HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hmoplin Structured version   Visualization version   GIF version

Theorem hmoplin 31974
Description: A Hermitian operator is linear. (Contributed by NM, 24-Mar-2006.) (New usage is discouraged.)
Assertion
Ref Expression
hmoplin (𝑇 ∈ HrmOp → 𝑇 ∈ LinOp)

Proof of Theorem hmoplin
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hmopf 31906 . 2 (𝑇 ∈ HrmOp → 𝑇: ℋ⟶ ℋ)
2 simplll 774 . . . . . . . 8 ((((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → 𝑇 ∈ HrmOp)
3 hvmulcl 31045 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑥 · 𝑦) ∈ ℋ)
4 hvaddcl 31044 . . . . . . . . . . 11 (((𝑥 · 𝑦) ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑥 · 𝑦) + 𝑧) ∈ ℋ)
53, 4sylan 579 . . . . . . . . . 10 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑥 · 𝑦) + 𝑧) ∈ ℋ)
65adantll 713 . . . . . . . . 9 (((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) → ((𝑥 · 𝑦) + 𝑧) ∈ ℋ)
76adantr 480 . . . . . . . 8 ((((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → ((𝑥 · 𝑦) + 𝑧) ∈ ℋ)
8 simpr 484 . . . . . . . 8 ((((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → 𝑤 ∈ ℋ)
9 hmop 31954 . . . . . . . . 9 ((𝑇 ∈ HrmOp ∧ ((𝑥 · 𝑦) + 𝑧) ∈ ℋ ∧ 𝑤 ∈ ℋ) → (((𝑥 · 𝑦) + 𝑧) ·ih (𝑇𝑤)) = ((𝑇‘((𝑥 · 𝑦) + 𝑧)) ·ih 𝑤))
109eqcomd 2746 . . . . . . . 8 ((𝑇 ∈ HrmOp ∧ ((𝑥 · 𝑦) + 𝑧) ∈ ℋ ∧ 𝑤 ∈ ℋ) → ((𝑇‘((𝑥 · 𝑦) + 𝑧)) ·ih 𝑤) = (((𝑥 · 𝑦) + 𝑧) ·ih (𝑇𝑤)))
112, 7, 8, 10syl3anc 1371 . . . . . . 7 ((((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → ((𝑇‘((𝑥 · 𝑦) + 𝑧)) ·ih 𝑤) = (((𝑥 · 𝑦) + 𝑧) ·ih (𝑇𝑤)))
12 simprl 770 . . . . . . . . 9 ((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → 𝑥 ∈ ℂ)
1312ad2antrr 725 . . . . . . . 8 ((((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → 𝑥 ∈ ℂ)
14 simprr 772 . . . . . . . . 9 ((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → 𝑦 ∈ ℋ)
1514ad2antrr 725 . . . . . . . 8 ((((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → 𝑦 ∈ ℋ)
16 simplr 768 . . . . . . . 8 ((((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → 𝑧 ∈ ℋ)
171ffvelcdmda 7118 . . . . . . . . . 10 ((𝑇 ∈ HrmOp ∧ 𝑤 ∈ ℋ) → (𝑇𝑤) ∈ ℋ)
1817adantlr 714 . . . . . . . . 9 (((𝑇 ∈ HrmOp ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (𝑇𝑤) ∈ ℋ)
1918adantllr 718 . . . . . . . 8 ((((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (𝑇𝑤) ∈ ℋ)
20 hiassdi 31123 . . . . . . . 8 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ (𝑇𝑤) ∈ ℋ)) → (((𝑥 · 𝑦) + 𝑧) ·ih (𝑇𝑤)) = ((𝑥 · (𝑦 ·ih (𝑇𝑤))) + (𝑧 ·ih (𝑇𝑤))))
2113, 15, 16, 19, 20syl22anc 838 . . . . . . 7 ((((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (((𝑥 · 𝑦) + 𝑧) ·ih (𝑇𝑤)) = ((𝑥 · (𝑦 ·ih (𝑇𝑤))) + (𝑧 ·ih (𝑇𝑤))))
221ffvelcdmda 7118 . . . . . . . . . . 11 ((𝑇 ∈ HrmOp ∧ 𝑦 ∈ ℋ) → (𝑇𝑦) ∈ ℋ)
2322adantrl 715 . . . . . . . . . 10 ((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → (𝑇𝑦) ∈ ℋ)
2423ad2antrr 725 . . . . . . . . 9 ((((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (𝑇𝑦) ∈ ℋ)
251ffvelcdmda 7118 . . . . . . . . . . 11 ((𝑇 ∈ HrmOp ∧ 𝑧 ∈ ℋ) → (𝑇𝑧) ∈ ℋ)
