HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hmoplin Structured version   Visualization version   GIF version

Theorem hmoplin 30884
Description: A Hermitian operator is linear. (Contributed by NM, 24-Mar-2006.) (New usage is discouraged.)
Assertion
Ref Expression
hmoplin (𝑇 ∈ HrmOp → 𝑇 ∈ LinOp)

Proof of Theorem hmoplin
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hmopf 30816 . 2 (𝑇 ∈ HrmOp → 𝑇: ℋ⟶ ℋ)
2 simplll 773 . . . . . . . 8 ((((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → 𝑇 ∈ HrmOp)
3 hvmulcl 29955 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑥 · 𝑦) ∈ ℋ)
4 hvaddcl 29954 . . . . . . . . . . 11 (((𝑥 · 𝑦) ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑥 · 𝑦) + 𝑧) ∈ ℋ)
53, 4sylan 580 . . . . . . . . . 10 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑥 · 𝑦) + 𝑧) ∈ ℋ)
65adantll 712 . . . . . . . . 9 (((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) → ((𝑥 · 𝑦) + 𝑧) ∈ ℋ)
76adantr 481 . . . . . . . 8 ((((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → ((𝑥 · 𝑦) + 𝑧) ∈ ℋ)
8 simpr 485 . . . . . . . 8 ((((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → 𝑤 ∈ ℋ)
9 hmop 30864 . . . . . . . . 9 ((𝑇 ∈ HrmOp ∧ ((𝑥 · 𝑦) + 𝑧) ∈ ℋ ∧ 𝑤 ∈ ℋ) → (((𝑥 · 𝑦) + 𝑧) ·ih (𝑇𝑤)) = ((𝑇‘((𝑥 · 𝑦) + 𝑧)) ·ih 𝑤))
109eqcomd 2742 . . . . . . . 8 ((𝑇 ∈ HrmOp ∧ ((𝑥 · 𝑦) + 𝑧) ∈ ℋ ∧ 𝑤 ∈ ℋ) → ((𝑇‘((𝑥 · 𝑦) + 𝑧)) ·ih 𝑤) = (((𝑥 · 𝑦) + 𝑧) ·ih (𝑇𝑤)))
112, 7, 8, 10syl3anc 1371 . . . . . . 7 ((((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → ((𝑇‘((𝑥 · 𝑦) + 𝑧)) ·ih 𝑤) = (((𝑥 · 𝑦) + 𝑧) ·ih (𝑇𝑤)))
12 simprl 769 . . . . . . . . 9 ((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → 𝑥 ∈ ℂ)
1312ad2antrr 724 . . . . . . . 8 ((((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → 𝑥 ∈ ℂ)
14 simprr 771 . . . . . . . . 9 ((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → 𝑦 ∈ ℋ)
1514ad2antrr 724 . . . . . . . 8 ((((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → 𝑦 ∈ ℋ)
16 simplr 767 . . . . . . . 8 ((((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → 𝑧 ∈ ℋ)
171ffvelcdmda 7035 . . . . . . . . . 10 ((𝑇 ∈ HrmOp ∧ 𝑤 ∈ ℋ) → (𝑇𝑤) ∈ ℋ)
1817adantlr 713 . . . . . . . . 9 (((𝑇 ∈ HrmOp ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (𝑇𝑤) ∈ ℋ)
1918adantllr 717 . . . . . . . 8 ((((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (𝑇𝑤) ∈ ℋ)
20 hiassdi 30033 . . . . . . . 8 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ (𝑇𝑤) ∈ ℋ)) → (((𝑥 · 𝑦) + 𝑧) ·ih (𝑇𝑤)) = ((𝑥 · (𝑦 ·ih (𝑇𝑤))) + (𝑧 ·ih (𝑇𝑤))))
2113, 15, 16, 19, 20syl22anc 837 . . . . . . 7 ((((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (((𝑥 · 𝑦) + 𝑧) ·ih (𝑇𝑤)) = ((𝑥 · (𝑦 ·ih (𝑇𝑤))) + (𝑧 ·ih (𝑇𝑤))))
221ffvelcdmda 7035 . . . . . . . . . . 11 ((𝑇 ∈ HrmOp ∧ 𝑦 ∈ ℋ) → (𝑇𝑦) ∈ ℋ)
2322adantrl 714 . . . . . . . . . 10 ((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → (𝑇𝑦) ∈ ℋ)
2423ad2antrr 724 . . . . . . . . 9 ((((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (𝑇𝑦) ∈ ℋ)
251ffvelcdmda 7035 . . . . . . . . . . 11 ((𝑇 ∈ HrmOp ∧ 𝑧 ∈ ℋ) → (𝑇𝑧) ∈ ℋ)
