![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemk41 | Structured version Visualization version GIF version |
Description: Part of proof of Lemma K of [Crawley] p. 118. TODO: fix comment. (Contributed by NM, 19-Jul-2013.) |
Ref | Expression |
---|---|
cdlemk41.y | ⊢ 𝑌 = ((𝑃 ∨ (𝑅‘𝑔)) ∧ (𝑍 ∨ (𝑅‘(𝑔 ∘ ◡𝑏)))) |
Ref | Expression |
---|---|
cdlemk41 | ⊢ (𝐺 ∈ 𝑇 → ⦋𝐺 / 𝑔⦌𝑌 = ((𝑃 ∨ (𝑅‘𝐺)) ∧ (𝑍 ∨ (𝑅‘(𝐺 ∘ ◡𝑏))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcvd 2893 | . 2 ⊢ (𝐺 ∈ 𝑇 → Ⅎ𝑔((𝑃 ∨ (𝑅‘𝐺)) ∧ (𝑍 ∨ (𝑅‘(𝐺 ∘ ◡𝑏))))) | |
2 | cdlemk41.y | . . 3 ⊢ 𝑌 = ((𝑃 ∨ (𝑅‘𝑔)) ∧ (𝑍 ∨ (𝑅‘(𝑔 ∘ ◡𝑏)))) | |
3 | fveq2 6891 | . . . . 5 ⊢ (𝑔 = 𝐺 → (𝑅‘𝑔) = (𝑅‘𝐺)) | |
4 | 3 | oveq2d 7430 | . . . 4 ⊢ (𝑔 = 𝐺 → (𝑃 ∨ (𝑅‘𝑔)) = (𝑃 ∨ (𝑅‘𝐺))) |
5 | coeq1 5855 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (𝑔 ∘ ◡𝑏) = (𝐺 ∘ ◡𝑏)) | |
6 | 5 | fveq2d 6895 | . . . . 5 ⊢ (𝑔 = 𝐺 → (𝑅‘(𝑔 ∘ ◡𝑏)) = (𝑅‘(𝐺 ∘ ◡𝑏))) |
7 | 6 | oveq2d 7430 | . . . 4 ⊢ (𝑔 = 𝐺 → (𝑍 ∨ (𝑅‘(𝑔 ∘ ◡𝑏))) = (𝑍 ∨ (𝑅‘(𝐺 ∘ ◡𝑏)))) |
8 | 4, 7 | oveq12d 7432 | . . 3 ⊢ (𝑔 = 𝐺 → ((𝑃 ∨ (𝑅‘𝑔)) ∧ (𝑍 ∨ (𝑅‘(𝑔 ∘ ◡𝑏)))) = ((𝑃 ∨ (𝑅‘𝐺)) ∧ (𝑍 ∨ (𝑅‘(𝐺 ∘ ◡𝑏))))) |
9 | 2, 8 | eqtrid 2778 | . 2 ⊢ (𝑔 = 𝐺 → 𝑌 = ((𝑃 ∨ (𝑅‘𝐺)) ∧ (𝑍 ∨ (𝑅‘(𝐺 ∘ ◡𝑏))))) |
10 | 1, 9 | csbiegf 3926 | 1 ⊢ (𝐺 ∈ 𝑇 → ⦋𝐺 / 𝑔⦌𝑌 = ((𝑃 ∨ (𝑅‘𝐺)) ∧ (𝑍 ∨ (𝑅‘(𝐺 ∘ ◡𝑏))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ⦋csb 3892 ◡ccnv 5672 ∘ ccom 5677 ‘cfv 6544 (class class class)co 7414 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-rab 3421 df-v 3465 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-ss 3964 df-nul 4324 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4907 df-br 5145 df-opab 5207 df-co 5682 df-iota 6496 df-fv 6552 df-ov 7417 |
This theorem is referenced by: cdlemkid2 40634 cdlemkfid3N 40635 cdlemky 40636 cdlemk42yN 40654 |
Copyright terms: Public domain | W3C validator |