Step | Hyp | Ref
| Expression |
1 | | unopf1o 29997 |
. . 3
⊢ (𝑇 ∈ UniOp → 𝑇: ℋ–1-1-onto→
ℋ) |
2 | | f1of 6661 |
. . 3
⊢ (𝑇: ℋ–1-1-onto→
ℋ → 𝑇:
ℋ⟶ ℋ) |
3 | 1, 2 | syl 17 |
. 2
⊢ (𝑇 ∈ UniOp → 𝑇: ℋ⟶
ℋ) |
4 | | simplll 775 |
. . . . . . . 8
⊢ ((((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → 𝑇 ∈ UniOp) |
5 | | hvmulcl 29094 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑥
·ℎ 𝑦) ∈ ℋ) |
6 | | hvaddcl 29093 |
. . . . . . . . . . 11
⊢ (((𝑥
·ℎ 𝑦) ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑥 ·ℎ 𝑦) +ℎ 𝑧) ∈
ℋ) |
7 | 5, 6 | sylan 583 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑥
·ℎ 𝑦) +ℎ 𝑧) ∈ ℋ) |
8 | 7 | adantll 714 |
. . . . . . . . 9
⊢ (((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) → ((𝑥
·ℎ 𝑦) +ℎ 𝑧) ∈ ℋ) |
9 | 8 | adantr 484 |
. . . . . . . 8
⊢ ((((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → ((𝑥
·ℎ 𝑦) +ℎ 𝑧) ∈ ℋ) |
10 | | simpr 488 |
. . . . . . . 8
⊢ ((((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → 𝑤 ∈
ℋ) |
11 | | unopadj 30000 |
. . . . . . . 8
⊢ ((𝑇 ∈ UniOp ∧ ((𝑥
·ℎ 𝑦) +ℎ 𝑧) ∈ ℋ ∧ 𝑤 ∈ ℋ) → ((𝑇‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧))
·ih 𝑤) = (((𝑥 ·ℎ 𝑦) +ℎ 𝑧)
·ih (◡𝑇‘𝑤))) |
12 | 4, 9, 10, 11 | syl3anc 1373 |
. . . . . . 7
⊢ ((((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → ((𝑇‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧))
·ih 𝑤) = (((𝑥 ·ℎ 𝑦) +ℎ 𝑧)
·ih (◡𝑇‘𝑤))) |
13 | | simprl 771 |
. . . . . . . . 9
⊢ ((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → 𝑥 ∈
ℂ) |
14 | 13 | ad2antrr 726 |
. . . . . . . 8
⊢ ((((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → 𝑥 ∈
ℂ) |
15 | | simprr 773 |
. . . . . . . . 9
⊢ ((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → 𝑦 ∈
ℋ) |
16 | 15 | ad2antrr 726 |
. . . . . . . 8
⊢ ((((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → 𝑦 ∈
ℋ) |
17 | | simplr 769 |
. . . . . . . 8
⊢ ((((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → 𝑧 ∈
ℋ) |
18 | | cnvunop 29999 |
. . . . . . . . . . . 12
⊢ (𝑇 ∈ UniOp → ◡𝑇 ∈ UniOp) |
19 | | unopf1o 29997 |
. . . . . . . . . . . 12
⊢ (◡𝑇 ∈ UniOp → ◡𝑇: ℋ–1-1-onto→
ℋ) |
20 | | f1of 6661 |
. . . . . . . . . . . 12
⊢ (◡𝑇: ℋ–1-1-onto→
ℋ → ◡𝑇: ℋ⟶ ℋ) |
21 | 18, 19, 20 | 3syl 18 |
. . . . . . . . . . 11
⊢ (𝑇 ∈ UniOp → ◡𝑇: ℋ⟶ ℋ) |
22 | 21 | ffvelrnda 6904 |
. . . . . . . . . 10
⊢ ((𝑇 ∈ UniOp ∧ 𝑤 ∈ ℋ) → (◡𝑇‘𝑤) ∈ ℋ) |
23 | 22 | adantlr 715 |
. . . . . . . . 9
⊢ (((𝑇 ∈ UniOp ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (◡𝑇‘𝑤) ∈ ℋ) |
24 | 23 | adantllr 719 |
. . . . . . . 8
⊢ ((((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (◡𝑇‘𝑤) ∈ ℋ) |
25 | | hiassdi 29172 |
. . . . . . . 8
⊢ (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ (◡𝑇‘𝑤) ∈ ℋ)) → (((𝑥
·ℎ 𝑦) +ℎ 𝑧) ·ih (◡𝑇‘𝑤)) = ((𝑥 · (𝑦 ·ih (◡𝑇‘𝑤))) + (𝑧 ·ih (◡𝑇‘𝑤)))) |
26 | 14, 16, 17, 24, 25 | syl22anc 839 |
. . . . . . 7
⊢ ((((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (((𝑥
·ℎ 𝑦) +ℎ 𝑧) ·ih (◡𝑇‘𝑤)) = ((𝑥 · (𝑦 ·ih (◡𝑇‘𝑤))) + (𝑧 ·ih (◡𝑇‘𝑤)))) |
27 | 3 | ffvelrnda 6904 |
. . . . . . . . . . 11
⊢ ((𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ) → (𝑇‘𝑦) ∈ ℋ) |
28 | 27 | adantrl 716 |
. . . . . . . . . 10
⊢ ((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → (𝑇‘𝑦) ∈ ℋ) |
29 | 28 | ad2antrr 726 |
. . . . . . . . 9
⊢ ((((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (𝑇‘𝑦) ∈ ℋ) |
30 | 3 | ffvelrnda 6904 |
. . . . . . . . . . 11
⊢ ((𝑇 ∈ UniOp ∧ 𝑧 ∈ ℋ) → (𝑇‘𝑧) ∈ ℋ) |
31 | 30 | adantr 484 |
. . . . . . . . . 10
⊢ (((𝑇 ∈ UniOp ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (𝑇‘𝑧) ∈ ℋ) |
32 | 31 | adantllr 719 |
. . . . . . . . 9
⊢ ((((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (𝑇‘𝑧) ∈ ℋ) |
33 | | hiassdi 29172 |
. . . . . . . . 9
⊢ (((𝑥 ∈ ℂ ∧ (𝑇‘𝑦) ∈ ℋ) ∧ ((𝑇‘𝑧) ∈ ℋ ∧ 𝑤 ∈ ℋ)) → (((𝑥
·ℎ (𝑇‘𝑦)) +ℎ (𝑇‘𝑧)) ·ih 𝑤) = ((𝑥 · ((𝑇‘𝑦) ·ih 𝑤)) + ((𝑇‘𝑧) ·ih 𝑤))) |
34 | 14, 29, 32, 10, 33 | syl22anc 839 |
. . . . . . . 8
⊢ ((((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (((𝑥
·ℎ (𝑇‘𝑦)) +ℎ (𝑇‘𝑧)) ·ih 𝑤) = ((𝑥 · ((𝑇‘𝑦) ·ih 𝑤)) + ((𝑇‘𝑧) ·ih 𝑤))) |
35 | | unopadj 30000 |
. . . . . . . . . . . . 13
⊢ ((𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ ∧ 𝑤 ∈ ℋ) → ((𝑇‘𝑦) ·ih 𝑤) = (𝑦 ·ih (◡𝑇‘𝑤))) |
36 | 35 | 3expa 1120 |
. . . . . . . . . . . 12
⊢ (((𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → ((𝑇‘𝑦) ·ih 𝑤) = (𝑦 ·ih (◡𝑇‘𝑤))) |
37 | 36 | oveq2d 7229 |
. . . . . . . . . . 11
⊢ (((𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (𝑥 · ((𝑇‘𝑦) ·ih 𝑤)) = (𝑥 · (𝑦 ·ih (◡𝑇‘𝑤)))) |
38 | 37 | adantlrl 720 |
. . . . . . . . . 10
⊢ (((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑤 ∈ ℋ) → (𝑥 · ((𝑇‘𝑦) ·ih 𝑤)) = (𝑥 · (𝑦 ·ih (◡𝑇‘𝑤)))) |
39 | 38 | adantlr 715 |
. . . . . . . . 9
⊢ ((((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (𝑥 · ((𝑇‘𝑦) ·ih 𝑤)) = (𝑥 · (𝑦 ·ih (◡𝑇‘𝑤)))) |
40 | | unopadj 30000 |
. . . . . . . . . . 11
⊢ ((𝑇 ∈ UniOp ∧ 𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ) → ((𝑇‘𝑧) ·ih 𝑤) = (𝑧 ·ih (◡𝑇‘𝑤))) |
41 | 40 | 3expa 1120 |
. . . . . . . . . 10
⊢ (((𝑇 ∈ UniOp ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → ((𝑇‘𝑧) ·ih 𝑤) = (𝑧 ·ih (◡𝑇‘𝑤))) |
42 | 41 | adantllr 719 |
. . . . . . . . 9
⊢ ((((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → ((𝑇‘𝑧) ·ih 𝑤) = (𝑧 ·ih (◡𝑇‘𝑤))) |
43 | 39, 42 | oveq12d 7231 |
. . . . . . . 8
⊢ ((((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → ((𝑥 · ((𝑇‘𝑦) ·ih 𝑤)) + ((𝑇‘𝑧) ·ih 𝑤)) = ((𝑥 · (𝑦 ·ih (◡𝑇‘𝑤))) + (𝑧 ·ih (◡𝑇‘𝑤)))) |
44 | 34, 43 | eqtr2d 2778 |
. . . . . . 7
⊢ ((((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → ((𝑥 · (𝑦 ·ih (◡𝑇‘𝑤))) + (𝑧 ·ih (◡𝑇‘𝑤))) = (((𝑥 ·ℎ (𝑇‘𝑦)) +ℎ (𝑇‘𝑧)) ·ih 𝑤)) |
45 | 12, 26, 44 | 3eqtrd 2781 |
. . . . . 6
⊢ ((((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → ((𝑇‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧))
·ih 𝑤) = (((𝑥 ·ℎ (𝑇‘𝑦)) +ℎ (𝑇‘𝑧)) ·ih 𝑤)) |
46 | 45 | ralrimiva 3105 |
. . . . 5
⊢ (((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) →
∀𝑤 ∈ ℋ
((𝑇‘((𝑥
·ℎ 𝑦) +ℎ 𝑧)) ·ih 𝑤) = (((𝑥 ·ℎ (𝑇‘𝑦)) +ℎ (𝑇‘𝑧)) ·ih 𝑤)) |
47 | | ffvelrn 6902 |
. . . . . . . . 9
⊢ ((𝑇: ℋ⟶ ℋ ∧
((𝑥
·ℎ 𝑦) +ℎ 𝑧) ∈ ℋ) → (𝑇‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) ∈
ℋ) |
48 | 7, 47 | sylan2 596 |
. . . . . . . 8
⊢ ((𝑇: ℋ⟶ ℋ ∧
((𝑥 ∈ ℂ ∧
𝑦 ∈ ℋ) ∧
𝑧 ∈ ℋ)) →
(𝑇‘((𝑥
·ℎ 𝑦) +ℎ 𝑧)) ∈ ℋ) |
49 | 48 | anassrs 471 |
. . . . . . 7
⊢ (((𝑇: ℋ⟶ ℋ ∧
(𝑥 ∈ ℂ ∧
𝑦 ∈ ℋ)) ∧
𝑧 ∈ ℋ) →
(𝑇‘((𝑥
·ℎ 𝑦) +ℎ 𝑧)) ∈ ℋ) |
50 | | ffvelrn 6902 |
. . . . . . . . . . 11
⊢ ((𝑇: ℋ⟶ ℋ ∧
𝑦 ∈ ℋ) →
(𝑇‘𝑦) ∈ ℋ) |
51 | | hvmulcl 29094 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℂ ∧ (𝑇‘𝑦) ∈ ℋ) → (𝑥 ·ℎ (𝑇‘𝑦)) ∈ ℋ) |
52 | 50, 51 | sylan2 596 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℂ ∧ (𝑇: ℋ⟶ ℋ ∧
𝑦 ∈ ℋ)) →
(𝑥
·ℎ (𝑇‘𝑦)) ∈ ℋ) |
53 | 52 | an12s 649 |
. . . . . . . . 9
⊢ ((𝑇: ℋ⟶ ℋ ∧
(𝑥 ∈ ℂ ∧
𝑦 ∈ ℋ)) →
(𝑥
·ℎ (𝑇‘𝑦)) ∈ ℋ) |
54 | 53 | adantr 484 |
. . . . . . . 8
⊢ (((𝑇: ℋ⟶ ℋ ∧
(𝑥 ∈ ℂ ∧
𝑦 ∈ ℋ)) ∧
𝑧 ∈ ℋ) →
(𝑥
·ℎ (𝑇‘𝑦)) ∈ ℋ) |
55 | | ffvelrn 6902 |
. . . . . . . . 9
⊢ ((𝑇: ℋ⟶ ℋ ∧
𝑧 ∈ ℋ) →
(𝑇‘𝑧) ∈ ℋ) |
56 | 55 | adantlr 715 |
. . . . . . . 8
⊢ (((𝑇: ℋ⟶ ℋ ∧
(𝑥 ∈ ℂ ∧
𝑦 ∈ ℋ)) ∧
𝑧 ∈ ℋ) →
(𝑇‘𝑧) ∈ ℋ) |
57 | | hvaddcl 29093 |
. . . . . . . 8
⊢ (((𝑥
·ℎ (𝑇‘𝑦)) ∈ ℋ ∧ (𝑇‘𝑧) ∈ ℋ) → ((𝑥 ·ℎ (𝑇‘𝑦)) +ℎ (𝑇‘𝑧)) ∈ ℋ) |
58 | 54, 56, 57 | syl2anc 587 |
. . . . . . 7
⊢ (((𝑇: ℋ⟶ ℋ ∧
(𝑥 ∈ ℂ ∧
𝑦 ∈ ℋ)) ∧
𝑧 ∈ ℋ) →
((𝑥
·ℎ (𝑇‘𝑦)) +ℎ (𝑇‘𝑧)) ∈ ℋ) |
59 | | hial2eq 29187 |
. . . . . . 7
⊢ (((𝑇‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) ∈ ℋ ∧ ((𝑥
·ℎ (𝑇‘𝑦)) +ℎ (𝑇‘𝑧)) ∈ ℋ) → (∀𝑤 ∈ ℋ ((𝑇‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧))
·ih 𝑤) = (((𝑥 ·ℎ (𝑇‘𝑦)) +ℎ (𝑇‘𝑧)) ·ih 𝑤) ↔ (𝑇‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 ·ℎ (𝑇‘𝑦)) +ℎ (𝑇‘𝑧)))) |
60 | 49, 58, 59 | syl2anc 587 |
. . . . . 6
⊢ (((𝑇: ℋ⟶ ℋ ∧
(𝑥 ∈ ℂ ∧
𝑦 ∈ ℋ)) ∧
𝑧 ∈ ℋ) →
(∀𝑤 ∈ ℋ
((𝑇‘((𝑥
·ℎ 𝑦) +ℎ 𝑧)) ·ih 𝑤) = (((𝑥 ·ℎ (𝑇‘𝑦)) +ℎ (𝑇‘𝑧)) ·ih 𝑤) ↔ (𝑇‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 ·ℎ (𝑇‘𝑦)) +ℎ (𝑇‘𝑧)))) |
61 | 3, 60 | sylanl1 680 |
. . . . 5
⊢ (((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) →
(∀𝑤 ∈ ℋ
((𝑇‘((𝑥
·ℎ 𝑦) +ℎ 𝑧)) ·ih 𝑤) = (((𝑥 ·ℎ (𝑇‘𝑦)) +ℎ (𝑇‘𝑧)) ·ih 𝑤) ↔ (𝑇‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 ·ℎ (𝑇‘𝑦)) +ℎ (𝑇‘𝑧)))) |
62 | 46, 61 | mpbid 235 |
. . . 4
⊢ (((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) → (𝑇‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 ·ℎ (𝑇‘𝑦)) +ℎ (𝑇‘𝑧))) |
63 | 62 | ralrimiva 3105 |
. . 3
⊢ ((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) →
∀𝑧 ∈ ℋ
(𝑇‘((𝑥
·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 ·ℎ (𝑇‘𝑦)) +ℎ (𝑇‘𝑧))) |
64 | 63 | ralrimivva 3112 |
. 2
⊢ (𝑇 ∈ UniOp →
∀𝑥 ∈ ℂ
∀𝑦 ∈ ℋ
∀𝑧 ∈ ℋ
(𝑇‘((𝑥
·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 ·ℎ (𝑇‘𝑦)) +ℎ (𝑇‘𝑧))) |
65 | | ellnop 29939 |
. 2
⊢ (𝑇 ∈ LinOp ↔ (𝑇: ℋ⟶ ℋ ∧
∀𝑥 ∈ ℂ
∀𝑦 ∈ ℋ
∀𝑧 ∈ ℋ
(𝑇‘((𝑥
·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 ·ℎ (𝑇‘𝑦)) +ℎ (𝑇‘𝑧)))) |
66 | 3, 64, 65 | sylanbrc 586 |
1
⊢ (𝑇 ∈ UniOp → 𝑇 ∈ LinOp) |