Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > isupwlkg | Structured version Visualization version GIF version |
Description: Generalization of isupwlk 45298: Conditions for two classes to represent a simple walk. (Contributed by AV, 5-Nov-2021.) |
Ref | Expression |
---|---|
upwlksfval.v | ⊢ 𝑉 = (Vtx‘𝐺) |
upwlksfval.i | ⊢ 𝐼 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
isupwlkg | ⊢ (𝐺 ∈ 𝑊 → (𝐹(UPWalks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | upwlksfval.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | upwlksfval.i | . . . . 5 ⊢ 𝐼 = (iEdg‘𝐺) | |
3 | 1, 2 | upwlksfval 45297 | . . . 4 ⊢ (𝐺 ∈ V → (UPWalks‘𝐺) = {〈𝑓, 𝑝〉 ∣ (𝑓 ∈ Word dom 𝐼 ∧ 𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))(𝐼‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))})}) |
4 | 3 | brfvopab 7332 | . . 3 ⊢ (𝐹(UPWalks‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V)) |
5 | 4 | a1i 11 | . 2 ⊢ (𝐺 ∈ 𝑊 → (𝐹(UPWalks‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V))) |
6 | elex 3450 | . . . . 5 ⊢ (𝐺 ∈ 𝑊 → 𝐺 ∈ V) | |
7 | elex 3450 | . . . . . . 7 ⊢ (𝐹 ∈ Word dom 𝐼 → 𝐹 ∈ V) | |
8 | ovex 7308 | . . . . . . . . 9 ⊢ (0...(♯‘𝐹)) ∈ V | |
9 | 1 | fvexi 6788 | . . . . . . . . 9 ⊢ 𝑉 ∈ V |
10 | 8, 9 | fpm 8663 | . . . . . . . 8 ⊢ (𝑃:(0...(♯‘𝐹))⟶𝑉 → 𝑃 ∈ (𝑉 ↑pm (0...(♯‘𝐹)))) |
11 | 10 | elexd 3452 | . . . . . . 7 ⊢ (𝑃:(0...(♯‘𝐹))⟶𝑉 → 𝑃 ∈ V) |
12 | 7, 11 | anim12i 613 | . . . . . 6 ⊢ ((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉) → (𝐹 ∈ V ∧ 𝑃 ∈ V)) |
13 | 12 | 3adant3 1131 | . . . . 5 ⊢ ((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}) → (𝐹 ∈ V ∧ 𝑃 ∈ V)) |
14 | 6, 13 | anim12i 613 | . . . 4 ⊢ ((𝐺 ∈ 𝑊 ∧ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))})) → (𝐺 ∈ V ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V))) |
15 | 14 | ex 413 | . . 3 ⊢ (𝐺 ∈ 𝑊 → ((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}) → (𝐺 ∈ V ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)))) |
16 | 3anass 1094 | . . 3 ⊢ ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) ↔ (𝐺 ∈ V ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V))) | |
17 | 15, 16 | syl6ibr 251 | . 2 ⊢ (𝐺 ∈ 𝑊 → ((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}) → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V))) |
18 | 1, 2 | isupwlk 45298 | . . 3 ⊢ ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → (𝐹(UPWalks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}))) |
19 | 18 | a1i 11 | . 2 ⊢ (𝐺 ∈ 𝑊 → ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → (𝐹(UPWalks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))})))) |
20 | 5, 17, 19 | pm5.21ndd 381 | 1 ⊢ (𝐺 ∈ 𝑊 → (𝐹(UPWalks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ∀wral 3064 Vcvv 3432 {cpr 4563 class class class wbr 5074 dom cdm 5589 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 ↑pm cpm 8616 0cc0 10871 1c1 10872 + caddc 10874 ...cfz 13239 ..^cfzo 13382 ♯chash 14044 Word cword 14217 Vtxcvtx 27366 iEdgciedg 27367 UPWalkscupwlks 45295 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-pm 8618 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-n0 12234 df-z 12320 df-uz 12583 df-fz 13240 df-fzo 13383 df-hash 14045 df-word 14218 df-upwlks 45296 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |