![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > isupwlkg | Structured version Visualization version GIF version |
Description: Generalization of isupwlk 46514: Conditions for two classes to represent a simple walk. (Contributed by AV, 5-Nov-2021.) |
Ref | Expression |
---|---|
upwlksfval.v | β’ π = (VtxβπΊ) |
upwlksfval.i | β’ πΌ = (iEdgβπΊ) |
Ref | Expression |
---|---|
isupwlkg | β’ (πΊ β π β (πΉ(UPWalksβπΊ)π β (πΉ β Word dom πΌ β§ π:(0...(β―βπΉ))βΆπ β§ βπ β (0..^(β―βπΉ))(πΌβ(πΉβπ)) = {(πβπ), (πβ(π + 1))}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | upwlksfval.v | . . . . 5 β’ π = (VtxβπΊ) | |
2 | upwlksfval.i | . . . . 5 β’ πΌ = (iEdgβπΊ) | |
3 | 1, 2 | upwlksfval 46513 | . . . 4 β’ (πΊ β V β (UPWalksβπΊ) = {β¨π, πβ© β£ (π β Word dom πΌ β§ π:(0...(β―βπ))βΆπ β§ βπ β (0..^(β―βπ))(πΌβ(πβπ)) = {(πβπ), (πβ(π + 1))})}) |
4 | 3 | brfvopab 7466 | . . 3 β’ (πΉ(UPWalksβπΊ)π β (πΊ β V β§ πΉ β V β§ π β V)) |
5 | 4 | a1i 11 | . 2 β’ (πΊ β π β (πΉ(UPWalksβπΊ)π β (πΊ β V β§ πΉ β V β§ π β V))) |
6 | elex 3493 | . . . . 5 β’ (πΊ β π β πΊ β V) | |
7 | elex 3493 | . . . . . . 7 β’ (πΉ β Word dom πΌ β πΉ β V) | |
8 | ovex 7442 | . . . . . . . . 9 β’ (0...(β―βπΉ)) β V | |
9 | 1 | fvexi 6906 | . . . . . . . . 9 β’ π β V |
10 | 8, 9 | fpm 8869 | . . . . . . . 8 β’ (π:(0...(β―βπΉ))βΆπ β π β (π βpm (0...(β―βπΉ)))) |
11 | 10 | elexd 3495 | . . . . . . 7 β’ (π:(0...(β―βπΉ))βΆπ β π β V) |
12 | 7, 11 | anim12i 614 | . . . . . 6 β’ ((πΉ β Word dom πΌ β§ π:(0...(β―βπΉ))βΆπ) β (πΉ β V β§ π β V)) |
13 | 12 | 3adant3 1133 | . . . . 5 β’ ((πΉ β Word dom πΌ β§ π:(0...(β―βπΉ))βΆπ β§ βπ β (0..^(β―βπΉ))(πΌβ(πΉβπ)) = {(πβπ), (πβ(π + 1))}) β (πΉ β V β§ π β V)) |
14 | 6, 13 | anim12i 614 | . . . 4 β’ ((πΊ β π β§ (πΉ β Word dom πΌ β§ π:(0...(β―βπΉ))βΆπ β§ βπ β (0..^(β―βπΉ))(πΌβ(πΉβπ)) = {(πβπ), (πβ(π + 1))})) β (πΊ β V β§ (πΉ β V β§ π β V))) |
15 | 14 | ex 414 | . . 3 β’ (πΊ β π β ((πΉ β Word dom πΌ β§ π:(0...(β―βπΉ))βΆπ β§ βπ β (0..^(β―βπΉ))(πΌβ(πΉβπ)) = {(πβπ), (πβ(π + 1))}) β (πΊ β V β§ (πΉ β V β§ π β V)))) |
16 | 3anass 1096 | . . 3 β’ ((πΊ β V β§ πΉ β V β§ π β V) β (πΊ β V β§ (πΉ β V β§ π β V))) | |
17 | 15, 16 | syl6ibr 252 | . 2 β’ (πΊ β π β ((πΉ β Word dom πΌ β§ π:(0...(β―βπΉ))βΆπ β§ βπ β (0..^(β―βπΉ))(πΌβ(πΉβπ)) = {(πβπ), (πβ(π + 1))}) β (πΊ β V β§ πΉ β V β§ π β V))) |
18 | 1, 2 | isupwlk 46514 | . . 3 β’ ((πΊ β V β§ πΉ β V β§ π β V) β (πΉ(UPWalksβπΊ)π β (πΉ β Word dom πΌ β§ π:(0...(β―βπΉ))βΆπ β§ βπ β (0..^(β―βπΉ))(πΌβ(πΉβπ)) = {(πβπ), (πβ(π + 1))}))) |
19 | 18 | a1i 11 | . 2 β’ (πΊ β π β ((πΊ β V β§ πΉ β V β§ π β V) β (πΉ(UPWalksβπΊ)π β (πΉ β Word dom πΌ β§ π:(0...(β―βπΉ))βΆπ β§ βπ β (0..^(β―βπΉ))(πΌβ(πΉβπ)) = {(πβπ), (πβ(π + 1))})))) |
20 | 5, 17, 19 | pm5.21ndd 381 | 1 β’ (πΊ β π β (πΉ(UPWalksβπΊ)π β (πΉ β Word dom πΌ β§ π:(0...(β―βπΉ))βΆπ β§ βπ β (0..^(β―βπΉ))(πΌβ(πΉβπ)) = {(πβπ), (πβ(π + 1))}))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 397 β§ w3a 1088 = wceq 1542 β wcel 2107 βwral 3062 Vcvv 3475 {cpr 4631 class class class wbr 5149 dom cdm 5677 βΆwf 6540 βcfv 6544 (class class class)co 7409 βpm cpm 8821 0cc0 11110 1c1 11111 + caddc 11113 ...cfz 13484 ..^cfzo 13627 β―chash 14290 Word cword 14464 Vtxcvtx 28256 iEdgciedg 28257 UPWalkscupwlks 46511 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-er 8703 df-map 8822 df-pm 8823 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-card 9934 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-n0 12473 df-z 12559 df-uz 12823 df-fz 13485 df-fzo 13628 df-hash 14291 df-word 14465 df-upwlks 46512 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |