HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  unoplin Structured version   Visualization version   GIF version

Theorem unoplin 31949
Description: A unitary operator is linear. Theorem in [AkhiezerGlazman] p. 72. (Contributed by NM, 22-Jan-2006.) (New usage is discouraged.)
Assertion
Ref Expression
unoplin (𝑇 ∈ UniOp → 𝑇 ∈ LinOp)

Proof of Theorem unoplin
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unopf1o 31945 . . 3 (𝑇 ∈ UniOp → 𝑇: ℋ–1-1-onto→ ℋ)
2 f1of 6849 . . 3 (𝑇: ℋ–1-1-onto→ ℋ → 𝑇: ℋ⟶ ℋ)
31, 2syl 17 . 2 (𝑇 ∈ UniOp → 𝑇: ℋ⟶ ℋ)
4 simplll 775 . . . . . . . 8 ((((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → 𝑇 ∈ UniOp)
5 hvmulcl 31042 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑥 · 𝑦) ∈ ℋ)
6 hvaddcl 31041 . . . . . . . . . . 11 (((𝑥 · 𝑦) ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑥 · 𝑦) + 𝑧) ∈ ℋ)
75, 6sylan 580 . . . . . . . . . 10 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑥 · 𝑦) + 𝑧) ∈ ℋ)
87adantll 714 . . . . . . . . 9 (((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) → ((𝑥 · 𝑦) + 𝑧) ∈ ℋ)
98adantr 480 . . . . . . . 8 ((((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → ((𝑥 · 𝑦) + 𝑧) ∈ ℋ)
10 simpr 484 . . . . . . . 8 ((((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → 𝑤 ∈ ℋ)
11 unopadj 31948 . . . . . . . 8 ((𝑇 ∈ UniOp ∧ ((𝑥 · 𝑦) + 𝑧) ∈ ℋ ∧ 𝑤 ∈ ℋ) → ((𝑇‘((𝑥 · 𝑦) + 𝑧)) ·ih 𝑤) = (((𝑥 · 𝑦) + 𝑧) ·ih (𝑇𝑤)))
124, 9, 10, 11syl3anc 1370 . . . . . . 7 ((((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → ((𝑇‘((𝑥 · 𝑦) + 𝑧)) ·ih 𝑤) = (((𝑥 · 𝑦) + 𝑧) ·ih (𝑇𝑤)))
13 simprl 771 . . . . . . . . 9 ((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → 𝑥 ∈ ℂ)
1413ad2antrr 726 . . . . . . . 8 ((((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → 𝑥 ∈ ℂ)
15 simprr 773 . . . . . . . . 9 ((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → 𝑦 ∈ ℋ)
1615ad2antrr 726 . . . . . . . 8 ((((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → 𝑦 ∈ ℋ)
17 simplr 769 . . . . . . . 8 ((((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → 𝑧 ∈ ℋ)
18 cnvunop 31947 . . . . . . . . . . . 12 (𝑇 ∈ UniOp → 𝑇 ∈ UniOp)
19 unopf1o 31945 . . . . . . . . . . . 12 (𝑇 ∈ UniOp → 𝑇: ℋ–1-1-onto→ ℋ)
20 f1of 6849 . . . . . . . . . . . 12 (𝑇: ℋ–1-1-onto→ ℋ → 𝑇: ℋ⟶ ℋ)
2118, 19, 203syl 18 . . . . . . . . . . 11 (𝑇 ∈ UniOp → 𝑇: ℋ⟶ ℋ)
2221ffvelcdmda 7104 . . . . . . . . . 10 ((𝑇 ∈ UniOp ∧ 𝑤 ∈ ℋ) → (𝑇𝑤) ∈ ℋ)
2322adantlr 715 . . . . . . . . 9 (((𝑇 ∈ UniOp ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (𝑇𝑤) ∈ ℋ)
2423adantllr 719 . . . . . . . 8 ((((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (𝑇𝑤) ∈ ℋ)
25 hiassdi 31120 . . . . . . . 8 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ (𝑇𝑤) ∈ ℋ)) → (((𝑥 · 𝑦) + 𝑧) ·ih (𝑇𝑤)) = ((𝑥 · (𝑦 ·ih (𝑇𝑤))) + (𝑧 ·ih (𝑇𝑤))))
2614, 16, 17, 24, 25syl22anc 839 . . . . . . 7 ((((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (((𝑥 · 𝑦) + 𝑧) ·ih (𝑇𝑤)) = ((𝑥 · (𝑦 ·ih (𝑇𝑤))) + (𝑧 ·ih (𝑇𝑤))))
273ffvelcdmda 7104 . . . . . . . . . . 11 ((𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ) → (𝑇𝑦) ∈ ℋ)
2827adantrl 716 . . . . . . . . . 10 ((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → (𝑇𝑦) ∈ ℋ)
2928ad2antrr 726 . . . . . . . . 9 ((((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (𝑇𝑦) ∈ ℋ)
303ffvelcdmda 7104 . . . . . . . . . . 11 ((𝑇 ∈ UniOp ∧ 𝑧 ∈ ℋ) → (𝑇𝑧) ∈ ℋ)
3130adantr 480 . . . . . . . . . 10 (((𝑇 ∈ UniOp ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (𝑇𝑧) ∈ ℋ)
3231adantllr 719 . . . . . . . . 9 ((((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (𝑇𝑧) ∈ ℋ)
33 hiassdi 31120 . . . . . . . . 9 (((𝑥 ∈ ℂ ∧ (𝑇𝑦) ∈ ℋ) ∧ ((𝑇𝑧) ∈ ℋ ∧ 𝑤 ∈ ℋ)) → (((𝑥 · (𝑇𝑦)) + (𝑇𝑧)) ·ih 𝑤) = ((𝑥 · ((𝑇𝑦) ·ih 𝑤)) + ((𝑇𝑧) ·ih 𝑤)))
3414, 29, 32, 10, 33syl22anc 839 . . . . . . . 8 ((((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (((𝑥 · (𝑇𝑦)) + (𝑇𝑧)) ·ih 𝑤) = ((𝑥 · ((𝑇𝑦) ·ih 𝑤)) + ((𝑇𝑧) ·ih 𝑤)))
35 unopadj 31948 . . . . . . . . . . . . 13 ((𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ ∧ 𝑤 ∈ ℋ) → ((𝑇𝑦) ·ih 𝑤) = (𝑦 ·ih (𝑇𝑤)))
36353expa 1117 . . . . . . . . . . . 12 (((𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → ((𝑇𝑦) ·ih 𝑤) = (𝑦 ·ih (𝑇𝑤)))
3736oveq2d 7447 . . . . . . . . . . 11 (((𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (𝑥 · ((𝑇𝑦) ·ih 𝑤)) = (𝑥 · (𝑦 ·ih (𝑇𝑤))))
3837adantlrl 720 . . . . . . . . . 10 (((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑤 ∈ ℋ) → (𝑥 · ((𝑇𝑦) ·ih 𝑤)) = (𝑥 · (𝑦 ·ih (𝑇𝑤))))
3938adantlr 715 . . . . . . . . 9 ((((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (𝑥 · ((𝑇𝑦) ·ih 𝑤)) = (𝑥 · (𝑦 ·ih (𝑇𝑤))))
40 unopadj 31948 . . . . . . . . . . 11 ((𝑇 ∈ UniOp ∧ 𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ) → ((𝑇𝑧) ·ih 𝑤) = (𝑧 ·ih (𝑇𝑤)))
41403expa 1117 . . . . . . . . . 10 (((𝑇 ∈ UniOp ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → ((𝑇𝑧) ·ih 𝑤) = (𝑧 ·ih (𝑇𝑤)))
4241adantllr 719 . . . . . . . . 9 ((((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → ((𝑇𝑧) ·ih 𝑤) = (𝑧 ·ih (𝑇𝑤)))
4339, 42oveq12d 7449 . . . . . . . 8 ((((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → ((𝑥 · ((𝑇𝑦) ·ih 𝑤)) + ((𝑇𝑧) ·ih 𝑤)) = ((𝑥 · (𝑦 ·ih (𝑇𝑤))) + (𝑧 ·ih (𝑇𝑤))))
4434, 43eqtr2d 2776 . . . . . . 7 ((((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → ((𝑥 · (𝑦 ·ih (𝑇𝑤))) + (𝑧 ·ih (𝑇𝑤))) = (((𝑥 · (𝑇𝑦)) + (𝑇𝑧)) ·ih 𝑤))
4512, 26, 443eqtrd 2779 . . . . . 6 ((((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → ((𝑇‘((𝑥 · 𝑦) + 𝑧)) ·ih 𝑤) = (((𝑥 · (𝑇𝑦)) + (𝑇𝑧)) ·ih 𝑤))
4645ralrimiva 3144 . . . . 5 (((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) → ∀𝑤 ∈ ℋ ((𝑇‘((𝑥 · 𝑦) + 𝑧)) ·ih 𝑤) = (((𝑥 · (𝑇𝑦)) + (𝑇𝑧)) ·ih 𝑤))
47 ffvelcdm 7101 . . . . . . . . 9 ((𝑇: ℋ⟶ ℋ ∧ ((𝑥 · 𝑦) + 𝑧) ∈ ℋ) → (𝑇‘((𝑥 · 𝑦) + 𝑧)) ∈ ℋ)
487, 47sylan2 593 . . . . . . . 8 ((𝑇: ℋ⟶ ℋ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → (𝑇‘((𝑥 · 𝑦) + 𝑧)) ∈ ℋ)
4948anassrs 467 . . . . . . 7 (((𝑇: ℋ⟶ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) → (𝑇‘((𝑥 · 𝑦) + 𝑧)) ∈ ℋ)
50 ffvelcdm 7101 . . . . . . . . . . 11 ((𝑇: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) → (𝑇𝑦) ∈ ℋ)
51 hvmulcl 31042 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ (𝑇𝑦) ∈ ℋ) → (𝑥 · (𝑇𝑦)) ∈ ℋ)
