MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iccshftr Structured version   Visualization version   GIF version

Theorem iccshftr 13508
Description: Membership in a shifted interval. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypotheses
Ref Expression
iccshftr.1 (𝐴 + 𝑅) = 𝐶
iccshftr.2 (𝐵 + 𝑅) = 𝐷
Assertion
Ref Expression
iccshftr (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 + 𝑅) ∈ (𝐶[,]𝐷)))

Proof of Theorem iccshftr
StepHypRef Expression
1 simpl 482 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ) → 𝑋 ∈ ℝ)
2 readdcl 11217 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝑋 + 𝑅) ∈ ℝ)
31, 22thd 265 . . . 4 ((𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝑋 ∈ ℝ ↔ (𝑋 + 𝑅) ∈ ℝ))
43adantl 481 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → (𝑋 ∈ ℝ ↔ (𝑋 + 𝑅) ∈ ℝ))
5 leadd1 11710 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝐴𝑋 ↔ (𝐴 + 𝑅) ≤ (𝑋 + 𝑅)))
653expb 1120 . . . . 5 ((𝐴 ∈ ℝ ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → (𝐴𝑋 ↔ (𝐴 + 𝑅) ≤ (𝑋 + 𝑅)))
76adantlr 715 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → (𝐴𝑋 ↔ (𝐴 + 𝑅) ≤ (𝑋 + 𝑅)))
8 iccshftr.1 . . . . 5 (𝐴 + 𝑅) = 𝐶
98breq1i 5131 . . . 4 ((𝐴 + 𝑅) ≤ (𝑋 + 𝑅) ↔ 𝐶 ≤ (𝑋 + 𝑅))
107, 9bitrdi 287 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → (𝐴𝑋𝐶 ≤ (𝑋 + 𝑅)))
11 leadd1 11710 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝑋𝐵 ↔ (𝑋 + 𝑅) ≤ (𝐵 + 𝑅)))
12113expb 1120 . . . . . 6 ((𝑋 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → (𝑋𝐵 ↔ (𝑋 + 𝑅) ≤ (𝐵 + 𝑅)))
1312an12s 649 . . . . 5 ((𝐵 ∈ ℝ ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → (𝑋𝐵 ↔ (𝑋 + 𝑅) ≤ (𝐵 + 𝑅)))
1413adantll 714 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → (𝑋𝐵 ↔ (𝑋 + 𝑅) ≤ (𝐵 + 𝑅)))
15 iccshftr.2 . . . . 5 (𝐵 + 𝑅) = 𝐷
1615breq2i 5132 . . . 4 ((𝑋 + 𝑅) ≤ (𝐵 + 𝑅) ↔ (𝑋 + 𝑅) ≤ 𝐷)
1714, 16bitrdi 287 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → (𝑋𝐵 ↔ (𝑋 + 𝑅) ≤ 𝐷))
184, 10, 173anbi123d 1438 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → ((𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋𝐵) ↔ ((𝑋 + 𝑅) ∈ ℝ ∧ 𝐶 ≤ (𝑋 + 𝑅) ∧ (𝑋 + 𝑅) ≤ 𝐷)))
19 elicc2 13433 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋𝐵)))
2019adantr 480 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋𝐵)))
21 readdcl 11217 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝐴 + 𝑅) ∈ ℝ)
228, 21eqeltrrid 2840 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑅 ∈ ℝ) → 𝐶 ∈ ℝ)
23 readdcl 11217 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝐵 + 𝑅) ∈ ℝ)
2415, 23eqeltrrid 2840 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝑅 ∈ ℝ) → 𝐷 ∈ ℝ)
25 elicc2 13433 . . . . 5 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → ((𝑋 + 𝑅) ∈ (𝐶[,]𝐷) ↔ ((𝑋 + 𝑅) ∈ ℝ ∧ 𝐶 ≤ (𝑋 + 𝑅) ∧ (𝑋 + 𝑅) ≤ 𝐷)))
2622, 24, 25syl2an 596 . . . 4 (((𝐴 ∈ ℝ ∧ 𝑅 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → ((𝑋 + 𝑅) ∈ (𝐶[,]𝐷) ↔ ((𝑋 + 𝑅) ∈ ℝ ∧ 𝐶 ≤ (𝑋 + 𝑅) ∧ (𝑋 + 𝑅) ≤ 𝐷)))
2726anandirs 679 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑅 ∈ ℝ) → ((𝑋 + 𝑅) ∈ (𝐶[,]𝐷) ↔ ((𝑋 + 𝑅) ∈ ℝ ∧ 𝐶 ≤ (𝑋 + 𝑅) ∧ (𝑋 + 𝑅) ≤ 𝐷)))
2827adantrl 716 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → ((𝑋 + 𝑅) ∈ (𝐶[,]𝐷) ↔ ((𝑋 + 𝑅) ∈ ℝ ∧ 𝐶 ≤ (𝑋 + 𝑅) ∧ (𝑋 + 𝑅) ≤ 𝐷)))
2918, 20, 283bitr4d 311 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 + 𝑅) ∈ (𝐶[,]𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5124  (class class class)co 7410  cr 11133   + caddc 11137  cle 11275  [,]cicc 13370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-po 5566  df-so 5567  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-icc 13374
This theorem is referenced by:  iccshftri  13509  lincmb01cmp  13517
  Copyright terms: Public domain W3C validator