Step | Hyp | Ref
| Expression |
1 | | hmopf 30137 |
. 2
⊢ (𝑇 ∈ HrmOp → 𝑇: ℋ⟶
ℋ) |
2 | | simplll 771 |
. . . . . . . 8
⊢ ((((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → 𝑇 ∈ HrmOp) |
3 | | hvmulcl 29276 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑥
·ℎ 𝑦) ∈ ℋ) |
4 | | hvaddcl 29275 |
. . . . . . . . . . 11
⊢ (((𝑥
·ℎ 𝑦) ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑥 ·ℎ 𝑦) +ℎ 𝑧) ∈
ℋ) |
5 | 3, 4 | sylan 579 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑥
·ℎ 𝑦) +ℎ 𝑧) ∈ ℋ) |
6 | 5 | adantll 710 |
. . . . . . . . 9
⊢ (((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) → ((𝑥
·ℎ 𝑦) +ℎ 𝑧) ∈ ℋ) |
7 | 6 | adantr 480 |
. . . . . . . 8
⊢ ((((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → ((𝑥
·ℎ 𝑦) +ℎ 𝑧) ∈ ℋ) |
8 | | simpr 484 |
. . . . . . . 8
⊢ ((((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → 𝑤 ∈
ℋ) |
9 | | hmop 30185 |
. . . . . . . . 9
⊢ ((𝑇 ∈ HrmOp ∧ ((𝑥
·ℎ 𝑦) +ℎ 𝑧) ∈ ℋ ∧ 𝑤 ∈ ℋ) → (((𝑥 ·ℎ 𝑦) +ℎ 𝑧)
·ih (𝑇‘𝑤)) = ((𝑇‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧))
·ih 𝑤)) |
10 | 9 | eqcomd 2744 |
. . . . . . . 8
⊢ ((𝑇 ∈ HrmOp ∧ ((𝑥
·ℎ 𝑦) +ℎ 𝑧) ∈ ℋ ∧ 𝑤 ∈ ℋ) → ((𝑇‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧))
·ih 𝑤) = (((𝑥 ·ℎ 𝑦) +ℎ 𝑧)
·ih (𝑇‘𝑤))) |
11 | 2, 7, 8, 10 | syl3anc 1369 |
. . . . . . 7
⊢ ((((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → ((𝑇‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧))
·ih 𝑤) = (((𝑥 ·ℎ 𝑦) +ℎ 𝑧)
·ih (𝑇‘𝑤))) |
12 | | simprl 767 |
. . . . . . . . 9
⊢ ((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → 𝑥 ∈
ℂ) |
13 | 12 | ad2antrr 722 |
. . . . . . . 8
⊢ ((((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → 𝑥 ∈
ℂ) |
14 | | simprr 769 |
. . . . . . . . 9
⊢ ((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → 𝑦 ∈
ℋ) |
15 | 14 | ad2antrr 722 |
. . . . . . . 8
⊢ ((((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → 𝑦 ∈
ℋ) |
16 | | simplr 765 |
. . . . . . . 8
⊢ ((((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → 𝑧 ∈
ℋ) |
17 | 1 | ffvelrnda 6943 |
. . . . . . . . . 10
⊢ ((𝑇 ∈ HrmOp ∧ 𝑤 ∈ ℋ) → (𝑇‘𝑤) ∈ ℋ) |
18 | 17 | adantlr 711 |
. . . . . . . . 9
⊢ (((𝑇 ∈ HrmOp ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (𝑇‘𝑤) ∈ ℋ) |
