Step | Hyp | Ref
| Expression |
1 | | nfcv 2904 |
. . . . 5
⊢
Ⅎ𝑢𝐴 |
2 | | nfcsb1v 3836 |
. . . . 5
⊢
Ⅎ𝑦⦋𝑢 / 𝑦⦌𝐴 |
3 | | nfcv 2904 |
. . . . 5
⊢
Ⅎ𝑢𝐶 |
4 | | nfcv 2904 |
. . . . 5
⊢
Ⅎ𝑣𝐶 |
5 | | nfcv 2904 |
. . . . . 6
⊢
Ⅎ𝑥𝑢 |
6 | | nfcsb1v 3836 |
. . . . . 6
⊢
Ⅎ𝑥⦋𝑣 / 𝑥⦌𝐶 |
7 | 5, 6 | nfcsbw 3838 |
. . . . 5
⊢
Ⅎ𝑥⦋𝑢 / 𝑦⦌⦋𝑣 / 𝑥⦌𝐶 |
8 | | nfcsb1v 3836 |
. . . . 5
⊢
Ⅎ𝑦⦋𝑢 / 𝑦⦌⦋𝑣 / 𝑥⦌𝐶 |
9 | | csbeq1a 3825 |
. . . . 5
⊢ (𝑦 = 𝑢 → 𝐴 = ⦋𝑢 / 𝑦⦌𝐴) |
10 | | csbeq1a 3825 |
. . . . . 6
⊢ (𝑥 = 𝑣 → 𝐶 = ⦋𝑣 / 𝑥⦌𝐶) |
11 | | csbeq1a 3825 |
. . . . . 6
⊢ (𝑦 = 𝑢 → ⦋𝑣 / 𝑥⦌𝐶 = ⦋𝑢 / 𝑦⦌⦋𝑣 / 𝑥⦌𝐶) |
12 | 10, 11 | sylan9eqr 2800 |
. . . . 5
⊢ ((𝑦 = 𝑢 ∧ 𝑥 = 𝑣) → 𝐶 = ⦋𝑢 / 𝑦⦌⦋𝑣 / 𝑥⦌𝐶) |
13 | 1, 2, 3, 4, 7, 8, 9, 12 | cbvmpox2 45344 |
. . . 4
⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑣 ∈ ⦋𝑢 / 𝑦⦌𝐴, 𝑢 ∈ 𝐵 ↦ ⦋𝑢 / 𝑦⦌⦋𝑣 / 𝑥⦌𝐶) |
14 | | dmmpossx2.1 |
. . . 4
⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
15 | | vex 3412 |
. . . . . . . 8
⊢ 𝑣 ∈ V |
16 | | vex 3412 |
. . . . . . . 8
⊢ 𝑢 ∈ V |
17 | 15, 16 | op2ndd 7772 |
. . . . . . 7
⊢ (𝑡 = 〈𝑣, 𝑢〉 → (2nd ‘𝑡) = 𝑢) |
18 | 17 | csbeq1d 3815 |
. . . . . 6
⊢ (𝑡 = 〈𝑣, 𝑢〉 → ⦋(2nd
‘𝑡) / 𝑦⦌⦋(1st
‘𝑡) / 𝑥⦌𝐶 = ⦋𝑢 / 𝑦⦌⦋(1st
‘𝑡) / 𝑥⦌𝐶) |
19 | 15, 16 | op1std 7771 |
. . . . . . . 8
⊢ (𝑡 = 〈𝑣, 𝑢〉 → (1st ‘𝑡) = 𝑣) |
20 | 19 | csbeq1d 3815 |
. . . . . . 7
⊢ (𝑡 = 〈𝑣, 𝑢〉 → ⦋(1st
‘𝑡) / 𝑥⦌𝐶 = ⦋𝑣 / 𝑥⦌𝐶) |
21 | 20 | csbeq2dv 3818 |
. . . . . 6
⊢ (𝑡 = 〈𝑣, 𝑢〉 → ⦋𝑢 / 𝑦⦌⦋(1st
‘𝑡) / 𝑥⦌𝐶 = ⦋𝑢 / 𝑦⦌⦋𝑣 / 𝑥⦌𝐶) |
22 | 18, 21 | eqtrd 2777 |
. . . . 5
⊢ (𝑡 = 〈𝑣, 𝑢〉 → ⦋(2nd
‘𝑡) / 𝑦⦌⦋(1st
‘𝑡) / 𝑥⦌𝐶 = ⦋𝑢 / 𝑦⦌⦋𝑣 / 𝑥⦌𝐶) |
23 | 22 | mpomptx2 45343 |
. . . 4
⊢ (𝑡 ∈ ∪ 𝑢 ∈ 𝐵 (⦋𝑢 / 𝑦⦌𝐴 × {𝑢}) ↦ ⦋(2nd
‘𝑡) / 𝑦⦌⦋(1st
‘𝑡) / 𝑥⦌𝐶) = (𝑣 ∈ ⦋𝑢 / 𝑦⦌𝐴, 𝑢 ∈ 𝐵 ↦ ⦋𝑢 / 𝑦⦌⦋𝑣 / 𝑥⦌𝐶) |
24 | 13, 14, 23 | 3eqtr4i 2775 |
. . 3
⊢ 𝐹 = (𝑡 ∈ ∪
𝑢 ∈ 𝐵 (⦋𝑢 / 𝑦⦌𝐴 × {𝑢}) ↦ ⦋(2nd
‘𝑡) / 𝑦⦌⦋(1st
‘𝑡) / 𝑥⦌𝐶) |
25 | 24 | dmmptss 6104 |
. 2
⊢ dom 𝐹 ⊆ ∪ 𝑢 ∈ 𝐵 (⦋𝑢 / 𝑦⦌𝐴 × {𝑢}) |
26 | | nfcv 2904 |
. . 3
⊢
Ⅎ𝑢(𝐴 × {𝑦}) |
27 | | nfcv 2904 |
. . . 4
⊢
Ⅎ𝑦{𝑢} |
28 | 2, 27 | nfxp 5584 |
. . 3
⊢
Ⅎ𝑦(⦋𝑢 / 𝑦⦌𝐴 × {𝑢}) |
29 | | sneq 4551 |
. . . 4
⊢ (𝑦 = 𝑢 → {𝑦} = {𝑢}) |
30 | 9, 29 | xpeq12d 5582 |
. . 3
⊢ (𝑦 = 𝑢 → (𝐴 × {𝑦}) = (⦋𝑢 / 𝑦⦌𝐴 × {𝑢})) |
31 | 26, 28, 30 | cbviun 4945 |
. 2
⊢ ∪ 𝑦 ∈ 𝐵 (𝐴 × {𝑦}) = ∪
𝑢 ∈ 𝐵 (⦋𝑢 / 𝑦⦌𝐴 × {𝑢}) |
32 | 25, 31 | sseqtrri 3938 |
1
⊢ dom 𝐹 ⊆ ∪ 𝑦 ∈ 𝐵 (𝐴 × {𝑦}) |