Mathbox for Scott Fenton < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  btwnconn1 Structured version   Visualization version   GIF version

Theorem btwnconn1 33676
 Description: Connectitivy law for betweenness. Theorem 5.1 of [Schwabhauser] p. 39-41. (Contributed by Scott Fenton, 9-Oct-2013.)
Assertion
Ref Expression
btwnconn1 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ((𝐴𝐵𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩) → (𝐶 Btwn ⟨𝐴, 𝐷⟩ ∨ 𝐷 Btwn ⟨𝐴, 𝐶⟩)))

Proof of Theorem btwnconn1
StepHypRef Expression
1 breq1 5036 . . . . . 6 (𝐵 = 𝐶 → (𝐵 Btwn ⟨𝐴, 𝐷⟩ ↔ 𝐶 Btwn ⟨𝐴, 𝐷⟩))
213anbi3d 1439 . . . . 5 (𝐵 = 𝐶 → ((𝐴𝐵𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩) ↔ (𝐴𝐵𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐴, 𝐷⟩)))
3 orc 864 . . . . . 6 (𝐶 Btwn ⟨𝐴, 𝐷⟩ → (𝐶 Btwn ⟨𝐴, 𝐷⟩ ∨ 𝐷 Btwn ⟨𝐴, 𝐶⟩))
433ad2ant3 1132 . . . . 5 ((𝐴𝐵𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐴, 𝐷⟩) → (𝐶 Btwn ⟨𝐴, 𝐷⟩ ∨ 𝐷 Btwn ⟨𝐴, 𝐶⟩))
52, 4syl6bi 256 . . . 4 (𝐵 = 𝐶 → ((𝐴𝐵𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩) → (𝐶 Btwn ⟨𝐴, 𝐷⟩ ∨ 𝐷 Btwn ⟨𝐴, 𝐶⟩)))
65adantld 494 . . 3 (𝐵 = 𝐶 → (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝐴𝐵𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) → (𝐶 Btwn ⟨𝐴, 𝐷⟩ ∨ 𝐷 Btwn ⟨𝐴, 𝐶⟩)))
7 simpr1 1191 . . . . . . 7 ((𝐵𝐶 ∧ (𝐴𝐵𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) → 𝐴𝐵)
8 simpl 486 . . . . . . 7 ((𝐵𝐶 ∧ (𝐴𝐵𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) → 𝐵𝐶)
9 3simpc 1147 . . . . . . . 8 ((𝐴𝐵𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩) → (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩))
109adantl 485 . . . . . . 7 ((𝐵𝐶 ∧ (𝐴𝐵𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) → (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩))
117, 8, 10jca31 518 . . . . . 6 ((𝐵𝐶 ∧ (𝐴𝐵𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) → ((𝐴𝐵𝐵𝐶) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)))
12 btwnconn1lem14 33675 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝐵𝐵𝐶) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩))) → (𝐶 Btwn ⟨𝐴, 𝐷⟩ ∨ 𝐷 Btwn ⟨𝐴, 𝐶⟩))
1311, 12sylan2 595 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝐵𝐶 ∧ (𝐴𝐵𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩))) → (𝐶 Btwn ⟨𝐴, 𝐷⟩ ∨ 𝐷 Btwn ⟨𝐴, 𝐶⟩))
1413an12s 648 . . . 4 ((𝐵𝐶 ∧ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝐴𝐵𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩))) → (𝐶 Btwn ⟨𝐴, 𝐷⟩ ∨ 𝐷 Btwn ⟨𝐴, 𝐶⟩))
1514ex 416 . . 3 (𝐵𝐶 → (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝐴𝐵𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) → (𝐶 Btwn ⟨𝐴, 𝐷⟩ ∨ 𝐷 Btwn ⟨𝐴, 𝐶⟩)))
166, 15pm2.61ine 3073 . 2 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝐴𝐵𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) → (𝐶 Btwn ⟨𝐴, 𝐷⟩ ∨ 𝐷 Btwn ⟨𝐴, 𝐶⟩))
1716ex 416 1 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ((𝐴𝐵𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩) → (𝐶 Btwn ⟨𝐴, 𝐷⟩ ∨ 𝐷 Btwn ⟨𝐴, 𝐶⟩)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∨ wo 844   ∧ w3a 1084   = wceq 1538   ∈ wcel 2112   ≠ wne 2990  ⟨cop 4534   class class class wbr 5033  ‘cfv 6328  ℕcn 11629  𝔼cee 26686   Btwn cbtwn 26687 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-inf2 9092  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-map 8395  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-sup 8894  df-oi 8962  df-card 9356  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12382  df-ico 12736  df-icc 12737  df-fz 12890  df-fzo 13033  df-seq 13369  df-exp 13430  df-hash 13691  df-cj 14454  df-re 14455  df-im 14456  df-sqrt 14590  df-abs 14591  df-clim 14841  df-sum 15039  df-ee 26689  df-btwn 26690  df-cgr 26691  df-ofs 33558  df-colinear 33614  df-ifs 33615  df-cgr3 33616  df-fs 33617 This theorem is referenced by:  btwnconn2  33677  outsideoftr  33704  outsideofeq  33705  lineelsb2  33723
 Copyright terms: Public domain W3C validator