HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  unoplin Structured version   Visualization version   GIF version

Theorem unoplin 31597
Description: A unitary operator is linear. Theorem in [AkhiezerGlazman] p. 72. (Contributed by NM, 22-Jan-2006.) (New usage is discouraged.)
Assertion
Ref Expression
unoplin (๐‘‡ โˆˆ UniOp โ†’ ๐‘‡ โˆˆ LinOp)

Proof of Theorem unoplin
Dummy variables ๐‘ฅ ๐‘ค ๐‘ฆ ๐‘ง are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unopf1o 31593 . . 3 (๐‘‡ โˆˆ UniOp โ†’ ๐‘‡: โ„‹โ€“1-1-ontoโ†’ โ„‹)
2 f1of 6823 . . 3 (๐‘‡: โ„‹โ€“1-1-ontoโ†’ โ„‹ โ†’ ๐‘‡: โ„‹โŸถ โ„‹)
31, 2syl 17 . 2 (๐‘‡ โˆˆ UniOp โ†’ ๐‘‡: โ„‹โŸถ โ„‹)
4 simplll 772 . . . . . . . 8 ((((๐‘‡ โˆˆ UniOp โˆง (๐‘ฅ โˆˆ โ„‚ โˆง ๐‘ฆ โˆˆ โ„‹)) โˆง ๐‘ง โˆˆ โ„‹) โˆง ๐‘ค โˆˆ โ„‹) โ†’ ๐‘‡ โˆˆ UniOp)
5 hvmulcl 30690 . . . . . . . . . . 11 ((๐‘ฅ โˆˆ โ„‚ โˆง ๐‘ฆ โˆˆ โ„‹) โ†’ (๐‘ฅ ยทโ„Ž ๐‘ฆ) โˆˆ โ„‹)
6 hvaddcl 30689 . . . . . . . . . . 11 (((๐‘ฅ ยทโ„Ž ๐‘ฆ) โˆˆ โ„‹ โˆง ๐‘ง โˆˆ โ„‹) โ†’ ((๐‘ฅ ยทโ„Ž ๐‘ฆ) +โ„Ž ๐‘ง) โˆˆ โ„‹)
75, 6sylan 579 . . . . . . . . . 10 (((๐‘ฅ โˆˆ โ„‚ โˆง ๐‘ฆ โˆˆ โ„‹) โˆง ๐‘ง โˆˆ โ„‹) โ†’ ((๐‘ฅ ยทโ„Ž ๐‘ฆ) +โ„Ž ๐‘ง) โˆˆ โ„‹)
87adantll 711 . . . . . . . . 9 (((๐‘‡ โˆˆ UniOp โˆง (๐‘ฅ โˆˆ โ„‚ โˆง ๐‘ฆ โˆˆ โ„‹)) โˆง ๐‘ง โˆˆ โ„‹) โ†’ ((๐‘ฅ ยทโ„Ž ๐‘ฆ) +โ„Ž ๐‘ง) โˆˆ โ„‹)
98adantr 480 . . . . . . . 8 ((((๐‘‡ โˆˆ UniOp โˆง (๐‘ฅ โˆˆ โ„‚ โˆง ๐‘ฆ โˆˆ โ„‹)) โˆง ๐‘ง โˆˆ โ„‹) โˆง ๐‘ค โˆˆ โ„‹) โ†’ ((๐‘ฅ ยทโ„Ž ๐‘ฆ) +โ„Ž ๐‘ง) โˆˆ โ„‹)
10 simpr 484 . . . . . . . 8 ((((๐‘‡ โˆˆ UniOp โˆง (๐‘ฅ โˆˆ โ„‚ โˆง ๐‘ฆ โˆˆ โ„‹)) โˆง ๐‘ง โˆˆ โ„‹) โˆง ๐‘ค โˆˆ โ„‹) โ†’ ๐‘ค โˆˆ โ„‹)
