| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemefs44 | Structured version Visualization version GIF version | ||
| Description: Value of fs(r) when r is an atom under pq and s is any atom not under pq, using more compact hypotheses. TODO: eliminate and use cdlemefs45 40431 instead TODO: FIX COMMENT. (Contributed by NM, 31-Mar-2013.) |
| Ref | Expression |
|---|---|
| cdlemef44.b | ⊢ 𝐵 = (Base‘𝐾) |
| cdlemef44.l | ⊢ ≤ = (le‘𝐾) |
| cdlemef44.j | ⊢ ∨ = (join‘𝐾) |
| cdlemef44.m | ⊢ ∧ = (meet‘𝐾) |
| cdlemef44.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| cdlemef44.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| cdlemef44.u | ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
| cdlemef44.d | ⊢ 𝐷 = ((𝑡 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑡) ∧ 𝑊))) |
| cdlemef44.o | ⊢ 𝑂 = (℩𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑥 ∧ 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 ≤ (𝑃 ∨ 𝑄), 𝐼, ⦋𝑠 / 𝑡⦌𝐷) ∨ (𝑥 ∧ 𝑊)))) |
| cdlemef44.f | ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ if((𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊), 𝑂, 𝑥)) |
| cdlemefs44.e | ⊢ 𝐸 = ((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑠 ∨ 𝑡) ∧ 𝑊))) |
| cdlemefs44.i | ⊢ 𝐼 = (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = 𝐸)) |
| Ref | Expression |
|---|---|
| cdlemefs44 | ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) → (𝐹‘𝑅) = ⦋𝑅 / 𝑠⦌⦋𝑆 / 𝑡⦌𝐸) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cdlemef44.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | cdlemef44.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 3 | cdlemef44.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
| 4 | cdlemef44.m | . . 3 ⊢ ∧ = (meet‘𝐾) | |
| 5 | cdlemef44.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 6 | cdlemef44.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 7 | cdlemef44.u | . . 3 ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) | |
| 8 | cdlemef44.d | . . 3 ⊢ 𝐷 = ((𝑡 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑡) ∧ 𝑊))) | |
| 9 | cdlemefs44.e | . . 3 ⊢ 𝐸 = ((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑠 ∨ 𝑡) ∧ 𝑊))) | |
| 10 | cdlemefs44.i | . . 3 ⊢ 𝐼 = (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = 𝐸)) | |
| 11 | eqid 2737 | . . 3 ⊢ if(𝑠 ≤ (𝑃 ∨ 𝑄), 𝐼, ⦋𝑠 / 𝑡⦌𝐷) = if(𝑠 ≤ (𝑃 ∨ 𝑄), 𝐼, ⦋𝑠 / 𝑡⦌𝐷) | |
| 12 | cdlemef44.o | . . 3 ⊢ 𝑂 = (℩𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑥 ∧ 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 ≤ (𝑃 ∨ 𝑄), 𝐼, ⦋𝑠 / 𝑡⦌𝐷) ∨ (𝑥 ∧ 𝑊)))) | |
| 13 | cdlemef44.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ if((𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊), 𝑂, 𝑥)) | |
| 14 | eqid 2737 | . . 3 ⊢ ((𝑆 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) = ((𝑆 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) | |
| 15 | eqid 2737 | . . 3 ⊢ ((𝑃 ∨ 𝑄) ∧ (((𝑆 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊))) = ((𝑃 ∨ 𝑄) ∧ (((𝑆 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊))) | |
| 16 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 | cdlemefs31fv1 40426 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) → (𝐹‘𝑅) = ((𝑃 ∨ 𝑄) ∧ (((𝑆 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊)))) |
| 17 | simp22l 1293 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) → 𝑅 ∈ 𝐴) | |
| 18 | simp23l 1295 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) → 𝑆 ∈ 𝐴) | |
| 19 | 8, 9, 14, 15 | cdleme31sde 40387 | . . 3 ⊢ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) → ⦋𝑅 / 𝑠⦌⦋𝑆 / 𝑡⦌𝐸 = ((𝑃 ∨ 𝑄) ∧ (((𝑆 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊)))) |
| 20 | 17, 18, 19 | syl2anc 584 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) → ⦋𝑅 / 𝑠⦌⦋𝑆 / 𝑡⦌𝐸 = ((𝑃 ∨ 𝑄) ∧ (((𝑆 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊)))) |
| 21 | 16, 20 | eqtr4d 2780 | 1 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) → (𝐹‘𝑅) = ⦋𝑅 / 𝑠⦌⦋𝑆 / 𝑡⦌𝐸) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 ∀wral 3061 ⦋csb 3899 ifcif 4525 class class class wbr 5143 ↦ cmpt 5225 ‘cfv 6561 ℩crio 7387 (class class class)co 7431 Basecbs 17247 lecple 17304 joincjn 18357 meetcmee 18358 Atomscatm 39264 HLchlt 39351 LHypclh 39986 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-riotaBAD 38954 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-iin 4994 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8014 df-2nd 8015 df-undef 8298 df-proset 18340 df-poset 18359 df-plt 18375 df-lub 18391 df-glb 18392 df-join 18393 df-meet 18394 df-p0 18470 df-p1 18471 df-lat 18477 df-clat 18544 df-oposet 39177 df-ol 39179 df-oml 39180 df-covers 39267 df-ats 39268 df-atl 39299 df-cvlat 39323 df-hlat 39352 df-llines 39500 df-lplanes 39501 df-lvols 39502 df-lines 39503 df-psubsp 39505 df-pmap 39506 df-padd 39798 df-lhyp 39990 |
| This theorem is referenced by: cdlemefs45 40431 |
| Copyright terms: Public domain | W3C validator |