Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmmpossx2 Structured version   Visualization version   GIF version

Theorem dmmpossx2 46502
Description: The domain of a mapping is a subset of its base classes expressed as union of Cartesian products over its second component, analogous to dmmpossx 8002. (Contributed by AV, 30-Mar-2019.)
Hypothesis
Ref Expression
dmmpossx2.1 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
Assertion
Ref Expression
dmmpossx2 dom 𝐹 𝑦𝐵 (𝐴 × {𝑦})
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝐵
Allowed substitution hints:   𝐴(𝑦)   𝐶(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem dmmpossx2
Dummy variables 𝑢 𝑡 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2904 . . . . 5 𝑢𝐴
2 nfcsb1v 3884 . . . . 5 𝑦𝑢 / 𝑦𝐴
3 nfcv 2904 . . . . 5 𝑢𝐶
4 nfcv 2904 . . . . 5 𝑣𝐶
5 nfcv 2904 . . . . . 6 𝑥𝑢
6 nfcsb1v 3884 . . . . . 6 𝑥𝑣 / 𝑥𝐶
75, 6nfcsbw 3886 . . . . 5 𝑥𝑢 / 𝑦𝑣 / 𝑥𝐶
8 nfcsb1v 3884 . . . . 5 𝑦𝑢 / 𝑦𝑣 / 𝑥𝐶
9 csbeq1a 3873 . . . . 5 (𝑦 = 𝑢𝐴 = 𝑢 / 𝑦𝐴)
10 csbeq1a 3873 . . . . . 6 (𝑥 = 𝑣𝐶 = 𝑣 / 𝑥𝐶)
11 csbeq1a 3873 . . . . . 6 (𝑦 = 𝑢𝑣 / 𝑥𝐶 = 𝑢 / 𝑦𝑣 / 𝑥𝐶)
1210, 11sylan9eqr 2795 . . . . 5 ((𝑦 = 𝑢𝑥 = 𝑣) → 𝐶 = 𝑢 / 𝑦𝑣 / 𝑥𝐶)
131, 2, 3, 4, 7, 8, 9, 12cbvmpox2 46501 . . . 4 (𝑥𝐴, 𝑦𝐵𝐶) = (𝑣𝑢 / 𝑦𝐴, 𝑢𝐵𝑢 / 𝑦𝑣 / 𝑥𝐶)
14 dmmpossx2.1 . . . 4 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
15 vex 3451 . . . . . . . 8 𝑣 ∈ V
16 vex 3451 . . . . . . . 8 𝑢 ∈ V
1715, 16op2ndd 7936 . . . . . . 7 (𝑡 = ⟨𝑣, 𝑢⟩ → (2nd𝑡) = 𝑢)
1817csbeq1d 3863 . . . . . 6 (𝑡 = ⟨𝑣, 𝑢⟩ → (2nd𝑡) / 𝑦(1st𝑡) / 𝑥𝐶 = 𝑢 / 𝑦(1st𝑡) / 𝑥𝐶)
1915, 16op1std 7935 . . . . . . . 8 (𝑡 = ⟨𝑣, 𝑢⟩ → (1st𝑡) = 𝑣)
2019csbeq1d 3863 . . . . . . 7 (𝑡 = ⟨𝑣, 𝑢⟩ → (1st𝑡) / 𝑥𝐶 = 𝑣 / 𝑥𝐶)
2120csbeq2dv 3866 . . . . . 6 (𝑡 = ⟨𝑣, 𝑢⟩ → 𝑢 / 𝑦(1st𝑡) / 𝑥𝐶 = 𝑢 / 𝑦𝑣 / 𝑥𝐶)
2218, 21eqtrd 2773 . . . . 5 (𝑡 = ⟨𝑣, 𝑢⟩ → (2nd𝑡) / 𝑦(1st𝑡) / 𝑥𝐶 = 𝑢 / 𝑦𝑣 / 𝑥𝐶)
2322mpomptx2 46500 . . . 4 (𝑡 𝑢𝐵 (𝑢 / 𝑦𝐴 × {𝑢}) ↦ (2nd𝑡) / 𝑦(1st𝑡) / 𝑥𝐶) = (𝑣𝑢 / 𝑦𝐴, 𝑢𝐵𝑢 / 𝑦𝑣 / 𝑥𝐶)
2413, 14, 233eqtr4i 2771 . . 3 𝐹 = (𝑡 𝑢𝐵 (𝑢 / 𝑦𝐴 × {𝑢}) ↦ (2nd𝑡) / 𝑦(1st𝑡) / 𝑥𝐶)
2524dmmptss 6197 . 2 dom 𝐹 𝑢𝐵 (𝑢 / 𝑦𝐴 × {𝑢})
26 nfcv 2904 . . 3 𝑢(𝐴 × {𝑦})
27 nfcv 2904 . . . 4 𝑦{𝑢}
282, 27nfxp 5670 . . 3 𝑦(𝑢 / 𝑦𝐴 × {𝑢})
29 sneq 4600 . . . 4 (𝑦 = 𝑢 → {𝑦} = {𝑢})
309, 29xpeq12d 5668 . . 3 (𝑦 = 𝑢 → (𝐴 × {𝑦}) = (𝑢 / 𝑦𝐴 × {𝑢}))
3126, 28, 30cbviun 5000 . 2 𝑦𝐵 (𝐴 × {𝑦}) = 𝑢𝐵 (𝑢 / 𝑦𝐴 × {𝑢})
3225, 31sseqtrri 3985 1 dom 𝐹 𝑦𝐵 (𝐴 × {𝑦})
Colors of variables: wff setvar class
Syntax hints:   = wceq 1542  csb 3859  wss 3914  {csn 4590  cop 4596   ciun 4958  cmpt 5192   × cxp 5635  dom cdm 5637  cfv 6500  cmpo 7363  1st c1st 7923  2nd c2nd 7924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5260  ax-nul 5267  ax-pr 5388  ax-un 7676
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ral 3062  df-rex 3071  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4287  df-if 4491  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-iun 4960  df-br 5110  df-opab 5172  df-mpt 5193  df-id 5535  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-iota 6452  df-fun 6502  df-fv 6508  df-oprab 7365  df-mpo 7366  df-1st 7925  df-2nd 7926
This theorem is referenced by:  mpoexxg2  46503
  Copyright terms: Public domain W3C validator