MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1opr Structured version   Visualization version   GIF version

Theorem f1opr 7212
Description: Condition for an operation to be one-to-one. (Contributed by Jeff Madsen, 17-Jun-2010.)
Assertion
Ref Expression
f1opr (𝐹:(𝐴 × 𝐵)–1-1𝐶 ↔ (𝐹:(𝐴 × 𝐵)⟶𝐶 ∧ ∀𝑟𝐴𝑠𝐵𝑡𝐴𝑢𝐵 ((𝑟𝐹𝑠) = (𝑡𝐹𝑢) → (𝑟 = 𝑡𝑠 = 𝑢))))
Distinct variable groups:   𝐴,𝑟,𝑠,𝑡,𝑢   𝐵,𝑟,𝑠,𝑡,𝑢   𝐹,𝑟,𝑠,𝑡,𝑢
Allowed substitution hints:   𝐶(𝑢,𝑡,𝑠,𝑟)

Proof of Theorem f1opr
Dummy variables 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dff13 7015 . 2 (𝐹:(𝐴 × 𝐵)–1-1𝐶 ↔ (𝐹:(𝐴 × 𝐵)⟶𝐶 ∧ ∀𝑣 ∈ (𝐴 × 𝐵)∀𝑤 ∈ (𝐴 × 𝐵)((𝐹𝑣) = (𝐹𝑤) → 𝑣 = 𝑤)))
2 fveq2 6672 . . . . . . . . 9 (𝑣 = ⟨𝑟, 𝑠⟩ → (𝐹𝑣) = (𝐹‘⟨𝑟, 𝑠⟩))
3 df-ov 7161 . . . . . . . . 9 (𝑟𝐹𝑠) = (𝐹‘⟨𝑟, 𝑠⟩)
42, 3syl6eqr 2876 . . . . . . . 8 (𝑣 = ⟨𝑟, 𝑠⟩ → (𝐹𝑣) = (𝑟𝐹𝑠))
54eqeq1d 2825 . . . . . . 7 (𝑣 = ⟨𝑟, 𝑠⟩ → ((𝐹𝑣) = (𝐹𝑤) ↔ (𝑟𝐹𝑠) = (𝐹𝑤)))
6 eqeq1 2827 . . . . . . 7 (𝑣 = ⟨𝑟, 𝑠⟩ → (𝑣 = 𝑤 ↔ ⟨𝑟, 𝑠⟩ = 𝑤))
75, 6imbi12d 347 . . . . . 6 (𝑣 = ⟨𝑟, 𝑠⟩ → (((𝐹𝑣) = (𝐹𝑤) → 𝑣 = 𝑤) ↔ ((𝑟𝐹𝑠) = (𝐹𝑤) → ⟨𝑟, 𝑠⟩ = 𝑤)))
87ralbidv 3199 . . . . 5 (𝑣 = ⟨𝑟, 𝑠⟩ → (∀𝑤 ∈ (𝐴 × 𝐵)((𝐹𝑣) = (𝐹𝑤) → 𝑣 = 𝑤) ↔ ∀𝑤 ∈ (𝐴 × 𝐵)((𝑟𝐹𝑠) = (𝐹𝑤) → ⟨𝑟, 𝑠⟩ = 𝑤)))
98ralxp 5714 . . . 4 (∀𝑣 ∈ (𝐴 × 𝐵)∀𝑤 ∈ (𝐴 × 𝐵)((𝐹𝑣) = (𝐹𝑤) → 𝑣 = 𝑤) ↔ ∀𝑟𝐴𝑠𝐵𝑤 ∈ (𝐴 × 𝐵)((𝑟𝐹𝑠) = (𝐹𝑤) → ⟨𝑟, 𝑠⟩ = 𝑤))
10 fveq2 6672 . . . . . . . . 9 (𝑤 = ⟨𝑡, 𝑢⟩ → (𝐹𝑤) = (𝐹‘⟨𝑡, 𝑢⟩))
11 df-ov 7161 . . . . . . . . 9 (𝑡𝐹𝑢) = (𝐹‘⟨𝑡, 𝑢⟩)
1210, 11syl6eqr 2876 . . . . . . . 8 (𝑤 = ⟨𝑡, 𝑢⟩ → (𝐹𝑤) = (𝑡𝐹𝑢))
