Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmmpossx2 Structured version   Visualization version   GIF version

Theorem dmmpossx2 48447
Description: The domain of a mapping is a subset of its base classes expressed as union of Cartesian products over its second component, analogous to dmmpossx 7998. (Contributed by AV, 30-Mar-2019.)
Hypothesis
Ref Expression
dmmpossx2.1 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
Assertion
Ref Expression
dmmpossx2 dom 𝐹 𝑦𝐵 (𝐴 × {𝑦})
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝐵
Allowed substitution hints:   𝐴(𝑦)   𝐶(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem dmmpossx2
Dummy variables 𝑢 𝑡 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2894 . . . . 5 𝑢𝐴
2 nfcsb1v 3869 . . . . 5 𝑦𝑢 / 𝑦𝐴
3 nfcv 2894 . . . . 5 𝑢𝐶
4 nfcv 2894 . . . . 5 𝑣𝐶
5 nfcv 2894 . . . . . 6 𝑥𝑢
6 nfcsb1v 3869 . . . . . 6 𝑥𝑣 / 𝑥𝐶
75, 6nfcsbw 3871 . . . . 5 𝑥𝑢 / 𝑦𝑣 / 𝑥𝐶
8 nfcsb1v 3869 . . . . 5 𝑦𝑢 / 𝑦𝑣 / 𝑥𝐶
9 csbeq1a 3859 . . . . 5 (𝑦 = 𝑢𝐴 = 𝑢 / 𝑦𝐴)
10 csbeq1a 3859 . . . . . 6 (𝑥 = 𝑣𝐶 = 𝑣 / 𝑥𝐶)
11 csbeq1a 3859 . . . . . 6 (𝑦 = 𝑢𝑣 / 𝑥𝐶 = 𝑢 / 𝑦𝑣 / 𝑥𝐶)
1210, 11sylan9eqr 2788 . . . . 5 ((𝑦 = 𝑢𝑥 = 𝑣) → 𝐶 = 𝑢 / 𝑦𝑣 / 𝑥𝐶)
131, 2, 3, 4, 7, 8, 9, 12cbvmpox2 48446 . . . 4 (𝑥𝐴, 𝑦𝐵𝐶) = (𝑣𝑢 / 𝑦𝐴, 𝑢𝐵𝑢 / 𝑦𝑣 / 𝑥𝐶)
14 dmmpossx2.1 . . . 4 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
15 vex 3440 . . . . . . . 8 𝑣 ∈ V
16 vex 3440 . . . . . . . 8 𝑢 ∈ V
1715, 16op2ndd 7932 . . . . . . 7 (𝑡 = ⟨𝑣, 𝑢⟩ → (2nd𝑡) = 𝑢)
1817csbeq1d 3849 . . . . . 6 (𝑡 = ⟨𝑣, 𝑢⟩ → (2nd𝑡) / 𝑦(1st𝑡) / 𝑥𝐶 = 𝑢 / 𝑦(1st𝑡) / 𝑥𝐶)
1915, 16op1std 7931 . . . . . . . 8 (𝑡 = ⟨𝑣, 𝑢⟩ → (1st𝑡) = 𝑣)
2019csbeq1d 3849 . . . . . . 7 (𝑡 = ⟨𝑣, 𝑢⟩ → (1st𝑡) / 𝑥𝐶 = 𝑣 / 𝑥𝐶)
2120csbeq2dv 3852 . . . . . 6 (𝑡 = ⟨𝑣, 𝑢⟩ → 𝑢 / 𝑦(1st𝑡) / 𝑥𝐶 = 𝑢 / 𝑦𝑣 / 𝑥𝐶)
2218, 21eqtrd 2766 . . . . 5 (𝑡 = ⟨𝑣, 𝑢⟩ → (2nd𝑡) / 𝑦(1st𝑡) / 𝑥𝐶 = 𝑢 / 𝑦𝑣 / 𝑥𝐶)
2322mpomptx2 48445 . . . 4 (𝑡 𝑢𝐵 (𝑢 / 𝑦𝐴 × {𝑢}) ↦ (2nd𝑡) / 𝑦(1st𝑡) / 𝑥𝐶) = (𝑣𝑢 / 𝑦𝐴, 𝑢𝐵𝑢 / 𝑦𝑣 / 𝑥𝐶)
2413, 14, 233eqtr4i 2764 . . 3 𝐹 = (𝑡 𝑢𝐵 (𝑢 / 𝑦𝐴 × {𝑢}) ↦ (2nd𝑡) / 𝑦(1st𝑡) / 𝑥𝐶)
2524dmmptss 6188 . 2 dom 𝐹 𝑢𝐵 (𝑢 / 𝑦𝐴 × {𝑢})
26 nfcv 2894 . . 3 𝑢(𝐴 × {𝑦})
27 nfcv 2894 . . . 4 𝑦{𝑢}
282, 27nfxp 5647 . . 3 𝑦(𝑢 / 𝑦𝐴 × {𝑢})
29 sneq 4583 . . . 4 (𝑦 = 𝑢 → {𝑦} = {𝑢})
309, 29xpeq12d 5645 . . 3 (𝑦 = 𝑢 → (𝐴 × {𝑦}) = (𝑢 / 𝑦𝐴 × {𝑢}))
3126, 28, 30cbviun 4983 . 2 𝑦𝐵 (𝐴 × {𝑦}) = 𝑢𝐵 (𝑢 / 𝑦𝐴 × {𝑢})
3225, 31sseqtrri 3979 1 dom 𝐹 𝑦𝐵 (𝐴 × {𝑦})
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  csb 3845  wss 3897  {csn 4573  cop 4579   ciun 4939  cmpt 5170   × cxp 5612  dom cdm 5614  cfv 6481  cmpo 7348  1st c1st 7919  2nd c2nd 7920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fv 6489  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922
This theorem is referenced by:  mpoexxg2  48448
  Copyright terms: Public domain W3C validator