Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isupwlkg Structured version   Visualization version   GIF version

Theorem isupwlkg 47069
Description: Generalization of isupwlk 47068: Conditions for two classes to represent a simple walk. (Contributed by AV, 5-Nov-2021.)
Hypotheses
Ref Expression
upwlksfval.v 𝑉 = (Vtxβ€˜πΊ)
upwlksfval.i 𝐼 = (iEdgβ€˜πΊ)
Assertion
Ref Expression
isupwlkg (𝐺 ∈ π‘Š β†’ (𝐹(UPWalksβ€˜πΊ)𝑃 ↔ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(β™―β€˜πΉ))βŸΆπ‘‰ ∧ βˆ€π‘˜ ∈ (0..^(β™―β€˜πΉ))(πΌβ€˜(πΉβ€˜π‘˜)) = {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))})))
Distinct variable groups:   π‘˜,𝐺   π‘˜,𝐹   𝑃,π‘˜
Allowed substitution hints:   𝐼(π‘˜)   𝑉(π‘˜)   π‘Š(π‘˜)

Proof of Theorem isupwlkg
Dummy variables 𝑓 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 upwlksfval.v . . . . 5 𝑉 = (Vtxβ€˜πΊ)
2 upwlksfval.i . . . . 5 𝐼 = (iEdgβ€˜πΊ)
31, 2upwlksfval 47067 . . . 4 (𝐺 ∈ V β†’ (UPWalksβ€˜πΊ) = {βŸ¨π‘“, π‘βŸ© ∣ (𝑓 ∈ Word dom 𝐼 ∧ 𝑝:(0...(β™―β€˜π‘“))βŸΆπ‘‰ ∧ βˆ€π‘˜ ∈ (0..^(β™―β€˜π‘“))(πΌβ€˜(π‘“β€˜π‘˜)) = {(π‘β€˜π‘˜), (π‘β€˜(π‘˜ + 1))})})
43brfvopab 7461 . . 3 (𝐹(UPWalksβ€˜πΊ)𝑃 β†’ (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V))
54a1i 11 . 2 (𝐺 ∈ π‘Š β†’ (𝐹(UPWalksβ€˜πΊ)𝑃 β†’ (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V)))
6 elex 3487 . . . . 5 (𝐺 ∈ π‘Š β†’ 𝐺 ∈ V)
7 elex 3487 . . . . . . 7 (𝐹 ∈ Word dom 𝐼 β†’ 𝐹 ∈ V)
8 ovex 7437 . . . . . . . . 9 (0...(β™―β€˜πΉ)) ∈ V
91fvexi 6898 . . . . . . . . 9 𝑉 ∈ V
108, 9fpm 8868 . . . . . . . 8 (𝑃:(0...(β™―β€˜πΉ))βŸΆπ‘‰ β†’ 𝑃 ∈ (𝑉 ↑pm (0...(β™―β€˜πΉ))))
1110elexd 3489 . . . . . . 7 (𝑃:(0...(β™―β€˜πΉ))βŸΆπ‘‰ β†’ 𝑃 ∈ V)
127, 11anim12i 612 . . . . . 6 ((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(β™―β€˜πΉ))βŸΆπ‘‰) β†’ (𝐹 ∈ V ∧ 𝑃 ∈ V))
13123adant3 1129 . . . . 5 ((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(β™―β€˜πΉ))βŸΆπ‘‰ ∧ βˆ€π‘˜ ∈ (0..^(β™―β€˜πΉ))(πΌβ€˜(πΉβ€˜π‘˜)) = {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))}) β†’ (𝐹 ∈ V ∧ 𝑃 ∈ V))
146, 13anim12i 612 . . . 4 ((𝐺 ∈ π‘Š ∧ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(β™―β€˜πΉ))βŸΆπ‘‰ ∧ βˆ€π‘˜ ∈ (0..^(β™―β€˜πΉ))(πΌβ€˜(πΉβ€˜π‘˜)) = {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))})) β†’ (𝐺 ∈ V ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)))
1514ex 412 . . 3 (𝐺 ∈ π‘Š β†’ ((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(β™―β€˜πΉ))βŸΆπ‘‰ ∧ βˆ€π‘˜ ∈ (0..^(β™―β€˜πΉ))(πΌβ€˜(πΉβ€˜π‘˜)) = {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))}) β†’ (𝐺 ∈ V ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V))))
16 3anass 1092 . . 3 ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) ↔ (𝐺 ∈ V ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)))
1715, 16imbitrrdi 251 . 2 (𝐺 ∈ π‘Š β†’ ((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(β™―β€˜πΉ))βŸΆπ‘‰ ∧ βˆ€π‘˜ ∈ (0..^(β™―β€˜πΉ))(πΌβ€˜(πΉβ€˜π‘˜)) = {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))}) β†’ (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V)))
181, 2isupwlk 47068 . . 3 ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) β†’ (𝐹(UPWalksβ€˜πΊ)𝑃 ↔ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(β™―β€˜πΉ))βŸΆπ‘‰ ∧ βˆ€π‘˜ ∈ (0..^(β™―β€˜πΉ))(πΌβ€˜(πΉβ€˜π‘˜)) = {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))})))
1918a1i 11 . 2 (𝐺 ∈ π‘Š β†’ ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) β†’ (𝐹(UPWalksβ€˜πΊ)𝑃 ↔ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(β™―β€˜πΉ))βŸΆπ‘‰ ∧ βˆ€π‘˜ ∈ (0..^(β™―β€˜πΉ))(πΌβ€˜(πΉβ€˜π‘˜)) = {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))}))))
205, 17, 19pm5.21ndd 379 1 (𝐺 ∈ π‘Š β†’ (𝐹(UPWalksβ€˜πΊ)𝑃 ↔ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(β™―β€˜πΉ))βŸΆπ‘‰ ∧ βˆ€π‘˜ ∈ (0..^(β™―β€˜πΉ))(πΌβ€˜(πΉβ€˜π‘˜)) = {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))})))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098  βˆ€wral 3055  Vcvv 3468  {cpr 4625   class class class wbr 5141  dom cdm 5669  βŸΆwf 6532  β€˜cfv 6536  (class class class)co 7404   ↑pm cpm 8820  0cc0 11109  1c1 11110   + caddc 11112  ...cfz 13487  ..^cfzo 13630  β™―chash 14292  Word cword 14467  Vtxcvtx 28759  iEdgciedg 28760  UPWalkscupwlks 47065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6293  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8264  df-wrecs 8295  df-recs 8369  df-rdg 8408  df-1o 8464  df-er 8702  df-map 8821  df-pm 8822  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-card 9933  df-pnf 11251  df-mnf 11252  df-xr 11253  df-ltxr 11254  df-le 11255  df-sub 11447  df-neg 11448  df-nn 12214  df-n0 12474  df-z 12560  df-uz 12824  df-fz 13488  df-fzo 13631  df-hash 14293  df-word 14468  df-upwlks 47066
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator