MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1opr Structured version   Visualization version   GIF version

Theorem f1opr 7463
Description: Condition for an operation to be one-to-one. (Contributed by Jeff Madsen, 17-Jun-2010.)
Assertion
Ref Expression
f1opr (𝐹:(𝐴 × 𝐵)–1-1𝐶 ↔ (𝐹:(𝐴 × 𝐵)⟶𝐶 ∧ ∀𝑟𝐴𝑠𝐵𝑡𝐴𝑢𝐵 ((𝑟𝐹𝑠) = (𝑡𝐹𝑢) → (𝑟 = 𝑡𝑠 = 𝑢))))
Distinct variable groups:   𝐴,𝑟,𝑠,𝑡,𝑢   𝐵,𝑟,𝑠,𝑡,𝑢   𝐹,𝑟,𝑠,𝑡,𝑢
Allowed substitution hints:   𝐶(𝑢,𝑡,𝑠,𝑟)

Proof of Theorem f1opr
Dummy variables 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dff13 7247 . 2 (𝐹:(𝐴 × 𝐵)–1-1𝐶 ↔ (𝐹:(𝐴 × 𝐵)⟶𝐶 ∧ ∀𝑣 ∈ (𝐴 × 𝐵)∀𝑤 ∈ (𝐴 × 𝐵)((𝐹𝑣) = (𝐹𝑤) → 𝑣 = 𝑤)))
2 fveq2 6876 . . . . . . . . 9 (𝑣 = ⟨𝑟, 𝑠⟩ → (𝐹𝑣) = (𝐹‘⟨𝑟, 𝑠⟩))
3 df-ov 7408 . . . . . . . . 9 (𝑟𝐹𝑠) = (𝐹‘⟨𝑟, 𝑠⟩)
42, 3eqtr4di 2788 . . . . . . . 8 (𝑣 = ⟨𝑟, 𝑠⟩ → (𝐹𝑣) = (𝑟𝐹𝑠))
54eqeq1d 2737 . . . . . . 7 (𝑣 = ⟨𝑟, 𝑠⟩ → ((𝐹𝑣) = (𝐹𝑤) ↔ (𝑟𝐹𝑠) = (𝐹𝑤)))
6 eqeq1 2739 . . . . . . 7 (𝑣 = ⟨𝑟, 𝑠⟩ → (𝑣 = 𝑤 ↔ ⟨𝑟, 𝑠⟩ = 𝑤))
75, 6imbi12d 344 . . . . . 6 (𝑣 = ⟨𝑟, 𝑠⟩ → (((𝐹𝑣) = (𝐹𝑤) → 𝑣 = 𝑤) ↔ ((𝑟𝐹𝑠) = (𝐹𝑤) → ⟨𝑟, 𝑠⟩ = 𝑤)))
87ralbidv 3163 . . . . 5 (𝑣 = ⟨𝑟, 𝑠⟩ → (∀𝑤 ∈ (𝐴 × 𝐵)((𝐹𝑣) = (𝐹𝑤) → 𝑣 = 𝑤) ↔ ∀𝑤 ∈ (𝐴 × 𝐵)((𝑟𝐹𝑠) = (𝐹𝑤) → ⟨𝑟, 𝑠⟩ = 𝑤)))
98ralxp 5821 . . . 4 (∀𝑣 ∈ (𝐴 × 𝐵)∀𝑤 ∈ (𝐴 × 𝐵)((𝐹𝑣) = (𝐹𝑤) → 𝑣 = 𝑤) ↔ ∀𝑟𝐴𝑠𝐵𝑤 ∈ (𝐴 × 𝐵)((𝑟𝐹𝑠) = (𝐹𝑤) → ⟨𝑟, 𝑠⟩ = 𝑤))
10 fveq2 6876 . . . . . . . . 9 (𝑤 = ⟨𝑡, 𝑢⟩ → (𝐹𝑤) = (𝐹‘⟨𝑡, 𝑢⟩))
11 df-ov 7408 . . . . . . . . 9 (𝑡𝐹𝑢) = (𝐹‘⟨𝑡, 𝑢⟩)
1210, 11eqtr4di 2788 . . . . . . . 8 (𝑤 = ⟨𝑡, 𝑢⟩ → (𝐹𝑤) = (𝑡𝐹𝑢))
1312eqeq2d 2746 . . . . . . 7 (𝑤 = ⟨𝑡, 𝑢⟩ → ((𝑟𝐹𝑠) = (𝐹𝑤) ↔ (𝑟𝐹𝑠) = (𝑡𝐹𝑢)))
14 eqeq2 2747 . . . . . . . 8 (𝑤 = ⟨𝑡, 𝑢⟩ → (⟨𝑟, 𝑠⟩ = 𝑤 ↔ ⟨𝑟, 𝑠⟩ = ⟨𝑡, 𝑢⟩))
15 vex 3463 . . . . . . . . 9 𝑟 ∈ V
16 vex 3463 . . . . . . . . 9 𝑠 ∈ V
1715, 16opth 5451 . . . . . . . 8 (⟨𝑟, 𝑠⟩ = ⟨𝑡, 𝑢⟩ ↔ (𝑟 = 𝑡𝑠 = 𝑢))
1814, 17bitrdi 287 . . . . . . 7 (𝑤 = ⟨𝑡, 𝑢⟩ → (⟨𝑟, 𝑠⟩ = 𝑤 ↔ (𝑟 = 𝑡𝑠 = 𝑢)))
1913, 18imbi12d 344 . . . . . 6 (𝑤 = ⟨𝑡, 𝑢⟩ → (((𝑟𝐹𝑠) = (𝐹𝑤) → ⟨𝑟, 𝑠⟩ = 𝑤) ↔ ((𝑟𝐹𝑠) = (𝑡𝐹𝑢) → (𝑟 = 𝑡𝑠 = 𝑢))))
2019ralxp 5821 . . . . 5 (∀𝑤 ∈ (𝐴 × 𝐵)((𝑟𝐹𝑠) = (𝐹𝑤) → ⟨𝑟, 𝑠⟩ = 𝑤) ↔ ∀𝑡𝐴𝑢𝐵 ((𝑟𝐹𝑠) = (𝑡𝐹𝑢) → (𝑟 = 𝑡𝑠 = 𝑢)))
21202ralbii 3115 . . . 4 (∀𝑟𝐴𝑠𝐵𝑤 ∈ (𝐴 × 𝐵)((𝑟𝐹𝑠) = (𝐹𝑤) → ⟨𝑟, 𝑠⟩ = 𝑤) ↔ ∀𝑟𝐴𝑠𝐵𝑡𝐴𝑢𝐵 ((𝑟𝐹𝑠) = (𝑡𝐹𝑢) → (𝑟 = 𝑡𝑠 = 𝑢)))
229, 21bitri 275 . . 3 (∀𝑣 ∈ (𝐴 × 𝐵)∀𝑤 ∈ (𝐴 × 𝐵)((𝐹𝑣) = (𝐹𝑤) → 𝑣 = 𝑤) ↔ ∀𝑟𝐴𝑠𝐵𝑡𝐴𝑢𝐵 ((𝑟𝐹𝑠) = (𝑡𝐹𝑢) → (𝑟 = 𝑡𝑠 = 𝑢)))
2322anbi2i 623 . 2 ((𝐹:(𝐴 × 𝐵)⟶𝐶 ∧ ∀𝑣 ∈ (𝐴 × 𝐵)∀𝑤 ∈ (𝐴 × 𝐵)((𝐹𝑣) = (𝐹𝑤) → 𝑣 = 𝑤)) ↔ (𝐹:(𝐴 × 𝐵)⟶𝐶 ∧ ∀𝑟𝐴𝑠𝐵𝑡𝐴𝑢𝐵 ((𝑟𝐹𝑠) = (𝑡𝐹𝑢) → (𝑟 = 𝑡𝑠 = 𝑢))))
241, 23bitri 275 1 (𝐹:(𝐴 × 𝐵)–1-1𝐶 ↔ (𝐹:(𝐴 × 𝐵)⟶𝐶 ∧ ∀𝑟𝐴𝑠𝐵𝑡𝐴𝑢𝐵 ((𝑟𝐹𝑠) = (𝑡𝐹𝑢) → (𝑟 = 𝑡𝑠 = 𝑢))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wral 3051  cop 4607   × cxp 5652  wf 6527  1-1wf1 6528  cfv 6531  (class class class)co 7405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fv 6539  df-ov 7408
This theorem is referenced by:  fedgmul  33671  aks6d1c2p2  42132
  Copyright terms: Public domain W3C validator