MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1opr Structured version   Visualization version   GIF version

Theorem f1opr 7506
Description: Condition for an operation to be one-to-one. (Contributed by Jeff Madsen, 17-Jun-2010.)
Assertion
Ref Expression
f1opr (𝐹:(𝐴 × 𝐵)–1-1𝐶 ↔ (𝐹:(𝐴 × 𝐵)⟶𝐶 ∧ ∀𝑟𝐴𝑠𝐵𝑡𝐴𝑢𝐵 ((𝑟𝐹𝑠) = (𝑡𝐹𝑢) → (𝑟 = 𝑡𝑠 = 𝑢))))
Distinct variable groups:   𝐴,𝑟,𝑠,𝑡,𝑢   𝐵,𝑟,𝑠,𝑡,𝑢   𝐹,𝑟,𝑠,𝑡,𝑢
Allowed substitution hints:   𝐶(𝑢,𝑡,𝑠,𝑟)

Proof of Theorem f1opr
Dummy variables 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dff13 7292 . 2 (𝐹:(𝐴 × 𝐵)–1-1𝐶 ↔ (𝐹:(𝐴 × 𝐵)⟶𝐶 ∧ ∀𝑣 ∈ (𝐴 × 𝐵)∀𝑤 ∈ (𝐴 × 𝐵)((𝐹𝑣) = (𝐹𝑤) → 𝑣 = 𝑤)))
2 fveq2 6920 . . . . . . . . 9 (𝑣 = ⟨𝑟, 𝑠⟩ → (𝐹𝑣) = (𝐹‘⟨𝑟, 𝑠⟩))
3 df-ov 7451 . . . . . . . . 9 (𝑟𝐹𝑠) = (𝐹‘⟨𝑟, 𝑠⟩)
42, 3eqtr4di 2798 . . . . . . . 8 (𝑣 = ⟨𝑟, 𝑠⟩ → (𝐹𝑣) = (𝑟𝐹𝑠))
54eqeq1d 2742 . . . . . . 7 (𝑣 = ⟨𝑟, 𝑠⟩ → ((𝐹𝑣) = (𝐹𝑤) ↔ (𝑟𝐹𝑠) = (𝐹𝑤)))
6 eqeq1 2744 . . . . . . 7 (𝑣 = ⟨𝑟, 𝑠⟩ → (𝑣 = 𝑤 ↔ ⟨𝑟, 𝑠⟩ = 𝑤))
75, 6imbi12d 344 . . . . . 6 (𝑣 = ⟨𝑟, 𝑠⟩ → (((𝐹𝑣) = (𝐹𝑤) → 𝑣 = 𝑤) ↔ ((𝑟𝐹𝑠) = (𝐹𝑤) → ⟨𝑟, 𝑠⟩ = 𝑤)))
87ralbidv 3184 . . . . 5 (𝑣 = ⟨𝑟, 𝑠⟩ → (∀𝑤 ∈ (𝐴 × 𝐵)((𝐹𝑣) = (𝐹𝑤) → 𝑣 = 𝑤) ↔ ∀𝑤 ∈ (𝐴 × 𝐵)((𝑟𝐹𝑠) = (𝐹𝑤) → ⟨𝑟, 𝑠⟩ = 𝑤)))
98ralxp 5866 . . . 4 (∀𝑣 ∈ (𝐴 × 𝐵)∀𝑤 ∈ (𝐴 × 𝐵)((𝐹𝑣) = (𝐹𝑤) → 𝑣 = 𝑤) ↔ ∀𝑟𝐴𝑠𝐵𝑤 ∈ (𝐴 × 𝐵)((𝑟𝐹𝑠) = (𝐹𝑤) → ⟨𝑟, 𝑠⟩ = 𝑤))
10 fveq2 6920 . . . . . . . . 9 (𝑤 = ⟨𝑡, 𝑢⟩ → (𝐹𝑤) = (𝐹‘⟨𝑡, 𝑢⟩))
11 df-ov 7451 . . . . . . . . 9 (𝑡𝐹𝑢) = (𝐹‘⟨𝑡, 𝑢⟩)
1210, 11eqtr4di 2798 . . . . . . . 8 (𝑤 = ⟨𝑡, 𝑢⟩ → (𝐹𝑤) = (𝑡𝐹𝑢))
1312eqeq2d 2751 . . . . . . 7 (𝑤 = ⟨𝑡, 𝑢⟩ → ((𝑟𝐹𝑠) = (𝐹𝑤) ↔ (𝑟𝐹𝑠) = (𝑡𝐹𝑢)))
14 eqeq2 2752 . . . . . . . 8 (𝑤 = ⟨𝑡, 𝑢⟩ → (⟨𝑟, 𝑠⟩ = 𝑤 ↔ ⟨𝑟, 𝑠⟩ = ⟨𝑡, 𝑢⟩))
15 vex 3492 . . . . . . . . 9 𝑟 ∈ V
16 vex 3492 . . . . . . . . 9 𝑠 ∈ V
1715, 16opth 5496 . . . . . . . 8 (⟨𝑟, 𝑠⟩ = ⟨𝑡, 𝑢⟩ ↔ (𝑟 = 𝑡𝑠 = 𝑢))
1814, 17bitrdi 287 . . . . . . 7 (𝑤 = ⟨𝑡, 𝑢⟩ → (⟨𝑟, 𝑠⟩ = 𝑤 ↔ (𝑟 = 𝑡𝑠 = 𝑢)))
1913, 18imbi12d 344 . . . . . 6 (𝑤 = ⟨𝑡, 𝑢⟩ → (((𝑟𝐹𝑠) = (𝐹𝑤) → ⟨𝑟, 𝑠⟩ = 𝑤) ↔ ((𝑟𝐹𝑠) = (𝑡𝐹𝑢) → (𝑟 = 𝑡𝑠 = 𝑢))))
2019ralxp 5866 . . . . 5 (∀𝑤 ∈ (𝐴 × 𝐵)((𝑟𝐹𝑠) = (𝐹𝑤) → ⟨𝑟, 𝑠⟩ = 𝑤) ↔ ∀𝑡𝐴𝑢𝐵 ((𝑟𝐹𝑠) = (𝑡𝐹𝑢) → (𝑟 = 𝑡𝑠 = 𝑢)))
21202ralbii 3134 . . . 4 (∀𝑟𝐴𝑠𝐵𝑤 ∈ (𝐴 × 𝐵)((𝑟𝐹𝑠) = (𝐹𝑤) → ⟨𝑟, 𝑠⟩ = 𝑤) ↔ ∀𝑟𝐴𝑠𝐵𝑡𝐴𝑢𝐵 ((𝑟𝐹𝑠) = (𝑡𝐹𝑢) → (𝑟 = 𝑡𝑠 = 𝑢)))
229, 21bitri 275 . . 3 (∀𝑣 ∈ (𝐴 × 𝐵)∀𝑤 ∈ (𝐴 × 𝐵)((𝐹𝑣) = (𝐹𝑤) → 𝑣 = 𝑤) ↔ ∀𝑟𝐴𝑠𝐵𝑡𝐴𝑢𝐵 ((𝑟𝐹𝑠) = (𝑡𝐹𝑢) → (𝑟 = 𝑡𝑠 = 𝑢)))
2322anbi2i 622 . 2 ((𝐹:(𝐴 × 𝐵)⟶𝐶 ∧ ∀𝑣 ∈ (𝐴 × 𝐵)∀𝑤 ∈ (𝐴 × 𝐵)((𝐹𝑣) = (𝐹𝑤) → 𝑣 = 𝑤)) ↔ (𝐹:(𝐴 × 𝐵)⟶𝐶 ∧ ∀𝑟𝐴𝑠𝐵𝑡𝐴𝑢𝐵 ((𝑟𝐹𝑠) = (𝑡𝐹𝑢) → (𝑟 = 𝑡𝑠 = 𝑢))))
241, 23bitri 275 1 (𝐹:(𝐴 × 𝐵)–1-1𝐶 ↔ (𝐹:(𝐴 × 𝐵)⟶𝐶 ∧ ∀𝑟𝐴𝑠𝐵𝑡𝐴𝑢𝐵 ((𝑟𝐹𝑠) = (𝑡𝐹𝑢) → (𝑟 = 𝑡𝑠 = 𝑢))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wral 3067  cop 4654   × cxp 5698  wf 6569  1-1wf1 6570  cfv 6573  (class class class)co 7448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fv 6581  df-ov 7451
This theorem is referenced by:  fedgmul  33644  aks6d1c2p2  42076
  Copyright terms: Public domain W3C validator