5250, 51sylan2 593 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ (𝑇: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 · (𝑇𝑦)) ∈ ℋ)
5352an12s 649 . . . . . . . . 9 ((𝑇: ℋ⟶ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → (𝑥 · (𝑇𝑦)) ∈ ℋ)
5453adantr 480 . . . . . . . 8 (((𝑇: ℋ⟶ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) → (𝑥 · (𝑇𝑦)) ∈ ℋ)
55 ffvelcdm 7101 . . . . . . . . 9 ((𝑇: ℋ⟶ ℋ ∧ 𝑧 ∈ ℋ) → (𝑇𝑧) ∈ ℋ)
5655adantlr 715 . . . . . . . 8 (((𝑇: ℋ⟶ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) → (𝑇𝑧) ∈ ℋ)
57 hvaddcl 31041 . . . . . . . 8 (((𝑥 · (𝑇𝑦)) ∈ ℋ ∧ (𝑇𝑧) ∈ ℋ) → ((𝑥 · (𝑇𝑦)) + (𝑇𝑧)) ∈ ℋ)
5854, 56, 57syl2anc 584 . . . . . . 7 (((𝑇: ℋ⟶ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) → ((𝑥 · (𝑇𝑦)) + (𝑇𝑧)) ∈ ℋ)
59 hial2eq 31135 . . . . . . 7 (((𝑇‘((𝑥 · 𝑦) + 𝑧)) ∈ ℋ ∧ ((𝑥 · (𝑇𝑦)) + (𝑇𝑧)) ∈ ℋ) → (∀𝑤 ∈ ℋ ((𝑇‘((𝑥 · 𝑦) + 𝑧)) ·ih 𝑤) = (((𝑥 · (𝑇𝑦)) + (𝑇𝑧)) ·ih 𝑤) ↔ (𝑇‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑇𝑦)) + (𝑇𝑧))))
6049, 58, 59syl2anc 584 . . . . . 6 (((𝑇: ℋ⟶ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) → (∀𝑤 ∈ ℋ ((𝑇‘((𝑥 · 𝑦) + 𝑧)) ·ih 𝑤) = (((𝑥 · (𝑇𝑦)) + (𝑇𝑧)) ·ih 𝑤) ↔ (𝑇‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑇𝑦)) + (𝑇𝑧))))
613, 60sylanl1 680 . . . . 5 (((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) → (∀𝑤 ∈ ℋ ((𝑇‘((𝑥 · 𝑦) + 𝑧)) ·ih 𝑤) = (((𝑥 · (𝑇𝑦)) + (𝑇𝑧)) ·ih 𝑤) ↔ (𝑇‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑇𝑦)) + (𝑇𝑧))))
6246, 61mpbid 232 . . . 4 (((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) → (𝑇‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑇𝑦)) + (𝑇𝑧)))
6362ralrimiva 3144 . . 3 ((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → ∀𝑧 ∈ ℋ (𝑇‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑇𝑦)) + (𝑇𝑧)))
6463ralrimivva 3200 . 2 (𝑇 ∈ UniOp → ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑇‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑇𝑦)) + (𝑇𝑧)))
65 ellnop 31887 . 2 (𝑇 ∈ LinOp ↔ (𝑇: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑇‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑇𝑦)) + (𝑇𝑧))))
663, 64, 65sylanbrc 583 1 (𝑇 ∈ UniOp → 𝑇 ∈ LinOp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wral 3059  ccnv 5688  wf 6559  1-1-ontowf1o 6562  cfv 6563  (class class class)co 7431  cc 11151   + caddc 11156   · cmul 11158  chba 30948   + cva 30949   · csm 30950   ·ih csp 30951  LinOpclo 30976  UniOpcuo 30978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-hilex 31028  ax-hfvadd 31029  ax-hvcom 31030  ax-hvass 31031  ax-hv0cl 31032  ax-hvaddid 31033  ax-hfvmul 31034  ax-hvmulid 31035  ax-hvdistr2 31038  ax-hvmul0 31039  ax-hfi 31108  ax-his1 31111  ax-his2 31112  ax-his3 31113  ax-his4 31114
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-po 5597  df-so 5598  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-2 12327  df-cj 15135  df-re 15136  df-im 15137  df-hvsub 31000  df-lnop 31870  df-unop 31872
This theorem is referenced by:  unopadj2  31967  idlnop  32021  elunop2  32042  nmopun  32043  unopbd  32044
  Copyright terms: Public domain W3C validator