| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemk41 | Structured version Visualization version GIF version | ||
| Description: Part of proof of Lemma K of [Crawley] p. 118. TODO: fix comment. (Contributed by NM, 19-Jul-2013.) |
| Ref | Expression |
|---|---|
| cdlemk41.y | ⊢ 𝑌 = ((𝑃 ∨ (𝑅‘𝑔)) ∧ (𝑍 ∨ (𝑅‘(𝑔 ∘ ◡𝑏)))) |
| Ref | Expression |
|---|---|
| cdlemk41 | ⊢ (𝐺 ∈ 𝑇 → ⦋𝐺 / 𝑔⦌𝑌 = ((𝑃 ∨ (𝑅‘𝐺)) ∧ (𝑍 ∨ (𝑅‘(𝐺 ∘ ◡𝑏))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcvd 2892 | . 2 ⊢ (𝐺 ∈ 𝑇 → Ⅎ𝑔((𝑃 ∨ (𝑅‘𝐺)) ∧ (𝑍 ∨ (𝑅‘(𝐺 ∘ ◡𝑏))))) | |
| 2 | cdlemk41.y | . . 3 ⊢ 𝑌 = ((𝑃 ∨ (𝑅‘𝑔)) ∧ (𝑍 ∨ (𝑅‘(𝑔 ∘ ◡𝑏)))) | |
| 3 | fveq2 6858 | . . . . 5 ⊢ (𝑔 = 𝐺 → (𝑅‘𝑔) = (𝑅‘𝐺)) | |
| 4 | 3 | oveq2d 7403 | . . . 4 ⊢ (𝑔 = 𝐺 → (𝑃 ∨ (𝑅‘𝑔)) = (𝑃 ∨ (𝑅‘𝐺))) |
| 5 | coeq1 5821 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (𝑔 ∘ ◡𝑏) = (𝐺 ∘ ◡𝑏)) | |
| 6 | 5 | fveq2d 6862 | . . . . 5 ⊢ (𝑔 = 𝐺 → (𝑅‘(𝑔 ∘ ◡𝑏)) = (𝑅‘(𝐺 ∘ ◡𝑏))) |
| 7 | 6 | oveq2d 7403 | . . . 4 ⊢ (𝑔 = 𝐺 → (𝑍 ∨ (𝑅‘(𝑔 ∘ ◡𝑏))) = (𝑍 ∨ (𝑅‘(𝐺 ∘ ◡𝑏)))) |
| 8 | 4, 7 | oveq12d 7405 | . . 3 ⊢ (𝑔 = 𝐺 → ((𝑃 ∨ (𝑅‘𝑔)) ∧ (𝑍 ∨ (𝑅‘(𝑔 ∘ ◡𝑏)))) = ((𝑃 ∨ (𝑅‘𝐺)) ∧ (𝑍 ∨ (𝑅‘(𝐺 ∘ ◡𝑏))))) |
| 9 | 2, 8 | eqtrid 2776 | . 2 ⊢ (𝑔 = 𝐺 → 𝑌 = ((𝑃 ∨ (𝑅‘𝐺)) ∧ (𝑍 ∨ (𝑅‘(𝐺 ∘ ◡𝑏))))) |
| 10 | 1, 9 | csbiegf 3895 | 1 ⊢ (𝐺 ∈ 𝑇 → ⦋𝐺 / 𝑔⦌𝑌 = ((𝑃 ∨ (𝑅‘𝐺)) ∧ (𝑍 ∨ (𝑅‘(𝐺 ∘ ◡𝑏))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⦋csb 3862 ◡ccnv 5637 ∘ ccom 5642 ‘cfv 6511 (class class class)co 7387 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-co 5647 df-iota 6464 df-fv 6519 df-ov 7390 |
| This theorem is referenced by: cdlemkid2 40918 cdlemkfid3N 40919 cdlemky 40920 cdlemk42yN 40938 |
| Copyright terms: Public domain | W3C validator |