝑥 = 𝑧 → ((𝑦 +Q 𝑥) ∈ 𝐵 ↔ (𝑦 +Q 𝑧) ∈ 𝐵)) |
| 19 | 18 | anbi2d 630 | . . . . . . 7 ⊢ (𝑥 = 𝑧 → ((¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵) ↔ (¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑧) ∈ 𝐵))) |
| 20 | 19 | exbidv 1921 | . . . . . 6 ⊢ (𝑥 = 𝑧 → (∃𝑦(¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵) ↔ ∃𝑦(¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑧) ∈ 𝐵))) |
| 21 | 16, 20, 14 | elab2 3652 | . . . . 5 ⊢ (𝑧 ∈ 𝐶 ↔ ∃𝑦(¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑧) ∈ 𝐵)) |
| 22 | 13, 15, 21 | 3imtr4g 296 | . . . 4 ⊢ ((𝐵 ∈ P ∧ 𝑧 <Q 𝑥) → (𝑥 ∈ 𝐶 → 𝑧 ∈ 𝐶)) |
| 23 | 22 | ex 412 | . . 3 ⊢ (𝐵 ∈ P → (𝑧 <Q 𝑥 → (𝑥 ∈ 𝐶 → 𝑧 ∈ 𝐶))) |
| 24 | 23 | com23 86 | . 2 ⊢ (𝐵 ∈ P → (𝑥 ∈ 𝐶 → (𝑧 <Q 𝑥 → 𝑧 ∈ 𝐶))) |
| 25 | 24 | alrimdv 1929 | 1 ⊢ (𝐵 ∈ P → (𝑥 ∈ 𝐶 → ∀𝑧(𝑧 <Q 𝑥 → 𝑧 ∈ 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 ∃wex 1779 ∈ wcel 2109 {cab 2708 class class class wbr 5110 × cxp 5639 (class class class)co 7390 Qcnq 10812 +Q cplq 10815 <Q cltq 10818 Pcnp 10819 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-oadd 8441 df-omul 8442 df-er 8674 df-ni 10832 df-pli 10833 df-mi 10834 df-lti 10835 df-plpq 10868 df-ltpq 10870 df-enq 10871 df-nq 10872 df-erq 10873 df-plq 10874 df-1nq 10876 df-ltnq 10878 df-np 10941 |
| This theorem is referenced by: ltexprlem5 11000 |
| Copyright terms: Public domain | W3C validator |