2625adantr 481 . . . . . . . . . 10 (((𝑇 ∈ HrmOp ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (𝑇𝑧) ∈ ℋ)
2726adantllr 717 . . . . . . . . 9 ((((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (𝑇𝑧) ∈ ℋ)
28 hiassdi 30033 . . . . . . . . 9 (((𝑥 ∈ ℂ ∧ (𝑇𝑦) ∈ ℋ) ∧ ((𝑇𝑧) ∈ ℋ ∧ 𝑤 ∈ ℋ)) → (((𝑥 · (𝑇𝑦)) + (𝑇𝑧)) ·ih 𝑤) = ((𝑥 · ((𝑇𝑦) ·ih 𝑤)) + ((𝑇𝑧) ·ih 𝑤)))
2913, 24, 27, 8, 28syl22anc 837 . . . . . . . 8 ((((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (((𝑥 · (𝑇𝑦)) + (𝑇𝑧)) ·ih 𝑤) = ((𝑥 · ((𝑇𝑦) ·ih 𝑤)) + ((𝑇𝑧) ·ih 𝑤)))
30 hmop 30864 . . . . . . . . . . . . . 14 ((𝑇 ∈ HrmOp ∧ 𝑦 ∈ ℋ ∧ 𝑤 ∈ ℋ) → (𝑦 ·ih (𝑇𝑤)) = ((𝑇𝑦) ·ih 𝑤))
3130eqcomd 2742 . . . . . . . . . . . . 13 ((𝑇 ∈ HrmOp ∧ 𝑦 ∈ ℋ ∧ 𝑤 ∈ ℋ) → ((𝑇𝑦) ·ih 𝑤) = (𝑦 ·ih (𝑇𝑤)))
32313expa 1118 . . . . . . . . . . . 12 (((𝑇 ∈ HrmOp ∧ 𝑦 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → ((𝑇𝑦) ·ih 𝑤) = (𝑦 ·ih (𝑇𝑤)))
3332oveq2d 7373 . . . . . . . . . . 11 (((𝑇 ∈ HrmOp ∧ 𝑦 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (𝑥 · ((𝑇𝑦) ·ih 𝑤)) = (𝑥 · (𝑦 ·ih (𝑇𝑤))))
3433adantlrl 718 . . . . . . . . . 10 (((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑤 ∈ ℋ) → (𝑥 · ((𝑇𝑦) ·ih 𝑤)) = (𝑥 · (𝑦 ·ih (𝑇𝑤))))
3534adantlr 713 . . . . . . . . 9 ((((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (𝑥 · ((𝑇𝑦) ·ih 𝑤)) = (𝑥 · (𝑦 ·ih (𝑇𝑤))))
36 hmop 30864 . . . . . . . . . . . 12 ((𝑇 ∈ HrmOp ∧ 𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ) → (𝑧 ·ih (𝑇𝑤)) = ((𝑇𝑧) ·ih 𝑤))
3736eqcomd 2742 . . . . . . . . . . 11 ((𝑇 ∈ HrmOp ∧ 𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ) → ((𝑇𝑧) ·ih 𝑤) = (𝑧 ·ih (𝑇𝑤)))
38373expa 1118 . . . . . . . . . 10 (((𝑇 ∈ HrmOp ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → ((𝑇𝑧) ·ih 𝑤) = (𝑧 ·ih (𝑇𝑤)))
3938adantllr 717 . . . . . . . . 9 ((((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → ((𝑇𝑧) ·ih 𝑤) = (𝑧 ·ih (𝑇𝑤)))
4035, 39oveq12d 7375 . . . . . . . 8 ((((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → ((𝑥 · ((𝑇𝑦) ·ih 𝑤)) + ((𝑇𝑧) ·ih 𝑤)) = ((𝑥 · (𝑦 ·ih (𝑇𝑤))) + (𝑧 ·ih (𝑇𝑤))))
4129, 40eqtr2d 2777 . . . . . . 7 ((((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → ((𝑥 · (𝑦 ·ih (𝑇𝑤))) + (𝑧 ·ih (𝑇𝑤))) = (((𝑥 · (𝑇𝑦)) + (𝑇𝑧)) ·ih 𝑤))
4211, 21, 413eqtrd 2780 . . . . . 6 ((((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → ((𝑇‘((𝑥 · 𝑦) + 𝑧)) ·ih 𝑤) = (((𝑥 · (𝑇𝑦)) + (𝑇𝑧)) ·ih 𝑤))
4342ralrimiva 3143 . . . . 5 (((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) → ∀𝑤 ∈ ℋ ((𝑇‘((𝑥 · 𝑦) + 𝑧)) ·ih 𝑤) = (((𝑥 · (𝑇𝑦)) + (𝑇𝑧)) ·ih 𝑤))
44 ffvelcdm 7032 . . . . . . . . 9 ((𝑇: ℋ⟶ ℋ ∧ ((𝑥 · 𝑦) + 𝑧) ∈ ℋ) → (𝑇‘((𝑥 · 𝑦) + 𝑧)) ∈ ℋ)
455, 44sylan2 593 . . . . . . . 8 ((𝑇: ℋ⟶ ℋ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → (𝑇‘((𝑥 · 𝑦) + 𝑧)) ∈ ℋ)
4645anassrs 468 . . . . . . 7 (((𝑇: ℋ⟶ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) → (𝑇‘((𝑥 · 𝑦) + 𝑧)) ∈ ℋ)
47 ffvelcdm 7032 . . . . . . . . . . 11 ((𝑇: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) → (𝑇𝑦) ∈ ℋ)
48 hvmulcl 29955 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ (𝑇𝑦) ∈ ℋ) → (𝑥 · (𝑇𝑦)) ∈ ℋ)
4947, 48sylan2 593 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ (𝑇: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 · (𝑇𝑦)) ∈ ℋ)
5049an12s 647 . . . . . . . . 9 ((𝑇: ℋ⟶ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → (𝑥 · (𝑇𝑦)) ∈ ℋ)
5150adantr 481 . . . . . . . 8 (((𝑇: ℋ⟶ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) → (𝑥 · (𝑇𝑦)) ∈ ℋ)
52 ffvelcdm 7032 . . . . . . . . 9 ((𝑇: ℋ⟶ ℋ ∧ 𝑧 ∈ ℋ) → (𝑇𝑧) ∈ ℋ)
5352adantlr 713 . . . . . . . 8 (((𝑇: ℋ⟶ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) → (𝑇𝑧) ∈ ℋ)
54 hvaddcl 29954 . . . . . . . 8 (((𝑥 · (𝑇𝑦)) ∈ ℋ ∧ (𝑇𝑧) ∈ ℋ) → ((𝑥 · (𝑇𝑦)) + (𝑇𝑧)) ∈ ℋ)
5551, 53, 54syl2anc 584 . . . . . . 7 (((𝑇: ℋ⟶ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) → ((𝑥 · (𝑇𝑦)) + (𝑇𝑧)) ∈ ℋ)
56 hial2eq 30048 . . . . . . 7 (((𝑇‘((𝑥 · 𝑦) + 𝑧)) ∈ ℋ ∧ ((𝑥 · (𝑇𝑦)) + (𝑇𝑧)) ∈ ℋ) → (∀𝑤 ∈ ℋ ((𝑇‘((𝑥 · 𝑦) + 𝑧)) ·ih 𝑤) = (((𝑥 · (𝑇𝑦)) + (𝑇𝑧)) ·ih 𝑤) ↔ (𝑇‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑇𝑦)) + (𝑇𝑧))))
5746, 55, 56syl2anc 584 . . . . . 6 (((𝑇: ℋ⟶ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) → (∀𝑤 ∈ ℋ ((𝑇‘((𝑥 · 𝑦) + 𝑧)) ·ih 𝑤) = (((𝑥 · (𝑇𝑦)) + (𝑇𝑧)) ·ih 𝑤) ↔ (𝑇‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑇𝑦)) + (𝑇𝑧))))
581, 57sylanl1 678 . . . . 5 (((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) → (∀𝑤 ∈ ℋ ((𝑇‘((𝑥 · 𝑦) + 𝑧)) ·ih 𝑤) = (((𝑥 · (𝑇𝑦)) + (𝑇𝑧)) ·ih 𝑤) ↔ (𝑇‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑇𝑦)) + (𝑇𝑧))))
5943, 58mpbid 231 . . . 4 (((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) → (𝑇‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑇𝑦)) + (𝑇𝑧)))
6059ralrimiva 3143 . . 3 ((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → ∀𝑧 ∈ ℋ (𝑇‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑇𝑦)) + (𝑇𝑧)))
6160ralrimivva 3197 . 2 (𝑇 ∈ HrmOp → ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑇‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑇𝑦)) + (𝑇𝑧)))
62 ellnop 30800 . 2 (𝑇 ∈ LinOp ↔ (𝑇: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑇‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑇𝑦)) + (𝑇𝑧))))
631, 61, 62sylanbrc 583 1 (𝑇 ∈ HrmOp → 𝑇 ∈ LinOp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3064  wf 6492  cfv 6496  (class class class)co 7357  cc 11049   + caddc 11054   · cmul 11056  chba 29861   + cva 29862   · csm 29863   ·ih csp 29864  LinOpclo 29889  HrmOpcho 29892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-hilex 29941  ax-hfvadd 29942  ax-hvcom 29943  ax-hvass 29944  ax-hv0cl 29945  ax-hvaddid 29946  ax-hfvmul 29947  ax-hvmulid 29948  ax-hvdistr2 29951  ax-hvmul0 29952  ax-hfi 30021  ax-his2 30025  ax-his3 30026  ax-his4 30027
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-po 5545  df-so 5546  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-ltxr 11194  df-sub 11387  df-neg 11388  df-hvsub 29913  df-lnop 30783  df-hmop 30786
This theorem is referenced by:  0lnop  30926  hmopbdoptHIL  30930  leoptri  31078  leopnmid  31080  nmopleid  31081  opsqrlem1  31082  opsqrlem6  31087  pjlnopi  31089  hmopidmchi  31093  hmopidmpji  31094
  Copyright terms: Public domain W3C validator