HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hmoplin Structured version   Visualization version   GIF version

Theorem hmoplin 30205
Description: A Hermitian operator is linear. (Contributed by NM, 24-Mar-2006.) (New usage is discouraged.)
Assertion
Ref Expression
hmoplin (𝑇 ∈ HrmOp → 𝑇 ∈ LinOp)

Proof of Theorem hmoplin
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hmopf 30137 . 2 (𝑇 ∈ HrmOp → 𝑇: ℋ⟶ ℋ)
2 simplll 771 . . . . . . . 8 ((((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → 𝑇 ∈ HrmOp)
3 hvmulcl 29276 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑥 · 𝑦) ∈ ℋ)
4 hvaddcl 29275 . . . . . . . . . . 11 (((𝑥 · 𝑦) ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑥 · 𝑦) + 𝑧) ∈ ℋ)
53, 4sylan 579 . . . . . . . . . 10 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑥 · 𝑦) + 𝑧) ∈ ℋ)
65adantll 710 . . . . . . . . 9 (((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) → ((𝑥 · 𝑦) + 𝑧) ∈ ℋ)
76adantr 480 . . . . . . . 8 ((((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → ((𝑥 · 𝑦) + 𝑧) ∈ ℋ)
8 simpr 484 . . . . . . . 8 ((((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → 𝑤 ∈ ℋ)
9 hmop 30185 . . . . . . . . 9 ((𝑇 ∈ HrmOp ∧ ((𝑥 · 𝑦) + 𝑧) ∈ ℋ ∧ 𝑤 ∈ ℋ) → (((𝑥 · 𝑦) + 𝑧) ·ih (𝑇𝑤)) = ((𝑇‘((𝑥 · 𝑦) + 𝑧)) ·ih 𝑤))
109eqcomd 2744 . . . . . . . 8 ((𝑇 ∈ HrmOp ∧ ((𝑥 · 𝑦) + 𝑧) ∈ ℋ ∧ 𝑤 ∈ ℋ) → ((𝑇‘((𝑥 · 𝑦) + 𝑧)) ·ih 𝑤) = (((𝑥 · 𝑦) + 𝑧) ·ih (𝑇𝑤)))
112, 7, 8, 10syl3anc 1369 . . . . . . 7 ((((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → ((𝑇‘((𝑥 · 𝑦) + 𝑧)) ·ih 𝑤) = (((𝑥 · 𝑦) + 𝑧) ·ih (𝑇𝑤)))
12 simprl 767 . . . . . . . . 9 ((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → 𝑥 ∈ ℂ)
1312ad2antrr 722 . . . . . . . 8 ((((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → 𝑥 ∈ ℂ)
14 simprr 769 . . . . . . . . 9 ((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → 𝑦 ∈ ℋ)
1514ad2antrr 722 . . . . . . . 8 ((((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → 𝑦 ∈ ℋ)
16 simplr 765 . . . . . . . 8 ((((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → 𝑧 ∈ ℋ)
171ffvelrnda 6943 . . . . . . . . . 10 ((𝑇 ∈ HrmOp ∧ 𝑤 ∈ ℋ) → (𝑇𝑤) ∈ ℋ)
1817adantlr 711 . . . . . . . . 9 (((𝑇 ∈ HrmOp ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (𝑇𝑤) ∈ ℋ)
1918adantllr 715 . . . . . . . 8 ((((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (𝑇𝑤) ∈ ℋ)
20 hiassdi 29354 . . . . . . . 8 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ (𝑇𝑤) ∈ ℋ)) → (((𝑥 · 𝑦) + 𝑧) ·ih (𝑇𝑤)) = ((𝑥 · (𝑦 ·ih (𝑇𝑤))) + (𝑧 ·ih (𝑇𝑤))))
2113, 15, 16, 19, 20syl22anc 835 . . . . . . 7 ((((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (((𝑥 · 𝑦) + 𝑧) ·ih (𝑇𝑤)) = ((𝑥 · (𝑦 ·ih (𝑇𝑤))) + (𝑧 ·ih (𝑇𝑤))))
221ffvelrnda 6943 . . . . . . . . . . 11 ((𝑇 ∈ HrmOp ∧ 𝑦 ∈ ℋ) → (𝑇𝑦) ∈ ℋ)
2322adantrl 712 . . . . . . . . . 10 ((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → (𝑇𝑦) ∈ ℋ)
2423ad2antrr 722 . . . . . . . . 9 ((((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (𝑇𝑦) ∈ ℋ)
251ffvelrnda 6943 . . . . . . . . . . 11 ((𝑇 ∈ HrmOp ∧ 𝑧 ∈ ℋ) → (𝑇𝑧) ∈ ℋ)
2625adantr 480 . . . . . . . . . 10 (((𝑇 ∈ HrmOp ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (𝑇𝑧) ∈ ℋ)
2726adantllr 715 . . . . . . . . 9 ((((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (𝑇𝑧) ∈ ℋ)
28 hiassdi 29354 . . . . . . . . 9 (((𝑥 ∈ ℂ ∧ (𝑇𝑦) ∈ ℋ) ∧ ((𝑇𝑧) ∈ ℋ ∧ 𝑤 ∈ ℋ)) → (((𝑥 · (𝑇𝑦)) + (𝑇𝑧)) ·ih 𝑤) = ((𝑥 · ((𝑇𝑦) ·ih 𝑤)) + ((𝑇𝑧) ·ih 𝑤)))
2913, 24, 27, 8, 28syl22anc 835 . . . . . . . 8 ((((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (((𝑥 · (𝑇𝑦)) + (𝑇𝑧)) ·ih 𝑤) = ((𝑥 · ((𝑇𝑦) ·ih 𝑤)) + ((𝑇𝑧) ·ih 𝑤)))
30 hmop 30185 . . . . . . . . . . . . . 14 ((𝑇 ∈ HrmOp ∧ 𝑦 ∈ ℋ ∧ 𝑤 ∈ ℋ) → (𝑦 ·ih (𝑇𝑤)) = ((𝑇𝑦) ·ih 𝑤))
3130eqcomd 2744 . . . . . . . . . . . . 13 ((𝑇 ∈ HrmOp ∧ 𝑦 ∈ ℋ ∧ 𝑤 ∈ ℋ) → ((𝑇𝑦) ·ih 𝑤) = (𝑦 ·ih (𝑇𝑤)))
32313expa 1116 . . . . . . . . . . . 12 (((𝑇 ∈ HrmOp ∧ 𝑦 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → ((𝑇𝑦) ·ih 𝑤) = (𝑦 ·ih (𝑇𝑤)))
3332oveq2d 7271 . . . . . . . . . . 11 (((𝑇 ∈ HrmOp ∧ 𝑦 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (𝑥 · ((𝑇𝑦) ·ih 𝑤)) = (𝑥 · (𝑦 ·ih (𝑇𝑤))))
3433adantlrl 716 . . . . . . . . . 10 (((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑤 ∈ ℋ) → (𝑥 · ((𝑇𝑦) ·ih 𝑤)) = (𝑥 · (𝑦 ·ih (𝑇𝑤))))
3534adantlr 711 . . . . . . . . 9 ((((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (𝑥 · ((𝑇𝑦) ·ih 𝑤)) = (𝑥 · (𝑦 ·ih (𝑇𝑤))))
36 hmop 30185 . . . . . . . . . . . 12 ((𝑇 ∈ HrmOp ∧ 𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ) → (𝑧 ·ih (𝑇𝑤)) = ((𝑇𝑧) ·ih 𝑤))
3736eqcomd 2744 . . . . . . . . . . 11 ((𝑇 ∈ HrmOp ∧ 𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ) → ((𝑇𝑧) ·ih 𝑤) = (𝑧 ·ih (𝑇𝑤)))
38373expa 1116 . . . . . . . . . 10 (((𝑇 ∈ HrmOp ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → ((𝑇𝑧) ·ih 𝑤) = (𝑧 ·ih (𝑇𝑤)))
3938adantllr 715 . . . . . . . . 9 ((((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → ((𝑇𝑧) ·ih 𝑤) = (𝑧 ·ih (𝑇𝑤)))
4035, 39oveq12d 7273 . . . . . . . 8 ((((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → ((𝑥 · ((𝑇𝑦) ·ih 𝑤)) + ((𝑇𝑧) ·ih 𝑤)) = ((𝑥 · (𝑦 ·ih (𝑇𝑤))) + (𝑧 ·ih (𝑇𝑤))))
4129, 40eqtr2d 2779 . . . . . . 7 ((((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → ((𝑥 · (𝑦 ·ih (𝑇𝑤))) + (𝑧 ·ih (𝑇𝑤))) = (((𝑥 · (𝑇𝑦)) + (𝑇𝑧)) ·ih 𝑤))
4211, 21, 413eqtrd 2782 . . . . . 6 ((((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → ((𝑇‘((𝑥 · 𝑦) + 𝑧)) ·ih 𝑤) = (((𝑥 · (𝑇𝑦)) + (𝑇𝑧)) ·ih 𝑤))
4342ralrimiva 3107 . . . . 5 (((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) → ∀𝑤 ∈ ℋ ((𝑇‘((𝑥 · 𝑦) + 𝑧)) ·ih 𝑤) = (((𝑥 · (𝑇𝑦)) + (𝑇𝑧)) ·ih 𝑤))
44 ffvelrn 6941 . . . . . . . . 9 ((𝑇: ℋ⟶ ℋ ∧ ((𝑥 · 𝑦) + 𝑧) ∈ ℋ) → (𝑇‘((𝑥 · 𝑦) + 𝑧)) ∈ ℋ)
455, 44sylan2 592 . . . . . . . 8 ((𝑇: ℋ⟶ ℋ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → (𝑇‘((𝑥 · 𝑦) + 𝑧)) ∈ ℋ)
4645anassrs 467 . . . . . . 7 (((𝑇: ℋ⟶ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) → (𝑇‘((𝑥 · 𝑦) + 𝑧)) ∈ ℋ)
47 ffvelrn 6941 . . . . . . . . . . 11 ((𝑇: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) → (𝑇𝑦) ∈ ℋ)
48 hvmulcl 29276 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ (𝑇𝑦) ∈ ℋ) → (𝑥 · (𝑇𝑦)) ∈ ℋ)
4947, 48sylan2 592 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ (𝑇: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 · (𝑇𝑦)) ∈ ℋ)
5049an12s 645 . . . . . . . . 9 ((𝑇: ℋ⟶ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → (𝑥 · (𝑇𝑦)) ∈ ℋ)
5150adantr 480 . . . . . . . 8 (((𝑇: ℋ⟶ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) → (𝑥 · (𝑇𝑦)) ∈ ℋ)
52 ffvelrn 6941 . . . . . . . . 9 ((𝑇: ℋ⟶ ℋ ∧ 𝑧 ∈ ℋ) → (𝑇𝑧) ∈ ℋ)
5352adantlr 711 . . . . . . . 8 (((𝑇: ℋ⟶ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) → (𝑇𝑧) ∈ ℋ)
54 hvaddcl 29275 . . . . . . . 8 (((𝑥 · (𝑇𝑦)) ∈ ℋ ∧ (𝑇𝑧) ∈ ℋ) → ((𝑥 · (𝑇𝑦)) + (𝑇𝑧)) ∈ ℋ)
5551, 53, 54syl2anc 583 . . . . . . 7 (((𝑇: ℋ⟶ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) → ((𝑥 · (𝑇𝑦)) + (𝑇𝑧)) ∈ ℋ)
56 hial2eq 29369 . . . . . . 7 (((𝑇‘((𝑥 · 𝑦) + 𝑧)) ∈ ℋ ∧ ((𝑥 · (𝑇𝑦)) + (𝑇𝑧)) ∈ ℋ) → (∀𝑤 ∈ ℋ ((𝑇‘((𝑥 · 𝑦) + 𝑧)) ·ih 𝑤) = (((𝑥 · (𝑇𝑦)) + (𝑇𝑧)) ·ih 𝑤) ↔ (𝑇‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑇𝑦)) + (𝑇𝑧))))
5746, 55, 56syl2anc 583 . . . . . 6 (((𝑇: ℋ⟶ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) → (∀𝑤 ∈ ℋ ((𝑇‘((𝑥 · 𝑦) + 𝑧)) ·ih 𝑤) = (((𝑥 · (𝑇𝑦)) + (𝑇𝑧)) ·ih 𝑤) ↔ (𝑇‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑇𝑦)) + (𝑇𝑧))))
581, 57sylanl1 676 . . . . 5 (((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) → (∀𝑤 ∈ ℋ ((𝑇‘((𝑥 · 𝑦) + 𝑧)) ·ih 𝑤) = (((𝑥 · (𝑇𝑦)) + (𝑇𝑧)) ·ih 𝑤) ↔ (𝑇‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑇𝑦)) + (𝑇𝑧))))
5943, 58mpbid 231 . . . 4 (((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) → (𝑇‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑇𝑦)) + (𝑇𝑧)))
6059ralrimiva 3107 . . 3 ((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → ∀𝑧 ∈ ℋ (𝑇‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑇𝑦)) + (𝑇𝑧)))
6160ralrimivva 3114 . 2 (𝑇 ∈ HrmOp → ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑇‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑇𝑦)) + (𝑇𝑧)))
62 ellnop 30121 . 2 (𝑇 ∈ LinOp ↔ (𝑇: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑇‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑇𝑦)) + (𝑇𝑧))))
631, 61, 62sylanbrc 582 1 (𝑇 ∈ HrmOp → 𝑇 ∈ LinOp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  wf 6414  cfv 6418  (class class class)co 7255  cc 10800   + caddc 10805   · cmul 10807  chba 29182   + cva 29183   · csm 29184   ·ih csp 29185  LinOpclo 29210  HrmOpcho 29213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-hilex 29262  ax-hfvadd 29263  ax-hvcom 29264  ax-hvass 29265  ax-hv0cl 29266  ax-hvaddid 29267  ax-hfvmul 29268  ax-hvmulid 29269  ax-hvdistr2 29272  ax-hvmul0 29273  ax-hfi 29342  ax-his2 29346  ax-his3 29347  ax-his4 29348
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-ltxr 10945  df-sub 11137  df-neg 11138  df-hvsub 29234  df-lnop 30104  df-hmop 30107
This theorem is referenced by:  0lnop  30247  hmopbdoptHIL  30251  leoptri  30399  leopnmid  30401  nmopleid  30402  opsqrlem1  30403  opsqrlem6  30408  pjlnopi  30410  hmopidmchi  30414  hmopidmpji  30415
  Copyright terms: Public domain W3C validator