1312eqeq2d 2834 . . . . . . 7 (𝑤 = ⟨𝑡, 𝑢⟩ → ((𝑟𝐹𝑠) = (𝐹𝑤) ↔ (𝑟𝐹𝑠) = (𝑡𝐹𝑢)))
14 eqeq2 2835 . . . . . . . 8 (𝑤 = ⟨𝑡, 𝑢⟩ → (⟨𝑟, 𝑠⟩ = 𝑤 ↔ ⟨𝑟, 𝑠⟩ = ⟨𝑡, 𝑢⟩))
15 vex 3499 . . . . . . . . 9 𝑟 ∈ V
16 vex 3499 . . . . . . . . 9 𝑠 ∈ V
1715, 16opth 5370 . . . . . . . 8 (⟨𝑟, 𝑠⟩ = ⟨𝑡, 𝑢⟩ ↔ (𝑟 = 𝑡𝑠 = 𝑢))
1814, 17syl6bb 289 . . . . . . 7 (𝑤 = ⟨𝑡, 𝑢⟩ → (⟨𝑟, 𝑠⟩ = 𝑤 ↔ (𝑟 = 𝑡𝑠 = 𝑢)))
1913, 18imbi12d 347 . . . . . 6 (𝑤 = ⟨𝑡, 𝑢⟩ → (((𝑟𝐹𝑠) = (𝐹𝑤) → ⟨𝑟, 𝑠⟩ = 𝑤) ↔ ((𝑟𝐹𝑠) = (𝑡𝐹𝑢) → (𝑟 = 𝑡𝑠 = 𝑢))))
2019ralxp 5714 . . . . 5 (∀𝑤 ∈ (𝐴 × 𝐵)((𝑟𝐹𝑠) = (𝐹𝑤) → ⟨𝑟, 𝑠⟩ = 𝑤) ↔ ∀𝑡𝐴𝑢𝐵 ((𝑟𝐹𝑠) = (𝑡𝐹𝑢) → (𝑟 = 𝑡𝑠 = 𝑢)))
21202ralbii 3168 . . . 4 (∀𝑟𝐴𝑠𝐵𝑤 ∈ (𝐴 × 𝐵)((𝑟𝐹𝑠) = (𝐹𝑤) → ⟨𝑟, 𝑠⟩ = 𝑤) ↔ ∀𝑟𝐴𝑠𝐵𝑡𝐴𝑢𝐵 ((𝑟𝐹𝑠) = (𝑡𝐹𝑢) → (𝑟 = 𝑡𝑠 = 𝑢)))
229, 21bitri 277 . . 3 (∀𝑣 ∈ (𝐴 × 𝐵)∀𝑤 ∈ (𝐴 × 𝐵)((𝐹𝑣) = (𝐹𝑤) → 𝑣 = 𝑤) ↔ ∀𝑟𝐴𝑠𝐵𝑡𝐴𝑢𝐵 ((𝑟𝐹𝑠) = (𝑡𝐹𝑢) → (𝑟 = 𝑡𝑠 = 𝑢)))
2322anbi2i 624 . 2 ((𝐹:(𝐴 × 𝐵)⟶𝐶 ∧ ∀𝑣 ∈ (𝐴 × 𝐵)∀𝑤 ∈ (𝐴 × 𝐵)((𝐹𝑣) = (𝐹𝑤) → 𝑣 = 𝑤)) ↔ (𝐹:(𝐴 × 𝐵)⟶𝐶 ∧ ∀𝑟𝐴𝑠𝐵𝑡𝐴𝑢𝐵 ((𝑟𝐹𝑠) = (𝑡𝐹𝑢) → (𝑟 = 𝑡𝑠 = 𝑢))))
241, 23bitri 277 1 (𝐹:(𝐴 × 𝐵)–1-1𝐶 ↔ (𝐹:(𝐴 × 𝐵)⟶𝐶 ∧ ∀𝑟𝐴𝑠𝐵𝑡𝐴𝑢𝐵 ((𝑟𝐹𝑠) = (𝑡𝐹𝑢) → (𝑟 = 𝑡𝑠 = 𝑢))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wral 3140  cop 4575   × cxp 5555  wf 6353  1-1wf1 6354  cfv 6357  (class class class)co 7158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pr 5332
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fv 6365  df-ov 7161
This theorem is referenced by:  fedgmul  31029
  Copyright terms: Public domain W3C validator