19 | 18 | adantllr 715 |
. . . . . . . 8
⊢ ((((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (𝑇‘𝑤) ∈ ℋ) |
20 | | hiassdi 29354 |
. . . . . . . 8
⊢ (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ (𝑇‘𝑤) ∈ ℋ)) → (((𝑥
·ℎ 𝑦) +ℎ 𝑧) ·ih (𝑇‘𝑤)) = ((𝑥 · (𝑦 ·ih (𝑇‘𝑤))) + (𝑧 ·ih (𝑇‘𝑤)))) |
21 | 13, 15, 16, 19, 20 | syl22anc 835 |
. . . . . . 7
⊢ ((((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (((𝑥
·ℎ 𝑦) +ℎ 𝑧) ·ih (𝑇‘𝑤)) = ((𝑥 · (𝑦 ·ih (𝑇‘𝑤))) + (𝑧 ·ih (𝑇‘𝑤)))) |
22 | 1 | ffvelrnda 6943 |
. . . . . . . . . . 11
⊢ ((𝑇 ∈ HrmOp ∧ 𝑦 ∈ ℋ) → (𝑇‘𝑦) ∈ ℋ) |
23 | 22 | adantrl 712 |
. . . . . . . . . 10
⊢ ((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → (𝑇‘𝑦) ∈ ℋ) |
24 | 23 | ad2antrr 722 |
. . . . . . . . 9
⊢ ((((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (𝑇‘𝑦) ∈ ℋ) |
25 | 1 | ffvelrnda 6943 |
. . . . . . . . . . 11
⊢ ((𝑇 ∈ HrmOp ∧ 𝑧 ∈ ℋ) → (𝑇‘𝑧) ∈ ℋ) |
26 | 25 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝑇 ∈ HrmOp ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (𝑇‘𝑧) ∈ ℋ) |
27 | 26 | adantllr 715 |
. . . . . . . . 9
⊢ ((((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (𝑇‘𝑧) ∈ ℋ) |
28 | | hiassdi 29354 |
. . . . . . . . 9
⊢ (((𝑥 ∈ ℂ ∧ (𝑇‘𝑦) ∈ ℋ) ∧ ((𝑇‘𝑧) ∈ ℋ ∧ 𝑤 ∈ ℋ)) → (((𝑥
·ℎ (𝑇‘𝑦)) +ℎ (𝑇‘𝑧)) ·ih 𝑤) = ((𝑥 · ((𝑇‘𝑦) ·ih 𝑤)) + ((𝑇‘𝑧) ·ih 𝑤))) |
29 | 13, 24, 27, 8, 28 | syl22anc 835 |
. . . . . . . 8
⊢ ((((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (((𝑥
·ℎ (𝑇‘𝑦)) +ℎ (𝑇‘𝑧)) ·ih 𝑤) = ((𝑥 · ((𝑇‘𝑦) ·ih 𝑤)) + ((𝑇‘𝑧) ·ih 𝑤))) |
30 | | hmop 30185 |
. . . . . . . . . . . . . 14
⊢ ((𝑇 ∈ HrmOp ∧ 𝑦 ∈ ℋ ∧ 𝑤 ∈ ℋ) → (𝑦
·ih (𝑇‘𝑤)) = ((𝑇‘𝑦) ·ih 𝑤)) |
31 | 30 | eqcomd 2744 |
. . . . . . . . . . . . 13
⊢ ((𝑇 ∈ HrmOp ∧ 𝑦 ∈ ℋ ∧ 𝑤 ∈ ℋ) → ((𝑇‘𝑦) ·ih 𝑤) = (𝑦 ·ih (𝑇‘𝑤))) |
32 | 31 | 3expa 1116 |
. . . . . . . . . . . 12
⊢ (((𝑇 ∈ HrmOp ∧ 𝑦 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → ((𝑇‘𝑦) ·ih 𝑤) = (𝑦 ·ih (𝑇‘𝑤))) |
33 | 32 | oveq2d 7271 |
. . . . . . . . . . 11
⊢ (((𝑇 ∈ HrmOp ∧ 𝑦 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (𝑥 · ((𝑇‘𝑦) ·ih 𝑤)) = (𝑥 · (𝑦 ·ih (𝑇‘𝑤)))) |
34 | 33 | adantlrl 716 |
. . . . . . . . . 10
⊢ (((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑤 ∈ ℋ) → (𝑥 · ((𝑇‘𝑦) ·ih 𝑤)) = (𝑥 · (𝑦 ·ih (𝑇‘𝑤)))) |
35 | 34 | adantlr 711 |
. . . . . . . . 9
⊢ ((((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (𝑥 · ((𝑇‘𝑦) ·ih 𝑤)) = (𝑥 · (𝑦 ·ih (𝑇‘𝑤)))) |
36 | | hmop 30185 |
. . . . . . . . . . . 12
⊢ ((𝑇 ∈ HrmOp ∧ 𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ) → (𝑧
·ih (𝑇‘𝑤)) = ((𝑇‘𝑧) ·ih 𝑤)) |
37 | 36 | eqcomd 2744 |
. . . . . . . . . . 11
⊢ ((𝑇 ∈ HrmOp ∧ 𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ) → ((𝑇‘𝑧) ·ih 𝑤) = (𝑧 ·ih (𝑇‘𝑤))) |
38 | 37 | 3expa 1116 |
. . . . . . . . . 10
⊢ (((𝑇 ∈ HrmOp ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → ((𝑇‘𝑧) ·ih 𝑤) = (𝑧 ·ih (𝑇‘𝑤))) |
39 | 38 | adantllr 715 |
. . . . . . . . 9
⊢ ((((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → ((𝑇‘𝑧) ·ih 𝑤) = (𝑧 ·ih (𝑇‘𝑤))) |
40 | 35, 39 | oveq12d 7273 |
. . . . . . . 8
⊢ ((((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → ((𝑥 · ((𝑇‘𝑦) ·ih 𝑤)) + ((𝑇‘𝑧) ·ih 𝑤)) = ((𝑥 · (𝑦 ·ih (𝑇‘𝑤))) + (𝑧 ·ih (𝑇‘𝑤)))) |
41 | 29, 40 | eqtr2d 2779 |
. . . . . . 7
⊢ ((((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → ((𝑥 · (𝑦 ·ih (𝑇‘𝑤))) + (𝑧 ·ih (𝑇‘𝑤))) = (((𝑥 ·ℎ (𝑇‘𝑦)) +ℎ (𝑇‘𝑧)) ·ih 𝑤)) |
42 | 11, 21, 41 | 3eqtrd 2782 |
. . . . . 6
⊢ ((((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → ((𝑇‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧))
·ih 𝑤) = (((𝑥 ·ℎ (𝑇‘𝑦)) +ℎ (𝑇‘𝑧)) ·ih 𝑤)) |
43 | 42 | ralrimiva 3107 |
. . . . 5
⊢ (((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) →
∀𝑤 ∈ ℋ
((𝑇‘((𝑥
·ℎ 𝑦) +ℎ 𝑧)) ·ih 𝑤) = (((𝑥 ·ℎ (𝑇‘𝑦)) +ℎ (𝑇‘𝑧)) ·ih 𝑤)) |
44 | | ffvelrn 6941 |
. . . . . . . . 9
⊢ ((𝑇: ℋ⟶ ℋ ∧
((𝑥
·ℎ 𝑦) +ℎ 𝑧) ∈ ℋ) → (𝑇‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) ∈
ℋ) |
45 | 5, 44 | sylan2 592 |
. . . . . . . 8
⊢ ((𝑇: ℋ⟶ ℋ ∧
((𝑥 ∈ ℂ ∧
𝑦 ∈ ℋ) ∧
𝑧 ∈ ℋ)) →
(𝑇‘((𝑥
·ℎ 𝑦) +ℎ 𝑧)) ∈ ℋ) |
46 | 45 | anassrs 467 |
. . . . . . 7
⊢ (((𝑇: ℋ⟶ ℋ ∧
(𝑥 ∈ ℂ ∧
𝑦 ∈ ℋ)) ∧
𝑧 ∈ ℋ) →
(𝑇‘((𝑥
·ℎ 𝑦) +ℎ 𝑧)) ∈ ℋ) |
47 | | ffvelrn 6941 |
. . . . . . . . . . 11
⊢ ((𝑇: ℋ⟶ ℋ ∧
𝑦 ∈ ℋ) →
(𝑇‘𝑦) ∈ ℋ) |
48 | | hvmulcl 29276 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℂ ∧ (𝑇‘𝑦) ∈ ℋ) → (𝑥 ·ℎ (𝑇‘𝑦)) ∈ ℋ) |
49 | 47, 48 | sylan2 592 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℂ ∧ (𝑇: ℋ⟶ ℋ ∧
𝑦 ∈ ℋ)) →
(𝑥
·ℎ (𝑇‘𝑦)) ∈ ℋ) |
50 | 49 | an12s 645 |
. . . . . . . . 9
⊢ ((𝑇: ℋ⟶ ℋ ∧
(𝑥 ∈ ℂ ∧
𝑦 ∈ ℋ)) →
(𝑥
·ℎ (𝑇‘𝑦)) ∈ ℋ) |
51 | 50 | adantr 480 |
. . . . . . . 8
⊢ (((𝑇: ℋ⟶ ℋ ∧
(𝑥 ∈ ℂ ∧
𝑦 ∈ ℋ)) ∧
𝑧 ∈ ℋ) →
(𝑥
·ℎ (𝑇‘𝑦)) ∈ ℋ) |
52 | | ffvelrn 6941 |
. . . . . . . . 9
⊢ ((𝑇: ℋ⟶ ℋ ∧
𝑧 ∈ ℋ) →
(𝑇‘𝑧) ∈ ℋ) |
53 | 52 | adantlr 711 |
. . . . . . . 8
⊢ (((𝑇: ℋ⟶ ℋ ∧
(𝑥 ∈ ℂ ∧
𝑦 ∈ ℋ)) ∧
𝑧 ∈ ℋ) →
(𝑇‘𝑧) ∈ ℋ) |
54 | | hvaddcl 29275 |
. . . . . . . 8
⊢ (((𝑥
·ℎ (𝑇‘𝑦)) ∈ ℋ ∧ (𝑇‘𝑧) ∈ ℋ) → ((𝑥 ·ℎ (𝑇‘𝑦)) +ℎ (𝑇‘𝑧)) ∈ ℋ) |
55 | 51, 53, 54 | syl2anc 583 |
. . . . . . 7
⊢ (((𝑇: ℋ⟶ ℋ ∧
(𝑥 ∈ ℂ ∧
𝑦 ∈ ℋ)) ∧
𝑧 ∈ ℋ) →
((𝑥
·ℎ (𝑇‘𝑦)) +ℎ (𝑇‘𝑧)) ∈ ℋ) |
56 | | hial2eq 29369 |
. . . . . . 7
⊢ (((𝑇‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) ∈ ℋ ∧ ((𝑥
·ℎ (𝑇‘𝑦)) +ℎ (𝑇‘𝑧)) ∈ ℋ) → (∀𝑤 ∈ ℋ ((𝑇‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧))
·ih 𝑤) = (((𝑥 ·ℎ (𝑇‘𝑦)) +ℎ (𝑇‘𝑧)) ·ih 𝑤) ↔ (𝑇‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 ·ℎ (𝑇‘𝑦)) +ℎ (𝑇‘𝑧)))) |
57 | 46, 55, 56 | syl2anc 583 |
. . . . . 6
⊢ (((𝑇: ℋ⟶ ℋ ∧
(𝑥 ∈ ℂ ∧
𝑦 ∈ ℋ)) ∧
𝑧 ∈ ℋ) →
(∀𝑤 ∈ ℋ
((𝑇‘((𝑥
·ℎ 𝑦) +ℎ 𝑧)) ·ih 𝑤) = (((𝑥 ·ℎ (𝑇‘𝑦)) +ℎ (𝑇‘𝑧)) ·ih 𝑤) ↔ (𝑇‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 ·ℎ (𝑇‘𝑦)) +ℎ (𝑇‘𝑧)))) |
58 | 1, 57 | sylanl1 676 |
. . . . 5
⊢ (((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) →
(∀𝑤 ∈ ℋ
((𝑇‘((𝑥
·ℎ 𝑦) +ℎ 𝑧)) ·ih 𝑤) = (((𝑥 ·ℎ (𝑇‘𝑦)) +ℎ (𝑇‘𝑧)) ·ih 𝑤) ↔ (𝑇‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 ·ℎ (𝑇‘𝑦)) +ℎ (𝑇‘𝑧)))) |
59 | 43, 58 | mpbid 231 |
. . . 4
⊢ (((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) → (𝑇‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 ·ℎ (𝑇‘𝑦)) +ℎ (𝑇‘𝑧))) |
60 | 59 | ralrimiva 3107 |
. . 3
⊢ ((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) →
∀𝑧 ∈ ℋ
(𝑇‘((𝑥
·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 ·ℎ (𝑇‘𝑦)) +ℎ (𝑇‘𝑧))) |
61 | 60 | ralrimivva 3114 |
. 2
⊢ (𝑇 ∈ HrmOp →
∀𝑥 ∈ ℂ
∀𝑦 ∈ ℋ
∀𝑧 ∈ ℋ
(𝑇‘((𝑥
·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 ·ℎ (𝑇‘𝑦)) +ℎ (𝑇‘𝑧))) |
62 | | ellnop 30121 |
. 2
⊢ (𝑇 ∈ LinOp ↔ (𝑇: ℋ⟶ ℋ ∧
∀𝑥 ∈ ℂ
∀𝑦 ∈ ℋ
∀𝑧 ∈ ℋ
(𝑇‘((𝑥
·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 ·ℎ (𝑇‘𝑦)) +ℎ (𝑇‘𝑧)))) |
63 | 1, 61, 62 | sylanbrc 582 |
1
⊢ (𝑇 ∈ HrmOp → 𝑇 ∈ LinOp) |