Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemk41 | Structured version Visualization version GIF version |
Description: Part of proof of Lemma K of [Crawley] p. 118. TODO: fix comment. (Contributed by NM, 19-Jul-2013.) |
Ref | Expression |
---|---|
cdlemk41.y | ⊢ 𝑌 = ((𝑃 ∨ (𝑅‘𝑔)) ∧ (𝑍 ∨ (𝑅‘(𝑔 ∘ ◡𝑏)))) |
Ref | Expression |
---|---|
cdlemk41 | ⊢ (𝐺 ∈ 𝑇 → ⦋𝐺 / 𝑔⦌𝑌 = ((𝑃 ∨ (𝑅‘𝐺)) ∧ (𝑍 ∨ (𝑅‘(𝐺 ∘ ◡𝑏))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcvd 2907 | . 2 ⊢ (𝐺 ∈ 𝑇 → Ⅎ𝑔((𝑃 ∨ (𝑅‘𝐺)) ∧ (𝑍 ∨ (𝑅‘(𝐺 ∘ ◡𝑏))))) | |
2 | cdlemk41.y | . . 3 ⊢ 𝑌 = ((𝑃 ∨ (𝑅‘𝑔)) ∧ (𝑍 ∨ (𝑅‘(𝑔 ∘ ◡𝑏)))) | |
3 | fveq2 6756 | . . . . 5 ⊢ (𝑔 = 𝐺 → (𝑅‘𝑔) = (𝑅‘𝐺)) | |
4 | 3 | oveq2d 7271 | . . . 4 ⊢ (𝑔 = 𝐺 → (𝑃 ∨ (𝑅‘𝑔)) = (𝑃 ∨ (𝑅‘𝐺))) |
5 | coeq1 5755 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (𝑔 ∘ ◡𝑏) = (𝐺 ∘ ◡𝑏)) | |
6 | 5 | fveq2d 6760 | . . . . 5 ⊢ (𝑔 = 𝐺 → (𝑅‘(𝑔 ∘ ◡𝑏)) = (𝑅‘(𝐺 ∘ ◡𝑏))) |
7 | 6 | oveq2d 7271 | . . . 4 ⊢ (𝑔 = 𝐺 → (𝑍 ∨ (𝑅‘(𝑔 ∘ ◡𝑏))) = (𝑍 ∨ (𝑅‘(𝐺 ∘ ◡𝑏)))) |
8 | 4, 7 | oveq12d 7273 | . . 3 ⊢ (𝑔 = 𝐺 → ((𝑃 ∨ (𝑅‘𝑔)) ∧ (𝑍 ∨ (𝑅‘(𝑔 ∘ ◡𝑏)))) = ((𝑃 ∨ (𝑅‘𝐺)) ∧ (𝑍 ∨ (𝑅‘(𝐺 ∘ ◡𝑏))))) |
9 | 2, 8 | syl5eq 2791 | . 2 ⊢ (𝑔 = 𝐺 → 𝑌 = ((𝑃 ∨ (𝑅‘𝐺)) ∧ (𝑍 ∨ (𝑅‘(𝐺 ∘ ◡𝑏))))) |
10 | 1, 9 | csbiegf 3862 | 1 ⊢ (𝐺 ∈ 𝑇 → ⦋𝐺 / 𝑔⦌𝑌 = ((𝑃 ∨ (𝑅‘𝐺)) ∧ (𝑍 ∨ (𝑅‘(𝐺 ∘ ◡𝑏))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ⦋csb 3828 ◡ccnv 5579 ∘ ccom 5584 ‘cfv 6418 (class class class)co 7255 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-co 5589 df-iota 6376 df-fv 6426 df-ov 7258 |
This theorem is referenced by: cdlemkid2 38865 cdlemkfid3N 38866 cdlemky 38867 cdlemk42yN 38885 |
Copyright terms: Public domain | W3C validator |