11 unopadj 31596 . . . . . . . 8 ((๐‘‡ โˆˆ UniOp โˆง ((๐‘ฅ ยทโ„Ž ๐‘ฆ) +โ„Ž ๐‘ง) โˆˆ โ„‹ โˆง ๐‘ค โˆˆ โ„‹) โ†’ ((๐‘‡โ€˜((๐‘ฅ ยทโ„Ž ๐‘ฆ) +โ„Ž ๐‘ง)) ยทih ๐‘ค) = (((๐‘ฅ ยทโ„Ž ๐‘ฆ) +โ„Ž ๐‘ง) ยทih (โ—ก๐‘‡โ€˜๐‘ค)))
124, 9, 10, 11syl3anc 1368 . . . . . . 7 ((((๐‘‡ โˆˆ UniOp โˆง (๐‘ฅ โˆˆ โ„‚ โˆง ๐‘ฆ โˆˆ โ„‹)) โˆง ๐‘ง โˆˆ โ„‹) โˆง ๐‘ค โˆˆ โ„‹) โ†’ ((๐‘‡โ€˜((๐‘ฅ ยทโ„Ž ๐‘ฆ) +โ„Ž ๐‘ง)) ยทih ๐‘ค) = (((๐‘ฅ ยทโ„Ž ๐‘ฆ) +โ„Ž ๐‘ง) ยทih (โ—ก๐‘‡โ€˜๐‘ค)))
13 simprl 768 . . . . . . . . 9 ((๐‘‡ โˆˆ UniOp โˆง (๐‘ฅ โˆˆ โ„‚ โˆง ๐‘ฆ โˆˆ โ„‹)) โ†’ ๐‘ฅ โˆˆ โ„‚)
1413ad2antrr 723 . . . . . . . 8 ((((๐‘‡ โˆˆ UniOp โˆง (๐‘ฅ โˆˆ โ„‚ โˆง ๐‘ฆ โˆˆ โ„‹)) โˆง ๐‘ง โˆˆ โ„‹) โˆง ๐‘ค โˆˆ โ„‹) โ†’ ๐‘ฅ โˆˆ โ„‚)
15 simprr 770 . . . . . . . . 9 ((๐‘‡ โˆˆ UniOp โˆง (๐‘ฅ โˆˆ โ„‚ โˆง ๐‘ฆ โˆˆ โ„‹)) โ†’ ๐‘ฆ โˆˆ โ„‹)
1615ad2antrr 723 . . . . . . . 8 ((((๐‘‡ โˆˆ UniOp โˆง (๐‘ฅ โˆˆ โ„‚ โˆง ๐‘ฆ โˆˆ โ„‹)) โˆง ๐‘ง โˆˆ โ„‹) โˆง ๐‘ค โˆˆ โ„‹) โ†’ ๐‘ฆ โˆˆ โ„‹)
17 simplr 766 . . . . . . . 8 ((((๐‘‡ โˆˆ UniOp โˆง (๐‘ฅ โˆˆ โ„‚ โˆง ๐‘ฆ โˆˆ โ„‹)) โˆง ๐‘ง โˆˆ โ„‹) โˆง ๐‘ค โˆˆ โ„‹) โ†’ ๐‘ง โˆˆ โ„‹)
18 cnvunop 31595 . . . . . . . . . . . 12 (๐‘‡ โˆˆ UniOp โ†’ โ—ก๐‘‡ โˆˆ UniOp)
19 unopf1o 31593 . . . . . . . . . . . 12 (โ—ก๐‘‡ โˆˆ UniOp โ†’ โ—ก๐‘‡: โ„‹โ€“1-1-ontoโ†’ โ„‹)
20 f1of 6823 . . . . . . . . . . . 12 (โ—ก๐‘‡: โ„‹โ€“1-1-ontoโ†’ โ„‹ โ†’ โ—ก๐‘‡: โ„‹โŸถ โ„‹)
2118, 19, 203syl 18 . . . . . . . . . . 11 (๐‘‡ โˆˆ UniOp โ†’ โ—ก๐‘‡: โ„‹โŸถ โ„‹)
2221ffvelcdmda 7076 . . . . . . . . . 10 ((๐‘‡ โˆˆ UniOp โˆง ๐‘ค โˆˆ โ„‹) โ†’ (โ—ก๐‘‡โ€˜๐‘ค) โˆˆ โ„‹)
