HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hmoplin Structured version   Visualization version   GIF version

Theorem hmoplin 29977
Description: A Hermitian operator is linear. (Contributed by NM, 24-Mar-2006.) (New usage is discouraged.)
Assertion
Ref Expression
hmoplin (𝑇 ∈ HrmOp → 𝑇 ∈ LinOp)

Proof of Theorem hmoplin
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hmopf 29909 . 2 (𝑇 ∈ HrmOp → 𝑇: ℋ⟶ ℋ)
2 simplll 775 . . . . . . . 8 ((((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → 𝑇 ∈ HrmOp)
3 hvmulcl 29048 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑥 · 𝑦) ∈ ℋ)
4 hvaddcl 29047 . . . . . . . . . . 11 (((𝑥 · 𝑦) ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑥 · 𝑦) + 𝑧) ∈ ℋ)
53, 4sylan 583 . . . . . . . . . 10 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑥 · 𝑦) + 𝑧) ∈ ℋ)
65adantll 714 . . . . . . . . 9 (((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) → ((𝑥 · 𝑦) + 𝑧) ∈ ℋ)
76adantr 484 . . . . . . . 8 ((((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → ((𝑥 · 𝑦) + 𝑧) ∈ ℋ)
8 simpr 488 . . . . . . . 8 ((((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → 𝑤 ∈ ℋ)
9 hmop 29957 . . . . . . . . 9 ((𝑇 ∈ HrmOp ∧ ((𝑥 · 𝑦) + 𝑧) ∈ ℋ ∧ 𝑤 ∈ ℋ) → (((𝑥 · 𝑦) + 𝑧) ·ih (𝑇𝑤)) = ((𝑇‘((𝑥 · 𝑦) + 𝑧)) ·ih 𝑤))
109eqcomd 2742 . . . . . . . 8 ((𝑇 ∈ HrmOp ∧ ((𝑥 · 𝑦) + 𝑧) ∈ ℋ ∧ 𝑤 ∈ ℋ) → ((𝑇‘((𝑥 · 𝑦) + 𝑧)) ·ih 𝑤) = (((𝑥 · 𝑦) + 𝑧) ·ih (𝑇𝑤)))
112, 7, 8, 10syl3anc 1373 . . . . . . 7 ((((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → ((𝑇‘((𝑥 · 𝑦) + 𝑧)) ·ih 𝑤) = (((𝑥 · 𝑦) + 𝑧) ·ih (𝑇𝑤)))
12 simprl 771 . . . . . . . . 9 ((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → 𝑥 ∈ ℂ)
1312ad2antrr 726 . . . . . . . 8 ((((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → 𝑥 ∈ ℂ)
14 simprr 773 . . . . . . . . 9 ((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → 𝑦 ∈ ℋ)
1514ad2antrr 726 . . . . . . . 8 ((((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → 𝑦 ∈ ℋ)
16 simplr 769 . . . . . . . 8 ((((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → 𝑧 ∈ ℋ)
171ffvelrnda 6882 . . . . . . . . . 10 ((𝑇 ∈ HrmOp ∧ 𝑤 ∈ ℋ) → (𝑇𝑤) ∈ ℋ)
1817adantlr 715 . . . . . . . . 9 (((𝑇 ∈ HrmOp ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (𝑇𝑤) ∈ ℋ)
1918adantllr 719 . . . . . . . 8 ((((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (𝑇𝑤) ∈ ℋ)
20 hiassdi 29126 . . . . . . . 8 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ (𝑇𝑤) ∈ ℋ)) → (((𝑥 · 𝑦) + 𝑧) ·ih (𝑇𝑤)) = ((𝑥 · (𝑦 ·ih (𝑇𝑤))) + (𝑧 ·ih (𝑇𝑤))))
2113, 15, 16, 19, 20syl22anc 839 . . . . . . 7 ((((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (((𝑥 · 𝑦) + 𝑧) ·ih (𝑇𝑤)) = ((𝑥 · (𝑦 ·ih (𝑇𝑤))) + (𝑧 ·ih (𝑇𝑤))))
221ffvelrnda 6882 . . . . . . . . . . 11 ((𝑇 ∈ HrmOp ∧ 𝑦 ∈ ℋ) → (𝑇𝑦) ∈ ℋ)
2322adantrl 716 . . . . . . . . . 10 ((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → (𝑇𝑦) ∈ ℋ)
2423ad2antrr 726 . . . . . . . . 9 ((((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (𝑇𝑦) ∈ ℋ)
251ffvelrnda 6882 . . . . . . . . . . 11 ((𝑇 ∈ HrmOp ∧ 𝑧 ∈ ℋ) → (𝑇𝑧) ∈ ℋ)
2625adantr 484 . . . . . . . . . 10 (((𝑇 ∈ HrmOp ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (𝑇𝑧) ∈ ℋ)
2726adantllr 719 . . . . . . . . 9 ((((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (𝑇𝑧) ∈ ℋ)
28 hiassdi 29126 . . . . . . . . 9 (((𝑥 ∈ ℂ ∧ (𝑇𝑦) ∈ ℋ) ∧ ((𝑇𝑧) ∈ ℋ ∧ 𝑤 ∈ ℋ)) → (((𝑥 · (𝑇𝑦)) + (𝑇𝑧)) ·ih 𝑤) = ((𝑥 · ((𝑇𝑦) ·ih 𝑤)) + ((𝑇𝑧) ·ih 𝑤)))
2913, 24, 27, 8, 28syl22anc 839 . . . . . . . 8 ((((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (((𝑥 · (𝑇𝑦)) + (𝑇𝑧)) ·ih 𝑤) = ((𝑥 · ((𝑇𝑦) ·ih 𝑤)) + ((𝑇𝑧) ·ih 𝑤)))
30 hmop 29957 . . . . . . . . . . . . . 14 ((𝑇 ∈ HrmOp ∧ 𝑦 ∈ ℋ ∧ 𝑤 ∈ ℋ) → (𝑦 ·ih (𝑇𝑤)) = ((𝑇𝑦) ·ih 𝑤))
3130eqcomd 2742 . . . . . . . . . . . . 13 ((𝑇 ∈ HrmOp ∧ 𝑦 ∈ ℋ ∧ 𝑤 ∈ ℋ) → ((𝑇𝑦) ·ih 𝑤) = (𝑦 ·ih (𝑇𝑤)))
32313expa 1120 . . . . . . . . . . . 12 (((𝑇 ∈ HrmOp ∧ 𝑦 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → ((𝑇𝑦) ·ih 𝑤) = (𝑦 ·ih (𝑇𝑤)))
3332oveq2d 7207 . . . . . . . . . . 11 (((𝑇 ∈ HrmOp ∧ 𝑦 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (𝑥 · ((𝑇𝑦) ·ih 𝑤)) = (𝑥 · (𝑦 ·ih (𝑇𝑤))))
3433adantlrl 720 . . . . . . . . . 10 (((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑤 ∈ ℋ) → (𝑥 · ((𝑇𝑦) ·ih 𝑤)) = (𝑥 · (𝑦 ·ih (𝑇𝑤))))
3534adantlr 715 . . . . . . . . 9 ((((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (𝑥 · ((𝑇𝑦) ·ih 𝑤)) = (𝑥 · (𝑦 ·ih (𝑇𝑤))))
36 hmop 29957 . . . . . . . . . . . 12 ((𝑇 ∈ HrmOp ∧ 𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ) → (𝑧 ·ih (𝑇𝑤)) = ((𝑇𝑧) ·ih 𝑤))
3736eqcomd 2742 . . . . . . . . . . 11 ((𝑇 ∈ HrmOp ∧ 𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ) → ((𝑇𝑧) ·ih 𝑤) = (𝑧 ·ih (𝑇𝑤)))
38373expa 1120 . . . . . . . . . 10 (((𝑇 ∈ HrmOp ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → ((𝑇𝑧) ·ih 𝑤) = (𝑧 ·ih (𝑇𝑤)))
3938adantllr 719 . . . . . . . . 9 ((((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → ((𝑇𝑧) ·ih 𝑤) = (𝑧 ·ih (𝑇𝑤)))
4035, 39oveq12d 7209 . . . . . . . 8 ((((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → ((𝑥 · ((𝑇𝑦) ·ih 𝑤)) + ((𝑇𝑧) ·ih 𝑤)) = ((𝑥 · (𝑦 ·ih (𝑇𝑤))) + (𝑧 ·ih (𝑇𝑤))))
4129, 40eqtr2d 2772 . . . . . . 7 ((((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → ((𝑥 · (𝑦 ·ih (𝑇𝑤))) + (𝑧 ·ih (𝑇𝑤))) = (((𝑥 · (𝑇𝑦)) + (𝑇𝑧)) ·ih 𝑤))
4211, 21, 413eqtrd 2775 . . . . . 6 ((((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → ((𝑇‘((𝑥 · 𝑦) + 𝑧)) ·ih 𝑤) = (((𝑥 · (𝑇𝑦)) + (𝑇𝑧)) ·ih 𝑤))
4342ralrimiva 3095 . . . . 5 (((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) → ∀𝑤 ∈ ℋ ((𝑇‘((𝑥 · 𝑦) + 𝑧)) ·ih 𝑤) = (((𝑥 · (𝑇𝑦)) + (𝑇𝑧)) ·ih 𝑤))
44 ffvelrn 6880 . . . . . . . . 9 ((𝑇: ℋ⟶ ℋ ∧ ((𝑥 · 𝑦) + 𝑧) ∈ ℋ) → (𝑇‘((𝑥 · 𝑦) + 𝑧)) ∈ ℋ)
455, 44sylan2 596 . . . . . . . 8 ((𝑇: ℋ⟶ ℋ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → (𝑇‘((𝑥 · 𝑦) + 𝑧)) ∈ ℋ)
4645anassrs 471 . . . . . . 7 (((𝑇: ℋ⟶ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) → (𝑇‘((𝑥 · 𝑦) + 𝑧)) ∈ ℋ)
47 ffvelrn 6880 . . . . . . . . . . 11 ((𝑇: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) → (𝑇𝑦) ∈ ℋ)
48 hvmulcl 29048 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ (𝑇𝑦) ∈ ℋ) → (𝑥 · (𝑇𝑦)) ∈ ℋ)
4947, 48sylan2 596 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ (𝑇: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 · (𝑇𝑦)) ∈ ℋ)
