MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iccshftr Structured version   Visualization version   GIF version

Theorem iccshftr 13463
Description: Membership in a shifted interval. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypotheses
Ref Expression
iccshftr.1 (𝐴 + 𝑅) = 𝐶
iccshftr.2 (𝐵 + 𝑅) = 𝐷
Assertion
Ref Expression
iccshftr (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 + 𝑅) ∈ (𝐶[,]𝐷)))

Proof of Theorem iccshftr
StepHypRef Expression
1 simpl 484 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ) → 𝑋 ∈ ℝ)
2 readdcl 11193 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝑋 + 𝑅) ∈ ℝ)
31, 22thd 265 . . . 4 ((𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝑋 ∈ ℝ ↔ (𝑋 + 𝑅) ∈ ℝ))
43adantl 483 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → (𝑋 ∈ ℝ ↔ (𝑋 + 𝑅) ∈ ℝ))
5 leadd1 11682 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝐴𝑋 ↔ (𝐴 + 𝑅) ≤ (𝑋 + 𝑅)))
653expb 1121 . . . . 5 ((𝐴 ∈ ℝ ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → (𝐴𝑋 ↔ (𝐴 + 𝑅) ≤ (𝑋 + 𝑅)))
76adantlr 714 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → (𝐴𝑋 ↔ (𝐴 + 𝑅) ≤ (𝑋 + 𝑅)))
8 iccshftr.1 . . . . 5 (𝐴 + 𝑅) = 𝐶
98breq1i 5156 . . . 4 ((𝐴 + 𝑅) ≤ (𝑋 + 𝑅) ↔ 𝐶 ≤ (𝑋 + 𝑅))
107, 9bitrdi 287 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → (𝐴𝑋𝐶 ≤ (𝑋 + 𝑅)))
11 leadd1 11682 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝑋𝐵 ↔ (𝑋 + 𝑅) ≤ (𝐵 + 𝑅)))
12113expb 1121 . . . . . 6 ((𝑋 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → (𝑋𝐵 ↔ (𝑋 + 𝑅) ≤ (𝐵 + 𝑅)))
1312an12s 648 . . . . 5 ((𝐵 ∈ ℝ ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → (𝑋𝐵 ↔ (𝑋 + 𝑅) ≤ (𝐵 + 𝑅)))
1413adantll 713 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → (𝑋𝐵 ↔ (𝑋 + 𝑅) ≤ (𝐵 + 𝑅)))
15 iccshftr.2 . . . . 5 (𝐵 + 𝑅) = 𝐷
1615breq2i 5157 . . . 4 ((𝑋 + 𝑅) ≤ (𝐵 + 𝑅) ↔ (𝑋 + 𝑅) ≤ 𝐷)
1714, 16bitrdi 287 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → (𝑋𝐵 ↔ (𝑋 + 𝑅) ≤ 𝐷))
184, 10, 173anbi123d 1437 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → ((𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋𝐵) ↔ ((𝑋 + 𝑅) ∈ ℝ ∧ 𝐶 ≤ (𝑋 + 𝑅) ∧ (𝑋 + 𝑅) ≤ 𝐷)))
19 elicc2 13389 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋𝐵)))
2019adantr 482 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋𝐵)))
21 readdcl 11193 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝐴 + 𝑅) ∈ ℝ)
228, 21eqeltrrid 2839 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑅 ∈ ℝ) → 𝐶 ∈ ℝ)
23 readdcl 11193 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝐵 + 𝑅) ∈ ℝ)
2415, 23eqeltrrid 2839 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝑅 ∈ ℝ) → 𝐷 ∈ ℝ)
25 elicc2 13389 . . . . 5 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → ((𝑋 + 𝑅) ∈ (𝐶[,]𝐷) ↔ ((𝑋 + 𝑅) ∈ ℝ ∧ 𝐶 ≤ (𝑋 + 𝑅) ∧ (𝑋 + 𝑅) ≤ 𝐷)))
2622, 24, 25syl2an 597 . . . 4 (((𝐴 ∈ ℝ ∧ 𝑅 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → ((𝑋 + 𝑅) ∈ (𝐶[,]𝐷) ↔ ((𝑋 + 𝑅) ∈ ℝ ∧ 𝐶 ≤ (𝑋 + 𝑅) ∧ (𝑋 + 𝑅) ≤ 𝐷)))
2726anandirs 678 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑅 ∈ ℝ) → ((𝑋 + 𝑅) ∈ (𝐶[,]𝐷) ↔ ((𝑋 + 𝑅) ∈ ℝ ∧ 𝐶 ≤ (𝑋 + 𝑅) ∧ (𝑋 + 𝑅) ≤ 𝐷)))
2827adantrl 715 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → ((𝑋 + 𝑅) ∈ (𝐶[,]𝐷) ↔ ((𝑋 + 𝑅) ∈ ℝ ∧ 𝐶 ≤ (𝑋 + 𝑅) ∧ (𝑋 + 𝑅) ≤ 𝐷)))
2918, 20, 283bitr4d 311 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 + 𝑅) ∈ (𝐶[,]𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107   class class class wbr 5149  (class class class)co 7409  cr 11109   + caddc 11113  cle 11249  [,]cicc 13327
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-po 5589  df-so 5590  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-icc 13331
This theorem is referenced by:  iccshftri  13464  lincmb01cmp  13472
  Copyright terms: Public domain W3C validator