2625adantr 480 . . . . . . . . . 10 (((𝑇 ∈ HrmOp ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (𝑇𝑧) ∈ ℋ)
2726adantllr 718 . . . . . . . . 9 ((((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (𝑇𝑧) ∈ ℋ)
28 hiassdi 31123 . . . . . . . . 9 (((𝑥 ∈ ℂ ∧ (𝑇𝑦) ∈ ℋ) ∧ ((𝑇𝑧) ∈ ℋ ∧ 𝑤 ∈ ℋ)) → (((𝑥 · (𝑇𝑦)) + (𝑇𝑧)) ·ih 𝑤) = ((𝑥 · ((𝑇𝑦) ·ih 𝑤)) + ((𝑇𝑧) ·ih 𝑤)))
2913, 24, 27, 8, 28syl22anc 838 . . . . . . . 8 ((((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (((𝑥 · (𝑇𝑦)) + (𝑇𝑧)) ·ih 𝑤) = ((𝑥 · ((𝑇𝑦) ·ih 𝑤)) + ((𝑇𝑧) ·ih 𝑤)))
30 hmop 31954 . . . . . . . . . . . . . 14 ((𝑇 ∈ HrmOp ∧ 𝑦 ∈ ℋ ∧ 𝑤 ∈ ℋ) → (𝑦 ·ih (𝑇𝑤)) = ((𝑇𝑦) ·ih 𝑤))
3130eqcomd 2746 . . . . . . . . . . . . 13 ((𝑇 ∈ HrmOp ∧ 𝑦 ∈ ℋ ∧ 𝑤 ∈ ℋ) → ((𝑇𝑦) ·ih 𝑤) = (𝑦 ·ih (𝑇𝑤)))
32313expa 1118 . . . . . . . . . . . 12 (((𝑇 ∈ HrmOp ∧ 𝑦 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → ((𝑇𝑦) ·ih 𝑤) = (𝑦 ·ih (𝑇𝑤)))
3332oveq2d 7464 . . . . . . . . . . 11 (((𝑇 ∈ HrmOp ∧ 𝑦 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (𝑥 · ((𝑇𝑦) ·ih 𝑤)) = (𝑥 · (𝑦 ·ih (𝑇𝑤))))
3433adantlrl 719 . . . . . . . . . 10 (((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑤 ∈ ℋ) → (𝑥 · ((𝑇𝑦) ·ih 𝑤)) = (𝑥 · (𝑦 ·ih (𝑇𝑤))))
3534adantlr 714 . . . . . . . . 9 ((((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (𝑥 · ((𝑇𝑦) ·ih 𝑤)) = (𝑥 · (𝑦 ·ih (𝑇𝑤))))
36 hmop 31954 . . . . . . . . . . . 12 ((𝑇 ∈ HrmOp ∧ 𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ) → (𝑧 ·ih (𝑇𝑤)) = ((𝑇𝑧) ·ih 𝑤))
3736eqcomd 2746 . . . . . . . . . . 11 ((𝑇 ∈ HrmOp ∧ 𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ) → ((𝑇𝑧) ·ih 𝑤) = (𝑧 ·ih (𝑇𝑤)))
38373expa 1118 . . . . . . . . . 10 (((𝑇 ∈ HrmOp ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → ((𝑇𝑧) ·ih 𝑤) = (𝑧 ·ih (𝑇𝑤)))
3938adantllr 718 . . . . . . . . 9 ((((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → ((𝑇𝑧) ·ih 𝑤) = (𝑧 ·ih (𝑇𝑤)))
4035, 39oveq12d 7466 . . . . . . . 8 ((((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → ((𝑥 · ((𝑇𝑦) ·ih 𝑤)) + ((𝑇𝑧) ·ih 𝑤)) = ((𝑥 · (𝑦 ·ih (𝑇𝑤))) + (𝑧 ·ih (𝑇𝑤))))
4129, 40eqtr2d 2781 . . . . . . 7 ((((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → ((𝑥 · (𝑦 ·ih (𝑇𝑤))) + (𝑧 ·ih (𝑇𝑤))) = (((𝑥 · (𝑇𝑦)) + (𝑇𝑧)) ·ih 𝑤))
4211, 21, 413eqtrd 2784 . . . . . 6 ((((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → ((𝑇‘((𝑥 · 𝑦) + 𝑧)) ·ih 𝑤) = (((𝑥 · (𝑇𝑦)) + (𝑇𝑧)) ·ih 𝑤))
4342ralrimiva 3152 . . . . 5 (((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) → ∀𝑤 ∈ ℋ ((𝑇‘((𝑥 · 𝑦) + 𝑧)) ·ih 𝑤) = (((𝑥 · (𝑇𝑦)) + (𝑇𝑧)) ·ih 𝑤))
44 ffvelcdm 7115 . . . . . . . . 9 ((𝑇: ℋ⟶ ℋ ∧ ((𝑥 · 𝑦) + 𝑧) ∈ ℋ) → (𝑇‘((𝑥 · 𝑦) + 𝑧)) ∈ ℋ)
455, 44sylan2 592 . . . . . . . 8 ((𝑇: ℋ⟶ ℋ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → (𝑇‘((𝑥 · 𝑦) + 𝑧)) ∈ ℋ)
4645anassrs 467 . . . . . . 7 (((𝑇: ℋ⟶ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) → (𝑇‘((𝑥 · 𝑦) + 𝑧)) ∈ ℋ)
47 ffvelcdm 7115 . . . . . . . . . . 11 ((𝑇: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) → (𝑇𝑦) ∈ ℋ)
48 hvmulcl 31045 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ (𝑇𝑦) ∈ ℋ) → (𝑥 · (𝑇𝑦)) ∈ ℋ)
