Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  btwnconn1 Structured version   Visualization version   GIF version

Theorem btwnconn1 36040
Description: Connectitivy law for betweenness. Theorem 5.1 of [Schwabhauser] p. 39-41. (Contributed by Scott Fenton, 9-Oct-2013.)
Assertion
Ref Expression
btwnconn1 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ((𝐴𝐵𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩) → (𝐶 Btwn ⟨𝐴, 𝐷⟩ ∨ 𝐷 Btwn ⟨𝐴, 𝐶⟩)))

Proof of Theorem btwnconn1
StepHypRef Expression
1 breq1 5119 . . . . . 6 (𝐵 = 𝐶 → (𝐵 Btwn ⟨𝐴, 𝐷⟩ ↔ 𝐶 Btwn ⟨𝐴, 𝐷⟩))
213anbi3d 1443 . . . . 5 (𝐵 = 𝐶 → ((𝐴𝐵𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩) ↔ (𝐴𝐵𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐴, 𝐷⟩)))
3 orc 867 . . . . . 6 (𝐶 Btwn ⟨𝐴, 𝐷⟩ → (𝐶 Btwn ⟨𝐴, 𝐷⟩ ∨ 𝐷 Btwn ⟨𝐴, 𝐶⟩))
433ad2ant3 1135 . . . . 5 ((𝐴𝐵𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐴, 𝐷⟩) → (𝐶 Btwn ⟨𝐴, 𝐷⟩ ∨ 𝐷 Btwn ⟨𝐴, 𝐶⟩))
52, 4biimtrdi 253 . . . 4 (𝐵 = 𝐶 → ((𝐴𝐵𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩) → (𝐶 Btwn ⟨𝐴, 𝐷⟩ ∨ 𝐷 Btwn ⟨𝐴, 𝐶⟩)))
65adantld 490 . . 3 (𝐵 = 𝐶 → (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝐴𝐵𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) → (𝐶 Btwn ⟨𝐴, 𝐷⟩ ∨ 𝐷 Btwn ⟨𝐴, 𝐶⟩)))
7 simpr1 1194 . . . . . . 7 ((𝐵𝐶 ∧ (𝐴𝐵𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) → 𝐴𝐵)
8 simpl 482 . . . . . . 7 ((𝐵𝐶 ∧ (𝐴𝐵𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) → 𝐵𝐶)
9 3simpc 1150 . . . . . . . 8 ((𝐴𝐵𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩) → (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩))
109adantl 481 . . . . . . 7 ((𝐵𝐶 ∧ (𝐴𝐵𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) → (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩))
117, 8, 10jca31 514 . . . . . 6 ((𝐵𝐶 ∧ (𝐴𝐵𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) → ((𝐴𝐵𝐵𝐶) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)))
12 btwnconn1lem14 36039 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝐵𝐵𝐶) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩))) → (𝐶 Btwn ⟨𝐴, 𝐷⟩ ∨ 𝐷 Btwn ⟨𝐴, 𝐶⟩))
1311, 12sylan2 593 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝐵𝐶 ∧ (𝐴𝐵𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩))) → (𝐶 Btwn ⟨𝐴, 𝐷⟩ ∨ 𝐷 Btwn ⟨𝐴, 𝐶⟩))
1413an12s 649 . . . 4 ((𝐵𝐶 ∧ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝐴𝐵𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩))) → (𝐶 Btwn ⟨𝐴, 𝐷⟩ ∨ 𝐷 Btwn ⟨𝐴, 𝐶⟩))
1514ex 412 . . 3 (𝐵𝐶 → (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝐴𝐵𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) → (𝐶 Btwn ⟨𝐴, 𝐷⟩ ∨ 𝐷 Btwn ⟨𝐴, 𝐶⟩)))
166, 15pm2.61ine 3014 . 2 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝐴𝐵𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) → (𝐶 Btwn ⟨𝐴, 𝐷⟩ ∨ 𝐷 Btwn ⟨𝐴, 𝐶⟩))
1716ex 412 1 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ((𝐴𝐵𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩) → (𝐶 Btwn ⟨𝐴, 𝐷⟩ ∨ 𝐷 Btwn ⟨𝐴, 𝐶⟩)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1539  wcel 2107  wne 2931  cop 4605   class class class wbr 5116  cfv 6527  cn 12232  𝔼cee 28799   Btwn cbtwn 28800
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5246  ax-sep 5263  ax-nul 5273  ax-pow 5332  ax-pr 5399  ax-un 7723  ax-inf2 9647  ax-cnex 11177  ax-resscn 11178  ax-1cn 11179  ax-icn 11180  ax-addcl 11181  ax-addrcl 11182  ax-mulcl 11183  ax-mulrcl 11184  ax-mulcom 11185  ax-addass 11186  ax-mulass 11187  ax-distr 11188  ax-i2m1 11189  ax-1ne0 11190  ax-1rid 11191  ax-rnegex 11192  ax-rrecex 11193  ax-cnre 11194  ax-pre-lttri 11195  ax-pre-lttrn 11196  ax-pre-ltadd 11197  ax-pre-mulgt0 11198  ax-pre-sup 11199
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-int 4920  df-iun 4966  df-br 5117  df-opab 5179  df-mpt 5199  df-tr 5227  df-id 5545  df-eprel 5550  df-po 5558  df-so 5559  df-fr 5603  df-se 5604  df-we 5605  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-ima 5664  df-pred 6287  df-ord 6352  df-on 6353  df-lim 6354  df-suc 6355  df-iota 6480  df-fun 6529  df-fn 6530  df-f 6531  df-f1 6532  df-fo 6533  df-f1o 6534  df-fv 6535  df-isom 6536  df-riota 7356  df-ov 7402  df-oprab 7403  df-mpo 7404  df-om 7856  df-1st 7982  df-2nd 7983  df-frecs 8274  df-wrecs 8305  df-recs 8379  df-rdg 8418  df-1o 8474  df-er 8713  df-map 8836  df-en 8954  df-dom 8955  df-sdom 8956  df-fin 8957  df-sup 9448  df-oi 9516  df-card 9945  df-pnf 11263  df-mnf 11264  df-xr 11265  df-ltxr 11266  df-le 11267  df-sub 11460  df-neg 11461  df-div 11887  df-nn 12233  df-2 12295  df-3 12296  df-n0 12494  df-z 12581  df-uz 12845  df-rp 13001  df-ico 13359  df-icc 13360  df-fz 13514  df-fzo 13661  df-seq 14009  df-exp 14069  df-hash 14337  df-cj 15105  df-re 15106  df-im 15107  df-sqrt 15241  df-abs 15242  df-clim 15491  df-sum 15690  df-ee 28802  df-btwn 28803  df-cgr 28804  df-ofs 35922  df-colinear 35978  df-ifs 35979  df-cgr3 35980  df-fs 35981
This theorem is referenced by:  btwnconn2  36041  outsideoftr  36068  outsideofeq  36069  lineelsb2  36087
  Copyright terms: Public domain W3C validator