| Step | Hyp | Ref
| Expression |
| 1 | | nfcv 2899 |
. . . . 5
⊢
Ⅎ𝑢𝐴 |
| 2 | | nfcsb1v 3903 |
. . . . 5
⊢
Ⅎ𝑦⦋𝑢 / 𝑦⦌𝐴 |
| 3 | | nfcv 2899 |
. . . . 5
⊢
Ⅎ𝑢𝐶 |
| 4 | | nfcv 2899 |
. . . . 5
⊢
Ⅎ𝑣𝐶 |
| 5 | | nfcv 2899 |
. . . . . 6
⊢
Ⅎ𝑥𝑢 |
| 6 | | nfcsb1v 3903 |
. . . . . 6
⊢
Ⅎ𝑥⦋𝑣 / 𝑥⦌𝐶 |
| 7 | 5, 6 | nfcsbw 3905 |
. . . . 5
⊢
Ⅎ𝑥⦋𝑢 / 𝑦⦌⦋𝑣 / 𝑥⦌𝐶 |
| 8 | | nfcsb1v 3903 |
. . . . 5
⊢
Ⅎ𝑦⦋𝑢 / 𝑦⦌⦋𝑣 / 𝑥⦌𝐶 |
| 9 | | csbeq1a 3893 |
. . . . 5
⊢ (𝑦 = 𝑢 → 𝐴 = ⦋𝑢 / 𝑦⦌𝐴) |
| 10 | | csbeq1a 3893 |
. . . . . 6
⊢ (𝑥 = 𝑣 → 𝐶 = ⦋𝑣 / 𝑥⦌𝐶) |
| 11 | | csbeq1a 3893 |
. . . . . 6
⊢ (𝑦 = 𝑢 → ⦋𝑣 / 𝑥⦌𝐶 = ⦋𝑢 / 𝑦⦌⦋𝑣 / 𝑥⦌𝐶) |
| 12 | 10, 11 | sylan9eqr 2793 |
. . . . 5
⊢ ((𝑦 = 𝑢 ∧ 𝑥 = 𝑣) → 𝐶 = ⦋𝑢 / 𝑦⦌⦋𝑣 / 𝑥⦌𝐶) |
| 13 | 1, 2, 3, 4, 7, 8, 9, 12 | cbvmpox2 48291 |
. . . 4
⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑣 ∈ ⦋𝑢 / 𝑦⦌𝐴, 𝑢 ∈ 𝐵 ↦ ⦋𝑢 / 𝑦⦌⦋𝑣 / 𝑥⦌𝐶) |
| 14 | | dmmpossx2.1 |
. . . 4
⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
| 15 | | vex 3468 |
. . . . . . . 8
⊢ 𝑣 ∈ V |
| 16 | | vex 3468 |
. . . . . . . 8
⊢ 𝑢 ∈ V |
| 17 | 15, 16 | op2ndd 8004 |
. . . . . . 7
⊢ (𝑡 = 〈𝑣, 𝑢〉 → (2nd ‘𝑡) = 𝑢) |
| 18 | 17 | csbeq1d 3883 |
. . . . . 6
⊢ (𝑡 = 〈𝑣, 𝑢〉 → ⦋(2nd
‘𝑡) / 𝑦⦌⦋(1st
‘𝑡) / 𝑥⦌𝐶 = ⦋𝑢 / 𝑦⦌⦋(1st
‘𝑡) / 𝑥⦌𝐶) |
| 19 | 15, 16 | op1std 8003 |
. . . . . . . 8
⊢ (𝑡 = 〈𝑣, 𝑢〉 → (1st ‘𝑡) = 𝑣) |
| 20 | 19 | csbeq1d 3883 |
. . . . . . 7
⊢ (𝑡 = 〈𝑣, 𝑢〉 → ⦋(1st
‘𝑡) / 𝑥⦌𝐶 = ⦋𝑣 / 𝑥⦌𝐶) |
| 21 | 20 | csbeq2dv 3886 |
. . . . . 6
⊢ (𝑡 = 〈𝑣, 𝑢〉 → ⦋𝑢 / 𝑦⦌⦋(1st
‘𝑡) / 𝑥⦌𝐶 = ⦋𝑢 / 𝑦⦌⦋𝑣 / 𝑥⦌𝐶) |
| 22 | 18, 21 | eqtrd 2771 |
. . . . 5
⊢ (𝑡 = 〈𝑣, 𝑢〉 → ⦋(2nd
‘𝑡) / 𝑦⦌⦋(1st
‘𝑡) / 𝑥⦌𝐶 = ⦋𝑢 / 𝑦⦌⦋𝑣 / 𝑥⦌𝐶) |
| 23 | 22 | mpomptx2 48290 |
. . . 4
⊢ (𝑡 ∈ ∪ 𝑢 ∈ 𝐵 (⦋𝑢 / 𝑦⦌𝐴 × {𝑢}) ↦ ⦋(2nd
‘𝑡) / 𝑦⦌⦋(1st
‘𝑡) / 𝑥⦌𝐶) = (𝑣 ∈ ⦋𝑢 / 𝑦⦌𝐴, 𝑢 ∈ 𝐵 ↦ ⦋𝑢 / 𝑦⦌⦋𝑣 / 𝑥⦌𝐶) |
| 24 | 13, 14, 23 | 3eqtr4i 2769 |
. . 3
⊢ 𝐹 = (𝑡 ∈ ∪
𝑢 ∈ 𝐵 (⦋𝑢 / 𝑦⦌𝐴 × {𝑢}) ↦ ⦋(2nd
‘𝑡) / 𝑦⦌⦋(1st
‘𝑡) / 𝑥⦌𝐶) |
| 25 | 24 | dmmptss 6235 |
. 2
⊢ dom 𝐹 ⊆ ∪ 𝑢 ∈ 𝐵 (⦋𝑢 / 𝑦⦌𝐴 × {𝑢}) |
| 26 | | nfcv 2899 |
. . 3
⊢
Ⅎ𝑢(𝐴 × {𝑦}) |
| 27 | | nfcv 2899 |
. . . 4
⊢
Ⅎ𝑦{𝑢} |
| 28 | 2, 27 | nfxp 5692 |
. . 3
⊢
Ⅎ𝑦(⦋𝑢 / 𝑦⦌𝐴 × {𝑢}) |
| 29 | | sneq 4616 |
. . . 4
⊢ (𝑦 = 𝑢 → {𝑦} = {𝑢}) |
| 30 | 9, 29 | xpeq12d 5690 |
. . 3
⊢ (𝑦 = 𝑢 → (𝐴 × {𝑦}) = (⦋𝑢 / 𝑦⦌𝐴 × {𝑢})) |
| 31 | 26, 28, 30 | cbviun 5017 |
. 2
⊢ ∪ 𝑦 ∈ 𝐵 (𝐴 × {𝑦}) = ∪
𝑢 ∈ 𝐵 (⦋𝑢 / 𝑦⦌𝐴 × {𝑢}) |
| 32 | 25, 31 | sseqtrri 4013 |
1
⊢ dom 𝐹 ⊆ ∪ 𝑦 ∈ 𝐵 (𝐴 × {𝑦}) |