4947, 48sylan2 592 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ (𝑇: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 · (𝑇𝑦)) ∈ ℋ)
5049an12s 648 . . . . . . . . 9 ((𝑇: ℋ⟶ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → (𝑥 · (𝑇𝑦)) ∈ ℋ)
5150adantr 480 . . . . . . . 8 (((𝑇: ℋ⟶ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) → (𝑥 · (𝑇𝑦)) ∈ ℋ)
52 ffvelcdm 7115 . . . . . . . . 9 ((𝑇: ℋ⟶ ℋ ∧ 𝑧 ∈ ℋ) → (𝑇𝑧) ∈ ℋ)
5352adantlr 714 . . . . . . . 8 (((𝑇: ℋ⟶ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) → (𝑇𝑧) ∈ ℋ)
54 hvaddcl 31044 . . . . . . . 8 (((𝑥 · (𝑇𝑦)) ∈ ℋ ∧ (𝑇𝑧) ∈ ℋ) → ((𝑥 · (𝑇𝑦)) + (𝑇𝑧)) ∈ ℋ)
5551, 53, 54syl2anc 583 . . . . . . 7 (((𝑇: ℋ⟶ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) → ((𝑥 · (𝑇𝑦)) + (𝑇𝑧)) ∈ ℋ)
56 hial2eq 31138 . . . . . . 7 (((𝑇‘((𝑥 · 𝑦) + 𝑧)) ∈ ℋ ∧ ((𝑥 · (𝑇𝑦)) + (𝑇𝑧)) ∈ ℋ) → (∀𝑤 ∈ ℋ ((𝑇‘((𝑥 · 𝑦) + 𝑧)) ·ih 𝑤) = (((𝑥 · (𝑇𝑦)) + (𝑇𝑧)) ·ih 𝑤) ↔ (𝑇‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑇𝑦)) + (𝑇𝑧))))
5746, 55, 56syl2anc 583 . . . . . 6 (((𝑇: ℋ⟶ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) → (∀𝑤 ∈ ℋ ((𝑇‘((𝑥 · 𝑦) + 𝑧)) ·ih 𝑤) = (((𝑥 · (𝑇𝑦)) + (𝑇𝑧)) ·ih 𝑤) ↔ (𝑇‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑇𝑦)) + (𝑇𝑧))))
581, 57sylanl1 679 . . . . 5 (((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) → (∀𝑤 ∈ ℋ ((𝑇‘((𝑥 · 𝑦) + 𝑧)) ·ih 𝑤) = (((𝑥 · (𝑇𝑦)) + (𝑇𝑧)) ·ih 𝑤) ↔ (𝑇‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑇𝑦)) + (𝑇𝑧))))
5943, 58mpbid 232 . . . 4 (((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧 ∈ ℋ) → (𝑇‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑇𝑦)) + (𝑇𝑧)))
6059ralrimiva 3152 . . 3 ((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → ∀𝑧 ∈ ℋ (𝑇‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑇𝑦)) + (𝑇𝑧)))
6160ralrimivva 3208 . 2 (𝑇 ∈ HrmOp → ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑇‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑇𝑦)) + (𝑇𝑧)))
62 ellnop 31890 . 2 (𝑇 ∈ LinOp ↔ (𝑇: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑇‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑇𝑦)) + (𝑇𝑧))))
631, 61, 62sylanbrc 582 1 (𝑇 ∈ HrmOp → 𝑇 ∈ LinOp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  wf 6569  cfv 6573  (class class class)co 7448  cc 11182   + caddc 11187   · cmul 11189  chba 30951   + cva 30952   · csm 30953   ·ih csp 30954  LinOpclo 30979  HrmOpcho 30982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-hilex 31031  ax-hfvadd 31032  ax-hvcom 31033  ax-hvass 31034  ax-hv0cl 31035  ax-hvaddid 31036  ax-hfvmul 31037  ax-hvmulid 31038  ax-hvdistr2 31041  ax-hvmul0 31042  ax-hfi 31111  ax-his2 31115  ax-his3 31116  ax-his4 31117
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-ltxr 11329  df-sub 11522  df-neg 11523  df-hvsub 31003  df-lnop 31873  df-hmop 31876
This theorem is referenced by:  0lnop  32016  hmopbdoptHIL  32020  leoptri  32168  leopnmid  32170  nmopleid  32171  opsqrlem1  32172  opsqrlem6  32177  pjlnopi  32179  hmopidmchi  32183  hmopidmpji  32184
  Copyright terms: Public domain W3C validator