5049an12s 649 . . . . . . . . 9 ((𝑇: ℋ⟶ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → (𝑥 · (𝑇𝑦)) ∈ ℋ)
5150adantr 484 . . . . . . . 8 (((𝑇: ℋ⟶ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) → (𝑥 · (𝑇𝑦)) ∈ ℋ)
52 ffvelrn 6880 . . . . . . . . 9 ((𝑇: ℋ⟶ ℋ ∧ 𝑧 ∈ ℋ) → (𝑇𝑧) ∈ ℋ)
5352adantlr 715 . . . . . . . 8 (((𝑇: ℋ⟶ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) → (𝑇𝑧) ∈ ℋ)
54 hvaddcl 29047 . . . . . . . 8 (((𝑥 · (𝑇𝑦)) ∈ ℋ ∧ (𝑇𝑧) ∈ ℋ) → ((𝑥 · (𝑇𝑦)) + (𝑇𝑧)) ∈ ℋ)
5551, 53, 54syl2anc 587 . . . . . . 7 (((𝑇: ℋ⟶ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) → ((𝑥 · (𝑇𝑦)) + (𝑇𝑧)) ∈ ℋ)
56 hial2eq 29141 . . . . . . 7 (((𝑇‘((𝑥 · 𝑦) + 𝑧)) ∈ ℋ ∧ ((𝑥 · (𝑇𝑦)) + (𝑇𝑧)) ∈ ℋ) → (∀𝑤 ∈ ℋ ((𝑇‘((𝑥 · 𝑦) + 𝑧)) ·ih 𝑤) = (((𝑥 · (𝑇𝑦)) + (𝑇𝑧)) ·ih 𝑤) ↔ (𝑇‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑇𝑦)) + (𝑇𝑧))))
5746, 55, 56syl2anc 587 . . . . . 6 (((𝑇: ℋ⟶ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) → (∀𝑤 ∈ ℋ ((𝑇‘((𝑥 · 𝑦) + 𝑧)) ·ih 𝑤) = (((𝑥 · (𝑇𝑦)) + (𝑇𝑧)) ·ih 𝑤) ↔ (𝑇‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑇𝑦)) + (𝑇𝑧))))
581, 57sylanl1 680 . . . . 5 (((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) → (∀𝑤 ∈ ℋ ((𝑇‘((𝑥 · 𝑦) + 𝑧)) ·ih 𝑤) = (((𝑥 · (𝑇𝑦)) + (𝑇𝑧)) ·ih 𝑤) ↔ (𝑇‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑇𝑦)) + (𝑇𝑧))))
5943, 58mpbid 235 . . . 4 (((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) → (𝑇‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑇𝑦)) + (𝑇𝑧)))
6059ralrimiva 3095 . . 3 ((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → ∀𝑧 ∈ ℋ (𝑇‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑇𝑦)) + (𝑇𝑧)))
6160ralrimivva 3102 . 2 (𝑇 ∈ HrmOp → ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑇‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑇𝑦)) + (𝑇𝑧)))
62 ellnop 29893 . 2 (𝑇 ∈ LinOp ↔ (𝑇: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑇‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑇𝑦)) + (𝑇𝑧))))
631, 61, 62sylanbrc 586 1 (𝑇 ∈ HrmOp → 𝑇 ∈ LinOp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2112  wral 3051  wf 6354  cfv 6358  (class class class)co 7191  cc 10692   + caddc 10697   · cmul 10699  chba 28954   + cva 28955   · csm 28956   ·ih csp 28957  LinOpclo 28982  HrmOpcho 28985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-hilex 29034  ax-hfvadd 29035  ax-hvcom 29036  ax-hvass 29037  ax-hv0cl 29038  ax-hvaddid 29039  ax-hfvmul 29040  ax-hvmulid 29041  ax-hvdistr2 29044  ax-hvmul0 29045  ax-hfi 29114  ax-his2 29118  ax-his3 29119  ax-his4 29120
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-id 5440  df-po 5453  df-so 5454  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-er 8369  df-map 8488  df-en 8605  df-dom 8606  df-sdom 8607  df-pnf 10834  df-mnf 10835  df-ltxr 10837  df-sub 11029  df-neg 11030  df-hvsub 29006  df-lnop 29876  df-hmop 29879
This theorem is referenced by:  0lnop  30019  hmopbdoptHIL  30023  leoptri  30171  leopnmid  30173  nmopleid  30174  opsqrlem1  30175  opsqrlem6  30180  pjlnopi  30182  hmopidmchi  30186  hmopidmpji  30187
  Copyright terms: Public domain W3C validator