MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1opr Structured version   Visualization version   GIF version

Theorem f1opr 7413
Description: Condition for an operation to be one-to-one. (Contributed by Jeff Madsen, 17-Jun-2010.)
Assertion
Ref Expression
f1opr (𝐹:(𝐴 × 𝐵)–1-1𝐶 ↔ (𝐹:(𝐴 × 𝐵)⟶𝐶 ∧ ∀𝑟𝐴𝑠𝐵𝑡𝐴𝑢𝐵 ((𝑟𝐹𝑠) = (𝑡𝐹𝑢) → (𝑟 = 𝑡𝑠 = 𝑢))))
Distinct variable groups:   𝐴,𝑟,𝑠,𝑡,𝑢   𝐵,𝑟,𝑠,𝑡,𝑢   𝐹,𝑟,𝑠,𝑡,𝑢
Allowed substitution hints:   𝐶(𝑢,𝑡,𝑠,𝑟)

Proof of Theorem f1opr
Dummy variables 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dff13 7202 . 2 (𝐹:(𝐴 × 𝐵)–1-1𝐶 ↔ (𝐹:(𝐴 × 𝐵)⟶𝐶 ∧ ∀𝑣 ∈ (𝐴 × 𝐵)∀𝑤 ∈ (𝐴 × 𝐵)((𝐹𝑣) = (𝐹𝑤) → 𝑣 = 𝑤)))
2 fveq2 6842 . . . . . . . . 9 (𝑣 = ⟨𝑟, 𝑠⟩ → (𝐹𝑣) = (𝐹‘⟨𝑟, 𝑠⟩))
3 df-ov 7360 . . . . . . . . 9 (𝑟𝐹𝑠) = (𝐹‘⟨𝑟, 𝑠⟩)
42, 3eqtr4di 2794 . . . . . . . 8 (𝑣 = ⟨𝑟, 𝑠⟩ → (𝐹𝑣) = (𝑟𝐹𝑠))
54eqeq1d 2738 . . . . . . 7 (𝑣 = ⟨𝑟, 𝑠⟩ → ((𝐹𝑣) = (𝐹𝑤) ↔ (𝑟𝐹𝑠) = (𝐹𝑤)))
6 eqeq1 2740 . . . . . . 7 (𝑣 = ⟨𝑟, 𝑠⟩ → (𝑣 = 𝑤 ↔ ⟨𝑟, 𝑠⟩ = 𝑤))
75, 6imbi12d 344 . . . . . 6 (𝑣 = ⟨𝑟, 𝑠⟩ → (((𝐹𝑣) = (𝐹𝑤) → 𝑣 = 𝑤) ↔ ((𝑟𝐹𝑠) = (𝐹𝑤) → ⟨𝑟, 𝑠⟩ = 𝑤)))
87ralbidv 3174 . . . . 5 (𝑣 = ⟨𝑟, 𝑠⟩ → (∀𝑤 ∈ (𝐴 × 𝐵)((𝐹𝑣) = (𝐹𝑤) → 𝑣 = 𝑤) ↔ ∀𝑤 ∈ (𝐴 × 𝐵)((𝑟𝐹𝑠) = (𝐹𝑤) → ⟨𝑟, 𝑠⟩ = 𝑤)))
98ralxp 5797 . . . 4 (∀𝑣 ∈ (𝐴 × 𝐵)∀𝑤 ∈ (𝐴 × 𝐵)((𝐹𝑣) = (𝐹𝑤) → 𝑣 = 𝑤) ↔ ∀𝑟𝐴𝑠𝐵𝑤 ∈ (𝐴 × 𝐵)((𝑟𝐹𝑠) = (𝐹𝑤) → ⟨𝑟, 𝑠⟩ = 𝑤))
10 fveq2 6842 . . . . . . . . 9 (𝑤 = ⟨𝑡, 𝑢⟩ → (𝐹𝑤) = (𝐹‘⟨𝑡, 𝑢⟩))
11 df-ov 7360 . . . . . . . . 9 (𝑡𝐹𝑢) = (𝐹‘⟨𝑡, 𝑢⟩)
1210, 11eqtr4di 2794 . . . . . . . 8 (𝑤 = ⟨𝑡, 𝑢⟩ → (𝐹𝑤) = (𝑡𝐹𝑢))
1312eqeq2d 2747 . . . . . . 7 (𝑤 = ⟨𝑡, 𝑢⟩ → ((𝑟𝐹𝑠) = (𝐹𝑤) ↔ (𝑟𝐹𝑠) = (𝑡𝐹𝑢)))
14 eqeq2 2748 . . . . . . . 8 (𝑤 = ⟨𝑡, 𝑢⟩ → (⟨𝑟, 𝑠⟩ = 𝑤 ↔ ⟨𝑟, 𝑠⟩ = ⟨𝑡, 𝑢⟩))
15 vex 3449 . . . . . . . . 9 𝑟 ∈ V
16 vex 3449 . . . . . . . . 9 𝑠 ∈ V
1715, 16opth 5433 . . . . . . . 8 (⟨𝑟, 𝑠⟩ = ⟨𝑡, 𝑢⟩ ↔ (𝑟 = 𝑡𝑠 = 𝑢))
1814, 17bitrdi 286 . . . . . . 7 (𝑤 = ⟨𝑡, 𝑢⟩ → (⟨𝑟, 𝑠⟩ = 𝑤 ↔ (𝑟 = 𝑡𝑠 = 𝑢)))
1913, 18imbi12d 344 . . . . . 6 (𝑤 = ⟨𝑡, 𝑢⟩ → (((𝑟𝐹𝑠) = (𝐹𝑤) → ⟨𝑟, 𝑠⟩ = 𝑤) ↔ ((𝑟𝐹𝑠) = (𝑡𝐹𝑢) → (𝑟 = 𝑡𝑠 = 𝑢))))
2019ralxp 5797 . . . . 5 (∀𝑤 ∈ (𝐴 × 𝐵)((𝑟𝐹𝑠) = (𝐹𝑤) → ⟨𝑟, 𝑠⟩ = 𝑤) ↔ ∀𝑡𝐴𝑢𝐵 ((𝑟𝐹𝑠) = (𝑡𝐹𝑢) → (𝑟 = 𝑡𝑠 = 𝑢)))
21202ralbii 3127 . . . 4 (∀𝑟𝐴𝑠𝐵𝑤 ∈ (𝐴 × 𝐵)((𝑟𝐹𝑠) = (𝐹𝑤) → ⟨𝑟, 𝑠⟩ = 𝑤) ↔ ∀𝑟𝐴𝑠𝐵𝑡𝐴𝑢𝐵 ((𝑟𝐹𝑠) = (𝑡𝐹𝑢) → (𝑟 = 𝑡𝑠 = 𝑢)))
229, 21bitri 274 . . 3 (∀𝑣 ∈ (𝐴 × 𝐵)∀𝑤 ∈ (𝐴 × 𝐵)((𝐹𝑣) = (𝐹𝑤) → 𝑣 = 𝑤) ↔ ∀𝑟𝐴𝑠𝐵𝑡𝐴𝑢𝐵 ((𝑟𝐹𝑠) = (𝑡𝐹𝑢) → (𝑟 = 𝑡𝑠 = 𝑢)))
2322anbi2i 623 . 2 ((𝐹:(𝐴 × 𝐵)⟶𝐶 ∧ ∀𝑣 ∈ (𝐴 × 𝐵)∀𝑤 ∈ (𝐴 × 𝐵)((𝐹𝑣) = (𝐹𝑤) → 𝑣 = 𝑤)) ↔ (𝐹:(𝐴 × 𝐵)⟶𝐶 ∧ ∀𝑟𝐴𝑠𝐵𝑡𝐴𝑢𝐵 ((𝑟𝐹𝑠) = (𝑡𝐹𝑢) → (𝑟 = 𝑡𝑠 = 𝑢))))
241, 23bitri 274 1 (𝐹:(𝐴 × 𝐵)–1-1𝐶 ↔ (𝐹:(𝐴 × 𝐵)⟶𝐶 ∧ ∀𝑟𝐴𝑠𝐵𝑡𝐴𝑢𝐵 ((𝑟𝐹𝑠) = (𝑡𝐹𝑢) → (𝑟 = 𝑡𝑠 = 𝑢))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wral 3064  cop 4592   × cxp 5631  wf 6492  1-1wf1 6493  cfv 6496  (class class class)co 7357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pr 5384
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fv 6504  df-ov 7360
This theorem is referenced by:  fedgmul  32326  aks6d1c2p2  40549
  Copyright terms: Public domain W3C validator