2322adantlr 712 . . . . . . . . 9 (((๐‘‡ โˆˆ UniOp โˆง ๐‘ง โˆˆ โ„‹) โˆง ๐‘ค โˆˆ โ„‹) โ†’ (โ—ก๐‘‡โ€˜๐‘ค) โˆˆ โ„‹)
2423adantllr 716 . . . . . . . 8 ((((๐‘‡ โˆˆ UniOp โˆง (๐‘ฅ โˆˆ โ„‚ โˆง ๐‘ฆ โˆˆ โ„‹)) โˆง ๐‘ง โˆˆ โ„‹) โˆง ๐‘ค โˆˆ โ„‹) โ†’ (โ—ก๐‘‡โ€˜๐‘ค) โˆˆ โ„‹)
25 hiassdi 30768 . . . . . . . 8 (((๐‘ฅ โˆˆ โ„‚ โˆง ๐‘ฆ โˆˆ โ„‹) โˆง (๐‘ง โˆˆ โ„‹ โˆง (โ—ก๐‘‡โ€˜๐‘ค) โˆˆ โ„‹)) โ†’ (((๐‘ฅ ยทโ„Ž ๐‘ฆ) +โ„Ž ๐‘ง) ยทih (โ—ก๐‘‡โ€˜๐‘ค)) = ((๐‘ฅ ยท (๐‘ฆ ยทih (โ—ก๐‘‡โ€˜๐‘ค))) + (๐‘ง ยทih (โ—ก๐‘‡โ€˜๐‘ค))))
2614, 16, 17, 24, 25syl22anc 836 . . . . . . 7 ((((๐‘‡ โˆˆ UniOp โˆง (๐‘ฅ โˆˆ โ„‚ โˆง ๐‘ฆ โˆˆ โ„‹)) โˆง ๐‘ง โˆˆ โ„‹) โˆง ๐‘ค โˆˆ โ„‹) โ†’ (((๐‘ฅ ยทโ„Ž ๐‘ฆ) +โ„Ž ๐‘ง) ยทih (โ—ก๐‘‡โ€˜๐‘ค)) = ((๐‘ฅ ยท (๐‘ฆ ยทih (โ—ก๐‘‡โ€˜๐‘ค))) + (๐‘ง ยทih (โ—ก๐‘‡โ€˜๐‘ค))))
273ffvelcdmda 7076 . . . . . . . . . . 11 ((๐‘‡ โˆˆ UniOp โˆง ๐‘ฆ โˆˆ โ„‹) โ†’ (๐‘‡โ€˜๐‘ฆ) โˆˆ โ„‹)
2827adantrl 713 . . . . . . . . . 10 ((๐‘‡ โˆˆ UniOp โˆง (๐‘ฅ โˆˆ โ„‚ โˆง ๐‘ฆ โˆˆ โ„‹)) โ†’ (๐‘‡โ€˜๐‘ฆ) โˆˆ โ„‹)
2928ad2antrr 723 . . . . . . . . 9 ((((๐‘‡ โˆˆ UniOp โˆง (๐‘ฅ โˆˆ โ„‚ โˆง ๐‘ฆ โˆˆ โ„‹)) โˆง ๐‘ง โˆˆ โ„‹) โˆง ๐‘ค โˆˆ โ„‹) โ†’ (๐‘‡โ€˜๐‘ฆ) โˆˆ โ„‹)
303ffvelcdmda 7076 . . . . . . . . . . 11 ((๐‘‡ โˆˆ UniOp โˆง ๐‘ง โˆˆ โ„‹) โ†’ (๐‘‡โ€˜๐‘ง) โˆˆ โ„‹)
3130adantr 480 . . . . . . . . . 10 (((๐‘‡ โˆˆ UniOp โˆง ๐‘ง โˆˆ โ„‹) โˆง ๐‘ค โˆˆ โ„‹) โ†’ (๐‘‡โ€˜๐‘ง) โˆˆ โ„‹)
3231adantllr 716 . . . . . . . . 9 ((((๐‘‡ โˆˆ UniOp โˆง (๐‘ฅ โˆˆ โ„‚ โˆง ๐‘ฆ โˆˆ โ„‹)) โˆง ๐‘ง โˆˆ โ„‹) โˆง ๐‘ค โˆˆ โ„‹) โ†’ (๐‘‡โ€˜๐‘ง) โˆˆ โ„‹)
33 hiassdi 30768 . . . . . . . . 9 (((๐‘ฅ โˆˆ โ„‚ โˆง (๐‘‡โ€˜๐‘ฆ) โˆˆ โ„‹) โˆง ((๐‘‡โ€˜๐‘ง) โˆˆ โ„‹ โˆง ๐‘ค โˆˆ โ„‹)) โ†’ (((๐‘ฅ ยทโ„Ž (๐‘‡โ€˜๐‘ฆ)) +โ„Ž (๐‘‡โ€˜๐‘ง)) ยทih ๐‘ค) = ((๐‘ฅ ยท ((๐‘‡โ€˜๐‘ฆ) ยทih ๐‘ค)) + ((๐‘‡โ€˜๐‘ง) ยทih ๐‘ค)))
3414, 29, 32, 10, 33syl22anc 836 . . . . . . . 8 ((((๐‘‡ โˆˆ UniOp โˆง (๐‘ฅ โˆˆ โ„‚ โˆง ๐‘ฆ โˆˆ โ„‹)) โˆง ๐‘ง โˆˆ โ„‹) โˆง ๐‘ค โˆˆ โ„‹) โ†’ (((๐‘ฅ ยทโ„Ž (๐‘‡โ€˜๐‘ฆ)) +โ„Ž (๐‘‡โ€˜๐‘ง)) ยทih ๐‘ค) = ((๐‘ฅ ยท ((๐‘‡โ€˜๐‘ฆ) ยทih ๐‘ค)) + ((๐‘‡โ€˜๐‘ง) ยทih ๐‘ค)))
35 unopadj 31596 . . . . . . . . . . . . 13 ((๐‘‡ โˆˆ UniOp โˆง ๐‘ฆ โˆˆ โ„‹ โˆง ๐‘ค โˆˆ โ„‹) โ†’ ((๐‘‡โ€˜๐‘ฆ) ยทih ๐‘ค) = (๐‘ฆ ยทih (โ—ก๐‘‡โ€˜๐‘ค)))
36353expa 1115 . . . . . . . . . . . 12 (((๐‘‡ โˆˆ UniOp โˆง ๐‘ฆ โˆˆ โ„‹) โˆง ๐‘ค โˆˆ โ„‹) โ†’ ((๐‘‡โ€˜๐‘ฆ) ยทih ๐‘ค) = (๐‘ฆ ยทih (โ—ก๐‘‡โ€˜๐‘ค)))
3736oveq2d 7417 . . . . . . . . . . 11 (((๐‘‡ โˆˆ UniOp โˆง ๐‘ฆ โˆˆ โ„‹) โˆง ๐‘ค โˆˆ โ„‹) โ†’ (๐‘ฅ ยท ((๐‘‡โ€˜๐‘ฆ) ยทih ๐‘ค)) = (๐‘ฅ ยท (๐‘ฆ ยทih (โ—ก๐‘‡โ€˜๐‘ค))))
3837adantlrl 717 . . . . . . . . . 10 (((๐‘‡ โˆˆ UniOp โˆง (๐‘ฅ โˆˆ โ„‚ โˆง ๐‘ฆ โˆˆ โ„‹)) โˆง ๐‘ค โˆˆ โ„‹) โ†’ (๐‘ฅ ยท ((๐‘‡โ€˜๐‘ฆ) ยทih ๐‘ค)) = (๐‘ฅ ยท (๐‘ฆ ยทih (โ—ก๐‘‡โ€˜๐‘ค))))
3938adantlr 712 . . . . . . . . 9 ((((๐‘‡ โˆˆ UniOp โˆง (๐‘ฅ โˆˆ โ„‚ โˆง ๐‘ฆ โˆˆ โ„‹)) โˆง ๐‘ง โˆˆ โ„‹) โˆง ๐‘ค โˆˆ โ„‹) โ†’ (๐‘ฅ ยท ((๐‘‡โ€˜๐‘ฆ) ยทih ๐‘ค)) = (๐‘ฅ ยท (๐‘ฆ ยทih (โ—ก๐‘‡โ€˜๐‘ค))))
40 unopadj 31596 . . . . . . . . . . 11 ((๐‘‡ โˆˆ UniOp โˆง ๐‘ง โˆˆ โ„‹ โˆง ๐‘ค โˆˆ โ„‹) โ†’ ((๐‘‡โ€˜๐‘ง) ยทih ๐‘ค) = (๐‘ง ยทih (โ—ก๐‘‡โ€˜๐‘ค)))
41403expa 1115 . . . . . . . . . 10 (((๐‘‡ โˆˆ UniOp โˆง ๐‘ง โˆˆ โ„‹) โˆง ๐‘ค โˆˆ โ„‹) โ†’ ((๐‘‡โ€˜๐‘ง) ยทih ๐‘ค) = (๐‘ง ยทih (โ—ก๐‘‡โ€˜๐‘ค)))
4241adantllr 716 . . . . . . . . 9 ((((๐‘‡ โˆˆ UniOp โˆง (๐‘ฅ โˆˆ โ„‚ โˆง ๐‘ฆ โˆˆ โ„‹)) โˆง ๐‘ง โˆˆ โ„‹) โˆง ๐‘ค โˆˆ โ„‹) โ†’ ((๐‘‡โ€˜๐‘ง) ยทih ๐‘ค) = (๐‘ง ยทih (โ—ก๐‘‡โ€˜๐‘ค)))
4339, 42oveq12d 7419 . . . . . . . 8 ((((๐‘‡ โˆˆ UniOp โˆง (๐‘ฅ โˆˆ โ„‚ โˆง ๐‘ฆ โˆˆ โ„‹)) โˆง ๐‘ง โˆˆ โ„‹) โˆง ๐‘ค โˆˆ โ„‹) โ†’ ((๐‘ฅ ยท ((๐‘‡โ€˜๐‘ฆ) ยทih ๐‘ค)) + ((๐‘‡โ€˜๐‘ง) ยทih ๐‘ค)) = ((๐‘ฅ ยท (๐‘ฆ ยทih (โ—ก๐‘‡โ€˜๐‘ค))) + (๐‘ง ยทih (โ—ก๐‘‡โ€˜๐‘ค))))
4434, 43eqtr2d 2765 . . . . . . 7 ((((๐‘‡ โˆˆ UniOp โˆง (๐‘ฅ โˆˆ โ„‚ โˆง ๐‘ฆ โˆˆ โ„‹)) โˆง ๐‘ง โˆˆ โ„‹) โˆง ๐‘ค โˆˆ โ„‹) โ†’ ((๐‘ฅ ยท (๐‘ฆ ยทih (โ—ก๐‘‡โ€˜๐‘ค))) + (๐‘ง ยทih (โ—ก๐‘‡โ€˜๐‘ค))) = (((๐‘ฅ ยทโ„Ž (๐‘‡โ€˜๐‘ฆ)) +โ„Ž (๐‘‡โ€˜๐‘ง)) ยทih ๐‘ค))
4512, 26, 443eqtrd 2768 . . . . . 6 ((((๐‘‡ โˆˆ UniOp โˆง (๐‘ฅ โˆˆ โ„‚ โˆง ๐‘ฆ โˆˆ โ„‹)) โˆง ๐‘ง โˆˆ โ„‹) โˆง ๐‘ค โˆˆ โ„‹) โ†’ ((๐‘‡โ€˜((๐‘ฅ ยทโ„Ž ๐‘ฆ) +โ„Ž ๐‘ง)) ยทih ๐‘ค) = (((๐‘ฅ ยทโ„Ž (๐‘‡โ€˜๐‘ฆ)) +โ„Ž (๐‘‡โ€˜๐‘ง)) ยทih ๐‘ค))
4645ralrimiva 3138 . . . . 5 (((๐‘‡ โˆˆ UniOp โˆง (๐‘ฅ โˆˆ โ„‚ โˆง ๐‘ฆ โˆˆ โ„‹)) โˆง ๐‘ง โˆˆ โ„‹) โ†’ โˆ€๐‘ค โˆˆ โ„‹ ((๐‘‡โ€˜((๐‘ฅ ยทโ„Ž ๐‘ฆ) +โ„Ž ๐‘ง)) ยทih ๐‘ค) = (((๐‘ฅ ยทโ„Ž (๐‘‡โ€˜๐‘ฆ)) +โ„Ž (๐‘‡โ€˜๐‘ง)) ยทih ๐‘ค))
47 ffvelcdm 7073 . . . . . . . . 9 ((๐‘‡: โ„‹โŸถ โ„‹ โˆง ((๐‘ฅ ยทโ„Ž ๐‘ฆ) +โ„Ž ๐‘ง) โˆˆ โ„‹) โ†’ (๐‘‡โ€˜((๐‘ฅ ยทโ„Ž ๐‘ฆ) +โ„Ž ๐‘ง)) โˆˆ โ„‹)
487, 47sylan2 592 . . . . . . . 8 ((๐‘‡: โ„‹โŸถ โ„‹ โˆง ((๐‘ฅ โˆˆ โ„‚ โˆง ๐‘ฆ โˆˆ โ„‹) โˆง ๐‘ง โˆˆ โ„‹)) โ†’ (๐‘‡โ€˜((๐‘ฅ ยทโ„Ž ๐‘ฆ) +โ„Ž ๐‘ง)) โˆˆ โ„‹)
4948anassrs 467 . . . . . . 7 (((๐‘‡: โ„‹โŸถ โ„‹ โˆง (๐‘ฅ โˆˆ โ„‚ โˆง ๐‘ฆ โˆˆ โ„‹)) โˆง ๐‘ง โˆˆ โ„‹) โ†’ (๐‘‡โ€˜((๐‘ฅ ยทโ„Ž ๐‘ฆ) +โ„Ž ๐‘ง)) โˆˆ โ„‹)
50 ffvelcdm 7073 . . . . . . . . . . 11 ((๐‘‡: โ„‹โŸถ โ„‹ โˆง ๐‘ฆ โˆˆ โ„‹) โ†’ (๐‘‡โ€˜๐‘ฆ) โˆˆ โ„‹)
51 hvmulcl 30690 . . . . . . . . . . 11 ((๐‘ฅ โˆˆ โ„‚ โˆง (๐‘‡โ€˜๐‘ฆ) โˆˆ โ„‹) โ†’ (๐‘ฅ ยทโ„Ž (๐‘‡โ€˜๐‘ฆ)) โˆˆ โ„‹)
5250, 51sylan2 592 . . . . . . . . . 10 ((๐‘ฅ โˆˆ โ„‚ โˆง (๐‘‡: โ„‹โŸถ โ„‹ โˆง ๐‘ฆ โˆˆ โ„‹)) โ†’ (๐‘ฅ ยทโ„Ž (๐‘‡โ€˜๐‘ฆ)) โˆˆ โ„‹)
5352an12s 646 . . . . . . . . 9 ((๐‘‡: โ„‹โŸถ โ„‹ โˆง (๐‘ฅ โˆˆ โ„‚ โˆง ๐‘ฆ โˆˆ โ„‹)) โ†’ (๐‘ฅ ยทโ„Ž (๐‘‡โ€˜๐‘ฆ)) โˆˆ โ„‹)
5453adantr 480 . . . . . . . 8 (((๐‘‡: โ„‹โŸถ โ„‹ โˆง (๐‘ฅ โˆˆ โ„‚ โˆง ๐‘ฆ โˆˆ โ„‹)) โˆง ๐‘ง โˆˆ โ„‹) โ†’ (๐‘ฅ ยทโ„Ž (๐‘‡โ€˜๐‘ฆ)) โˆˆ โ„‹)
55 ffvelcdm 7073 . . . . . . . . 9 ((๐‘‡: โ„‹โŸถ โ„‹ โˆง ๐‘ง โˆˆ โ„‹) โ†’ (๐‘‡โ€˜๐‘ง) โˆˆ โ„‹)
5655adantlr 712 . . . . . . . 8 (((๐‘‡: โ„‹โŸถ โ„‹ โˆง (๐‘ฅ โˆˆ โ„‚ โˆง ๐‘ฆ โˆˆ โ„‹)) โˆง ๐‘ง โˆˆ โ„‹) โ†’ (๐‘‡โ€˜๐‘ง) โˆˆ โ„‹)
57 hvaddcl 30689 . . . . . . . 8 (((๐‘ฅ ยทโ„Ž (๐‘‡โ€˜๐‘ฆ)) โˆˆ โ„‹ โˆง (๐‘‡โ€˜๐‘ง) โˆˆ โ„‹) โ†’ ((๐‘ฅ ยทโ„Ž (๐‘‡โ€˜๐‘ฆ)) +โ„Ž (๐‘‡โ€˜๐‘ง)) โˆˆ โ„‹)
5854, 56, 57syl2anc 583 . . . . . . 7 (((๐‘‡: โ„‹โŸถ โ„‹ โˆง (๐‘ฅ โˆˆ โ„‚ โˆง ๐‘ฆ โˆˆ โ„‹)) โˆง ๐‘ง โˆˆ โ„‹) โ†’ ((๐‘ฅ ยทโ„Ž (๐‘‡โ€˜๐‘ฆ)) +โ„Ž (๐‘‡โ€˜๐‘ง)) โˆˆ โ„‹)
59 hial2eq 30783 . . . . . . 7 (((๐‘‡โ€˜((๐‘ฅ ยทโ„Ž ๐‘ฆ) +โ„Ž ๐‘ง)) โˆˆ โ„‹ โˆง ((๐‘ฅ ยทโ„Ž (๐‘‡โ€˜๐‘ฆ)) +โ„Ž (๐‘‡โ€˜๐‘ง)) โˆˆ โ„‹) โ†’ (โˆ€๐‘ค โˆˆ โ„‹ ((๐‘‡โ€˜((๐‘ฅ ยทโ„Ž ๐‘ฆ) +โ„Ž ๐‘ง)) ยทih ๐‘ค) = (((๐‘ฅ ยทโ„Ž (๐‘‡โ€˜๐‘ฆ)) +โ„Ž (๐‘‡โ€˜๐‘ง)) ยทih ๐‘ค) โ†” (๐‘‡โ€˜((๐‘ฅ ยทโ„Ž ๐‘ฆ) +โ„Ž ๐‘ง)) = ((๐‘ฅ ยทโ„Ž (๐‘‡โ€˜๐‘ฆ)) +โ„Ž (๐‘‡โ€˜๐‘ง))))
6049, 58, 59syl2anc 583 . . . . . 6 (((๐‘‡: โ„‹โŸถ โ„‹ โˆง (๐‘ฅ โˆˆ โ„‚ โˆง ๐‘ฆ โˆˆ โ„‹)) โˆง ๐‘ง โˆˆ โ„‹) โ†’ (โˆ€๐‘ค โˆˆ โ„‹ ((๐‘‡โ€˜((๐‘ฅ ยทโ„Ž ๐‘ฆ) +โ„Ž ๐‘ง)) ยทih ๐‘ค) = (((๐‘ฅ ยทโ„Ž (๐‘‡โ€˜๐‘ฆ)) +โ„Ž (๐‘‡โ€˜๐‘ง)) ยทih ๐‘ค) โ†” (๐‘‡โ€˜((๐‘ฅ ยทโ„Ž ๐‘ฆ) +โ„Ž ๐‘ง)) = ((๐‘ฅ ยทโ„Ž (๐‘‡โ€˜๐‘ฆ)) +โ„Ž (๐‘‡โ€˜๐‘ง))))
613, 60sylanl1 677 . . . . 5 (((๐‘‡ โˆˆ UniOp โˆง (๐‘ฅ โˆˆ โ„‚ โˆง ๐‘ฆ โˆˆ โ„‹)) โˆง ๐‘ง โˆˆ โ„‹) โ†’ (โˆ€๐‘ค โˆˆ โ„‹ ((๐‘‡โ€˜((๐‘ฅ ยทโ„Ž ๐‘ฆ) +โ„Ž ๐‘ง)) ยทih ๐‘ค) = (((๐‘ฅ ยทโ„Ž (๐‘‡โ€˜๐‘ฆ)) +โ„Ž (๐‘‡โ€˜๐‘ง)) ยทih ๐‘ค) โ†” (๐‘‡โ€˜((๐‘ฅ ยทโ„Ž ๐‘ฆ) +โ„Ž ๐‘ง)) = ((๐‘ฅ ยทโ„Ž (๐‘‡โ€˜๐‘ฆ)) +โ„Ž (๐‘‡โ€˜๐‘ง))))
6246, 61mpbid 231 . . . 4 (((๐‘‡ โˆˆ UniOp โˆง (๐‘ฅ โˆˆ โ„‚ โˆง ๐‘ฆ โˆˆ โ„‹)) โˆง ๐‘ง โˆˆ โ„‹) โ†’ (๐‘‡โ€˜((๐‘ฅ ยทโ„Ž ๐‘ฆ) +โ„Ž ๐‘ง)) = ((๐‘ฅ ยทโ„Ž (๐‘‡โ€˜๐‘ฆ)) +โ„Ž (๐‘‡โ€˜๐‘ง)))
6362ralrimiva 3138 . . 3 ((๐‘‡ โˆˆ UniOp โˆง (๐‘ฅ โˆˆ โ„‚ โˆง ๐‘ฆ โˆˆ โ„‹)) โ†’ โˆ€๐‘ง โˆˆ โ„‹ (๐‘‡โ€˜((๐‘ฅ ยทโ„Ž ๐‘ฆ) +โ„Ž ๐‘ง)) = ((๐‘ฅ ยทโ„Ž (๐‘‡โ€˜๐‘ฆ)) +โ„Ž (๐‘‡โ€˜๐‘ง)))
6463ralrimivva 3192 . 2 (๐‘‡ โˆˆ UniOp โ†’ โˆ€๐‘ฅ โˆˆ โ„‚ โˆ€๐‘ฆ โˆˆ โ„‹ โˆ€๐‘ง โˆˆ โ„‹ (๐‘‡โ€˜((๐‘ฅ ยทโ„Ž ๐‘ฆ) +โ„Ž ๐‘ง)) = ((๐‘ฅ ยทโ„Ž (๐‘‡โ€˜๐‘ฆ)) +โ„Ž (๐‘‡โ€˜๐‘ง)))
65 ellnop 31535 . 2 (๐‘‡ โˆˆ LinOp โ†” (๐‘‡: โ„‹โŸถ โ„‹ โˆง โˆ€๐‘ฅ โˆˆ โ„‚ โˆ€๐‘ฆ โˆˆ โ„‹ โˆ€๐‘ง โˆˆ โ„‹ (๐‘‡โ€˜((๐‘ฅ ยทโ„Ž ๐‘ฆ) +โ„Ž ๐‘ง)) = ((๐‘ฅ ยทโ„Ž (๐‘‡โ€˜๐‘ฆ)) +โ„Ž (๐‘‡โ€˜๐‘ง))))
663, 64, 65sylanbrc 582 1 (๐‘‡ โˆˆ UniOp โ†’ ๐‘‡ โˆˆ LinOp)
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โ†” wb 205   โˆง wa 395   = wceq 1533   โˆˆ wcel 2098  โˆ€wral 3053  โ—กccnv 5665  โŸถwf 6529  โ€“1-1-ontoโ†’wf1o 6532  โ€˜cfv 6533  (class class class)co 7401  โ„‚cc 11103   + caddc 11108   ยท cmul 11110   โ„‹chba 30596   +โ„Ž cva 30597   ยทโ„Ž csm 30598   ยทih csp 30599  LinOpclo 30624  UniOpcuo 30626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-resscn 11162  ax-1cn 11163  ax-icn 11164  ax-addcl 11165  ax-addrcl 11166  ax-mulcl 11167  ax-mulrcl 11168  ax-mulcom 11169  ax-addass 11170  ax-mulass 11171  ax-distr 11172  ax-i2m1 11173  ax-1ne0 11174  ax-1rid 11175  ax-rnegex 11176  ax-rrecex 11177  ax-cnre 11178  ax-pre-lttri 11179  ax-pre-lttrn 11180  ax-pre-ltadd 11181  ax-pre-mulgt0 11182  ax-hilex 30676  ax-hfvadd 30677  ax-hvcom 30678  ax-hvass 30679  ax-hv0cl 30680  ax-hvaddid 30681  ax-hfvmul 30682  ax-hvmulid 30683  ax-hvdistr2 30686  ax-hvmul0 30687  ax-hfi 30756  ax-his1 30759  ax-his2 30760  ax-his3 30761  ax-his4 30762
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-po 5578  df-so 5579  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-er 8698  df-map 8817  df-en 8935  df-dom 8936  df-sdom 8937  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-2 12271  df-cj 15042  df-re 15043  df-im 15044  df-hvsub 30648  df-lnop 31518  df-unop 31520
This theorem is referenced by:  unopadj2  31615  idlnop  31669  elunop2  31690  nmopun  31691  unopbd  31692
  Copyright terms: Public domain W3C validator