MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brdomiOLD Structured version   Visualization version   GIF version

Theorem brdomiOLD 8749
Description: Obsolete version of brdomi 8748 as of 29-Nov-2024. (Contributed by Mario Carneiro, 26-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
brdomiOLD (𝐴𝐵 → ∃𝑓 𝑓:𝐴1-1𝐵)
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓

Proof of Theorem brdomiOLD
StepHypRef Expression
1 reldom 8739 . . . 4 Rel ≼
21brrelex2i 5644 . . 3 (𝐴𝐵𝐵 ∈ V)
3 brdomg 8746 . . 3 (𝐵 ∈ V → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵))
42, 3syl 17 . 2 (𝐴𝐵 → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵))
54ibi 266 1 (𝐴𝐵 → ∃𝑓 𝑓:𝐴1-1𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wex 1782  wcel 2106  Vcvv 3432   class class class wbr 5074  1-1wf1 6430  cdom 8731
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-xp 5595  df-rel 5596  df-cnv 5597  df-dm 5599  df-rn 5600  df-fn 6436  df-f 6437  df-f1 6438  df-dom 8735
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator