![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > isupwlkg | Structured version Visualization version GIF version |
Description: Generalization of isupwlk 42563: Conditions for two classes to represent a simple walk. (Contributed by AV, 5-Nov-2021.) |
Ref | Expression |
---|---|
upwlksfval.v | ⊢ 𝑉 = (Vtx‘𝐺) |
upwlksfval.i | ⊢ 𝐼 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
isupwlkg | ⊢ (𝐺 ∈ 𝑊 → (𝐹(UPWalks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | upwlksfval.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | upwlksfval.i | . . . . 5 ⊢ 𝐼 = (iEdg‘𝐺) | |
3 | 1, 2 | upwlksfval 42562 | . . . 4 ⊢ (𝐺 ∈ V → (UPWalks‘𝐺) = {〈𝑓, 𝑝〉 ∣ (𝑓 ∈ Word dom 𝐼 ∧ 𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))(𝐼‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))})}) |
4 | 3 | brfvopab 6959 | . . 3 ⊢ (𝐹(UPWalks‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V)) |
5 | 4 | a1i 11 | . 2 ⊢ (𝐺 ∈ 𝑊 → (𝐹(UPWalks‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V))) |
6 | elex 3428 | . . . . 5 ⊢ (𝐺 ∈ 𝑊 → 𝐺 ∈ V) | |
7 | elex 3428 | . . . . . . 7 ⊢ (𝐹 ∈ Word dom 𝐼 → 𝐹 ∈ V) | |
8 | ovex 6936 | . . . . . . . . 9 ⊢ (0...(♯‘𝐹)) ∈ V | |
9 | 1 | fvexi 6446 | . . . . . . . . 9 ⊢ 𝑉 ∈ V |
10 | 8, 9 | fpm 8154 | . . . . . . . 8 ⊢ (𝑃:(0...(♯‘𝐹))⟶𝑉 → 𝑃 ∈ (𝑉 ↑pm (0...(♯‘𝐹)))) |
11 | 10 | elexd 3430 | . . . . . . 7 ⊢ (𝑃:(0...(♯‘𝐹))⟶𝑉 → 𝑃 ∈ V) |
12 | 7, 11 | anim12i 608 | . . . . . 6 ⊢ ((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉) → (𝐹 ∈ V ∧ 𝑃 ∈ V)) |
13 | 12 | 3adant3 1168 | . . . . 5 ⊢ ((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}) → (𝐹 ∈ V ∧ 𝑃 ∈ V)) |
14 | 6, 13 | anim12i 608 | . . . 4 ⊢ ((𝐺 ∈ 𝑊 ∧ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))})) → (𝐺 ∈ V ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V))) |
15 | 14 | ex 403 | . . 3 ⊢ (𝐺 ∈ 𝑊 → ((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}) → (𝐺 ∈ V ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)))) |
16 | 3anass 1122 | . . 3 ⊢ ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) ↔ (𝐺 ∈ V ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V))) | |
17 | 15, 16 | syl6ibr 244 | . 2 ⊢ (𝐺 ∈ 𝑊 → ((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}) → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V))) |
18 | 1, 2 | isupwlk 42563 | . . 3 ⊢ ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → (𝐹(UPWalks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}))) |
19 | 18 | a1i 11 | . 2 ⊢ (𝐺 ∈ 𝑊 → ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → (𝐹(UPWalks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))})))) |
20 | 5, 17, 19 | pm5.21ndd 371 | 1 ⊢ (𝐺 ∈ 𝑊 → (𝐹(UPWalks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 ∧ w3a 1113 = wceq 1658 ∈ wcel 2166 ∀wral 3116 Vcvv 3413 {cpr 4398 class class class wbr 4872 dom cdm 5341 ⟶wf 6118 ‘cfv 6122 (class class class)co 6904 ↑pm cpm 8122 0cc0 10251 1c1 10252 + caddc 10254 ...cfz 12618 ..^cfzo 12759 ♯chash 13409 Word cword 13573 Vtxcvtx 26293 iEdgciedg 26294 UPWalkscupwlks 42560 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2390 ax-ext 2802 ax-rep 4993 ax-sep 5004 ax-nul 5012 ax-pow 5064 ax-pr 5126 ax-un 7208 ax-cnex 10307 ax-resscn 10308 ax-1cn 10309 ax-icn 10310 ax-addcl 10311 ax-addrcl 10312 ax-mulcl 10313 ax-mulrcl 10314 ax-mulcom 10315 ax-addass 10316 ax-mulass 10317 ax-distr 10318 ax-i2m1 10319 ax-1ne0 10320 ax-1rid 10321 ax-rnegex 10322 ax-rrecex 10323 ax-cnre 10324 ax-pre-lttri 10325 ax-pre-lttrn 10326 ax-pre-ltadd 10327 ax-pre-mulgt0 10328 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2604 df-eu 2639 df-clab 2811 df-cleq 2817 df-clel 2820 df-nfc 2957 df-ne 2999 df-nel 3102 df-ral 3121 df-rex 3122 df-reu 3123 df-rab 3125 df-v 3415 df-sbc 3662 df-csb 3757 df-dif 3800 df-un 3802 df-in 3804 df-ss 3811 df-pss 3813 df-nul 4144 df-if 4306 df-pw 4379 df-sn 4397 df-pr 4399 df-tp 4401 df-op 4403 df-uni 4658 df-int 4697 df-iun 4741 df-br 4873 df-opab 4935 df-mpt 4952 df-tr 4975 df-id 5249 df-eprel 5254 df-po 5262 df-so 5263 df-fr 5300 df-we 5302 df-xp 5347 df-rel 5348 df-cnv 5349 df-co 5350 df-dm 5351 df-rn 5352 df-res 5353 df-ima 5354 df-pred 5919 df-ord 5965 df-on 5966 df-lim 5967 df-suc 5968 df-iota 6085 df-fun 6124 df-fn 6125 df-f 6126 df-f1 6127 df-fo 6128 df-f1o 6129 df-fv 6130 df-riota 6865 df-ov 6907 df-oprab 6908 df-mpt2 6909 df-om 7326 df-1st 7427 df-2nd 7428 df-wrecs 7671 df-recs 7733 df-rdg 7771 df-1o 7825 df-er 8008 df-map 8123 df-pm 8124 df-en 8222 df-dom 8223 df-sdom 8224 df-fin 8225 df-card 9077 df-pnf 10392 df-mnf 10393 df-xr 10394 df-ltxr 10395 df-le 10396 df-sub 10586 df-neg 10587 df-nn 11350 df-n0 11618 df-z 11704 df-uz 11968 df-fz 12619 df-fzo 12760 df-hash 13410 df-word 13574 df-upwlks 42561 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |