Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmmpossx2 Structured version   Visualization version   GIF version

Theorem dmmpossx2 45672
Description: The domain of a mapping is a subset of its base classes expressed as union of Cartesian products over its second component, analogous to dmmpossx 7906. (Contributed by AV, 30-Mar-2019.)
Hypothesis
Ref Expression
dmmpossx2.1 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
Assertion
Ref Expression
dmmpossx2 dom 𝐹 𝑦𝐵 (𝐴 × {𝑦})
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝐵
Allowed substitution hints:   𝐴(𝑦)   𝐶(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem dmmpossx2
Dummy variables 𝑢 𝑡 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2907 . . . . 5 𝑢𝐴
2 nfcsb1v 3857 . . . . 5 𝑦𝑢 / 𝑦𝐴
3 nfcv 2907 . . . . 5 𝑢𝐶
4 nfcv 2907 . . . . 5 𝑣𝐶
5 nfcv 2907 . . . . . 6 𝑥𝑢
6 nfcsb1v 3857 . . . . . 6 𝑥𝑣 / 𝑥𝐶
75, 6nfcsbw 3859 . . . . 5 𝑥𝑢 / 𝑦𝑣 / 𝑥𝐶
8 nfcsb1v 3857 . . . . 5 𝑦𝑢 / 𝑦𝑣 / 𝑥𝐶
9 csbeq1a 3846 . . . . 5 (𝑦 = 𝑢𝐴 = 𝑢 / 𝑦𝐴)
10 csbeq1a 3846 . . . . . 6 (𝑥 = 𝑣𝐶 = 𝑣 / 𝑥𝐶)
11 csbeq1a 3846 . . . . . 6 (𝑦 = 𝑢𝑣 / 𝑥𝐶 = 𝑢 / 𝑦𝑣 / 𝑥𝐶)
1210, 11sylan9eqr 2800 . . . . 5 ((𝑦 = 𝑢𝑥 = 𝑣) → 𝐶 = 𝑢 / 𝑦𝑣 / 𝑥𝐶)
131, 2, 3, 4, 7, 8, 9, 12cbvmpox2 45671 . . . 4 (𝑥𝐴, 𝑦𝐵𝐶) = (𝑣𝑢 / 𝑦𝐴, 𝑢𝐵𝑢 / 𝑦𝑣 / 𝑥𝐶)
14 dmmpossx2.1 . . . 4 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
15 vex 3436 . . . . . . . 8 𝑣 ∈ V
16 vex 3436 . . . . . . . 8 𝑢 ∈ V
1715, 16op2ndd 7842 . . . . . . 7 (𝑡 = ⟨𝑣, 𝑢⟩ → (2nd𝑡) = 𝑢)
1817csbeq1d 3836 . . . . . 6 (𝑡 = ⟨𝑣, 𝑢⟩ → (2nd𝑡) / 𝑦(1st𝑡) / 𝑥𝐶 = 𝑢 / 𝑦(1st𝑡) / 𝑥𝐶)
1915, 16op1std 7841 . . . . . . . 8 (𝑡 = ⟨𝑣, 𝑢⟩ → (1st𝑡) = 𝑣)
2019csbeq1d 3836 . . . . . . 7 (𝑡 = ⟨𝑣, 𝑢⟩ → (1st𝑡) / 𝑥𝐶 = 𝑣 / 𝑥𝐶)
2120csbeq2dv 3839 . . . . . 6 (𝑡 = ⟨𝑣, 𝑢⟩ → 𝑢 / 𝑦(1st𝑡) / 𝑥𝐶 = 𝑢 / 𝑦𝑣 / 𝑥𝐶)
2218, 21eqtrd 2778 . . . . 5 (𝑡 = ⟨𝑣, 𝑢⟩ → (2nd𝑡) / 𝑦(1st𝑡) / 𝑥𝐶 = 𝑢 / 𝑦𝑣 / 𝑥𝐶)
2322mpomptx2 45670 . . . 4 (𝑡 𝑢𝐵 (𝑢 / 𝑦𝐴 × {𝑢}) ↦ (2nd𝑡) / 𝑦(1st𝑡) / 𝑥𝐶) = (𝑣𝑢 / 𝑦𝐴, 𝑢𝐵𝑢 / 𝑦𝑣 / 𝑥𝐶)
2413, 14, 233eqtr4i 2776 . . 3 𝐹 = (𝑡 𝑢𝐵 (𝑢 / 𝑦𝐴 × {𝑢}) ↦ (2nd𝑡) / 𝑦(1st𝑡) / 𝑥𝐶)
2524dmmptss 6144 . 2 dom 𝐹 𝑢𝐵 (𝑢 / 𝑦𝐴 × {𝑢})
26 nfcv 2907 . . 3 𝑢(𝐴 × {𝑦})
27 nfcv 2907 . . . 4 𝑦{𝑢}
282, 27nfxp 5622 . . 3 𝑦(𝑢 / 𝑦𝐴 × {𝑢})
29 sneq 4571 . . . 4 (𝑦 = 𝑢 → {𝑦} = {𝑢})
309, 29xpeq12d 5620 . . 3 (𝑦 = 𝑢 → (𝐴 × {𝑦}) = (𝑢 / 𝑦𝐴 × {𝑢}))
3126, 28, 30cbviun 4966 . 2 𝑦𝐵 (𝐴 × {𝑦}) = 𝑢𝐵 (𝑢 / 𝑦𝐴 × {𝑢})
3225, 31sseqtrri 3958 1 dom 𝐹 𝑦𝐵 (𝐴 × {𝑦})
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  csb 3832  wss 3887  {csn 4561  cop 4567   ciun 4924  cmpt 5157   × cxp 5587  dom cdm 5589  cfv 6433  cmpo 7277  1st c1st 7829  2nd c2nd 7830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fv 6441  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832
This theorem is referenced by:  mpoexxg2  45673
  Copyright terms: Public domain W3C validator