Proof of Theorem cdleme17d2
| Step | Hyp | Ref
| Expression |
| 1 | | simp1 1137 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) |
| 2 | | simp2l 1200 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → 𝑃 ≠ 𝑄) |
| 3 | | simp12 1205 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
| 4 | | simp2r 1201 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) |
| 5 | | simp11l 1285 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → 𝐾 ∈ HL) |
| 6 | | simp12l 1287 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → 𝑃 ∈ 𝐴) |
| 7 | | simp13l 1289 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → 𝑄 ∈ 𝐴) |
| 8 | | cdlemef46.l |
. . . . 5
⊢ ≤ =
(le‘𝐾) |
| 9 | | cdlemef46.j |
. . . . 5
⊢ ∨ =
(join‘𝐾) |
| 10 | | cdlemef46.a |
. . . . 5
⊢ 𝐴 = (Atoms‘𝐾) |
| 11 | 8, 9, 10 | hlatlej1 39376 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑃 ≤ (𝑃 ∨ 𝑄)) |
| 12 | 5, 6, 7, 11 | syl3anc 1373 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → 𝑃 ≤ (𝑃 ∨ 𝑄)) |
| 13 | | simp3 1139 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) |
| 14 | | cdlemef46.b |
. . . 4
⊢ 𝐵 = (Base‘𝐾) |
| 15 | | cdlemef46.m |
. . . 4
⊢ ∧ =
(meet‘𝐾) |
| 16 | | cdlemef46.h |
. . . 4
⊢ 𝐻 = (LHyp‘𝐾) |
| 17 | | cdlemef46.u |
. . . 4
⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
| 18 | | cdlemef46.d |
. . . 4
⊢ 𝐷 = ((𝑡 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑡) ∧ 𝑊))) |
| 19 | | cdlemef46.f |
. . . 4
⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ if((𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊), (℩𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑥 ∧ 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 ≤ (𝑃 ∨ 𝑄), (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = 𝐸)), ⦋𝑠 / 𝑡⦌𝐷) ∨ (𝑥 ∧ 𝑊)))), 𝑥)) |
| 20 | | cdlemefs46.e |
. . . 4
⊢ 𝐸 = ((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑠 ∨ 𝑡) ∧ 𝑊))) |
| 21 | 14, 8, 9, 15, 10, 16, 17, 18, 19, 20 | cdlemefs45 40431 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ (𝑃 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) → (𝐹‘𝑃) = ⦋𝑃 / 𝑠⦌⦋𝑆 / 𝑡⦌𝐸) |
| 22 | 1, 2, 3, 4, 12, 13, 21 | syl132anc 1390 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → (𝐹‘𝑃) = ⦋𝑃 / 𝑠⦌⦋𝑆 / 𝑡⦌𝐸) |
| 23 | | simp2rl 1243 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → 𝑆 ∈ 𝐴) |
| 24 | | eqid 2737 |
. . . 4
⊢ ((𝑆 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) = ((𝑆 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) |
| 25 | | eqid 2737 |
. . . 4
⊢ ((𝑃 ∨ 𝑄) ∧ (((𝑆 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) = ((𝑃 ∨ 𝑄) ∧ (((𝑆 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) |
| 26 | 18, 20, 24, 25 | cdleme31sde 40387 |
. . 3
⊢ ((𝑃 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) → ⦋𝑃 / 𝑠⦌⦋𝑆 / 𝑡⦌𝐸 = ((𝑃 ∨ 𝑄) ∧ (((𝑆 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊)))) |
| 27 | 6, 23, 26 | syl2anc 584 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → ⦋𝑃 / 𝑠⦌⦋𝑆 / 𝑡⦌𝐸 = ((𝑃 ∨ 𝑄) ∧ (((𝑆 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊)))) |
| 28 | | simp11 1204 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 29 | 8, 9, 15, 10, 16, 17, 24, 25 | cdleme17d1 40291 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → ((𝑃 ∨ 𝑄) ∧ (((𝑆 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) = 𝑄) |
| 30 | 28, 3, 7, 4, 13, 29 | syl131anc 1385 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → ((𝑃 ∨ 𝑄) ∧ (((𝑆 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) = 𝑄) |
| 31 | 22, 27, 30 | 3eqtrd 2781 |
1
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → (𝐹‘𝑃) = 𝑄) |