Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isupwlkg Structured version   Visualization version   GIF version

Theorem isupwlkg 46515
Description: Generalization of isupwlk 46514: Conditions for two classes to represent a simple walk. (Contributed by AV, 5-Nov-2021.)
Hypotheses
Ref Expression
upwlksfval.v 𝑉 = (Vtxβ€˜πΊ)
upwlksfval.i 𝐼 = (iEdgβ€˜πΊ)
Assertion
Ref Expression
isupwlkg (𝐺 ∈ π‘Š β†’ (𝐹(UPWalksβ€˜πΊ)𝑃 ↔ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(β™―β€˜πΉ))βŸΆπ‘‰ ∧ βˆ€π‘˜ ∈ (0..^(β™―β€˜πΉ))(πΌβ€˜(πΉβ€˜π‘˜)) = {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))})))
Distinct variable groups:   π‘˜,𝐺   π‘˜,𝐹   𝑃,π‘˜
Allowed substitution hints:   𝐼(π‘˜)   𝑉(π‘˜)   π‘Š(π‘˜)

Proof of Theorem isupwlkg
Dummy variables 𝑓 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 upwlksfval.v . . . . 5 𝑉 = (Vtxβ€˜πΊ)
2 upwlksfval.i . . . . 5 𝐼 = (iEdgβ€˜πΊ)
31, 2upwlksfval 46513 . . . 4 (𝐺 ∈ V β†’ (UPWalksβ€˜πΊ) = {βŸ¨π‘“, π‘βŸ© ∣ (𝑓 ∈ Word dom 𝐼 ∧ 𝑝:(0...(β™―β€˜π‘“))βŸΆπ‘‰ ∧ βˆ€π‘˜ ∈ (0..^(β™―β€˜π‘“))(πΌβ€˜(π‘“β€˜π‘˜)) = {(π‘β€˜π‘˜), (π‘β€˜(π‘˜ + 1))})})
43brfvopab 7466 . . 3 (𝐹(UPWalksβ€˜πΊ)𝑃 β†’ (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V))
54a1i 11 . 2 (𝐺 ∈ π‘Š β†’ (𝐹(UPWalksβ€˜πΊ)𝑃 β†’ (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V)))
6 elex 3493 . . . . 5 (𝐺 ∈ π‘Š β†’ 𝐺 ∈ V)
7 elex 3493 . . . . . . 7 (𝐹 ∈ Word dom 𝐼 β†’ 𝐹 ∈ V)
8 ovex 7442 . . . . . . . . 9 (0...(β™―β€˜πΉ)) ∈ V
91fvexi 6906 . . . . . . . . 9 𝑉 ∈ V
108, 9fpm 8869 . . . . . . . 8 (𝑃:(0...(β™―β€˜πΉ))βŸΆπ‘‰ β†’ 𝑃 ∈ (𝑉 ↑pm (0...(β™―β€˜πΉ))))
1110elexd 3495 . . . . . . 7 (𝑃:(0...(β™―β€˜πΉ))βŸΆπ‘‰ β†’ 𝑃 ∈ V)
127, 11anim12i 614 . . . . . 6 ((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(β™―β€˜πΉ))βŸΆπ‘‰) β†’ (𝐹 ∈ V ∧ 𝑃 ∈ V))
13123adant3 1133 . . . . 5 ((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(β™―β€˜πΉ))βŸΆπ‘‰ ∧ βˆ€π‘˜ ∈ (0..^(β™―β€˜πΉ))(πΌβ€˜(πΉβ€˜π‘˜)) = {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))}) β†’ (𝐹 ∈ V ∧ 𝑃 ∈ V))
146, 13anim12i 614 . . . 4 ((𝐺 ∈ π‘Š ∧ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(β™―β€˜πΉ))βŸΆπ‘‰ ∧ βˆ€π‘˜ ∈ (0..^(β™―β€˜πΉ))(πΌβ€˜(πΉβ€˜π‘˜)) = {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))})) β†’ (𝐺 ∈ V ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)))
1514ex 414 . . 3 (𝐺 ∈ π‘Š β†’ ((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(β™―β€˜πΉ))βŸΆπ‘‰ ∧ βˆ€π‘˜ ∈ (0..^(β™―β€˜πΉ))(πΌβ€˜(πΉβ€˜π‘˜)) = {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))}) β†’ (𝐺 ∈ V ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V))))
16 3anass 1096 . . 3 ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) ↔ (𝐺 ∈ V ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)))
1715, 16syl6ibr 252 . 2 (𝐺 ∈ π‘Š β†’ ((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(β™―β€˜πΉ))βŸΆπ‘‰ ∧ βˆ€π‘˜ ∈ (0..^(β™―β€˜πΉ))(πΌβ€˜(πΉβ€˜π‘˜)) = {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))}) β†’ (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V)))
181, 2isupwlk 46514 . . 3 ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) β†’ (𝐹(UPWalksβ€˜πΊ)𝑃 ↔ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(β™―β€˜πΉ))βŸΆπ‘‰ ∧ βˆ€π‘˜ ∈ (0..^(β™―β€˜πΉ))(πΌβ€˜(πΉβ€˜π‘˜)) = {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))})))
1918a1i 11 . 2 (𝐺 ∈ π‘Š β†’ ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) β†’ (𝐹(UPWalksβ€˜πΊ)𝑃 ↔ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(β™―β€˜πΉ))βŸΆπ‘‰ ∧ βˆ€π‘˜ ∈ (0..^(β™―β€˜πΉ))(πΌβ€˜(πΉβ€˜π‘˜)) = {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))}))))
205, 17, 19pm5.21ndd 381 1 (𝐺 ∈ π‘Š β†’ (𝐹(UPWalksβ€˜πΊ)𝑃 ↔ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(β™―β€˜πΉ))βŸΆπ‘‰ ∧ βˆ€π‘˜ ∈ (0..^(β™―β€˜πΉ))(πΌβ€˜(πΉβ€˜π‘˜)) = {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))})))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107  βˆ€wral 3062  Vcvv 3475  {cpr 4631   class class class wbr 5149  dom cdm 5677  βŸΆwf 6540  β€˜cfv 6544  (class class class)co 7409   ↑pm cpm 8821  0cc0 11110  1c1 11111   + caddc 11113  ...cfz 13484  ..^cfzo 13627  β™―chash 14290  Word cword 14464  Vtxcvtx 28256  iEdgciedg 28257  UPWalkscupwlks 46511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-er 8703  df-map 8822  df-pm 8823  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-card 9934  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-nn 12213  df-n0 12473  df-z 12559  df-uz 12823  df-fz 13485  df-fzo 13628  df-hash 14291  df-word 14465  df-upwlks 46512
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator