![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemk41 | Structured version Visualization version GIF version |
Description: Part of proof of Lemma K of [Crawley] p. 118. TODO: fix comment. (Contributed by NM, 19-Jul-2013.) |
Ref | Expression |
---|---|
cdlemk41.y | ⊢ 𝑌 = ((𝑃 ∨ (𝑅‘𝑔)) ∧ (𝑍 ∨ (𝑅‘(𝑔 ∘ ◡𝑏)))) |
Ref | Expression |
---|---|
cdlemk41 | ⊢ (𝐺 ∈ 𝑇 → ⦋𝐺 / 𝑔⦌𝑌 = ((𝑃 ∨ (𝑅‘𝐺)) ∧ (𝑍 ∨ (𝑅‘(𝐺 ∘ ◡𝑏))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcvd 2909 | . 2 ⊢ (𝐺 ∈ 𝑇 → Ⅎ𝑔((𝑃 ∨ (𝑅‘𝐺)) ∧ (𝑍 ∨ (𝑅‘(𝐺 ∘ ◡𝑏))))) | |
2 | cdlemk41.y | . . 3 ⊢ 𝑌 = ((𝑃 ∨ (𝑅‘𝑔)) ∧ (𝑍 ∨ (𝑅‘(𝑔 ∘ ◡𝑏)))) | |
3 | fveq2 6920 | . . . . 5 ⊢ (𝑔 = 𝐺 → (𝑅‘𝑔) = (𝑅‘𝐺)) | |
4 | 3 | oveq2d 7464 | . . . 4 ⊢ (𝑔 = 𝐺 → (𝑃 ∨ (𝑅‘𝑔)) = (𝑃 ∨ (𝑅‘𝐺))) |
5 | coeq1 5882 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (𝑔 ∘ ◡𝑏) = (𝐺 ∘ ◡𝑏)) | |
6 | 5 | fveq2d 6924 | . . . . 5 ⊢ (𝑔 = 𝐺 → (𝑅‘(𝑔 ∘ ◡𝑏)) = (𝑅‘(𝐺 ∘ ◡𝑏))) |
7 | 6 | oveq2d 7464 | . . . 4 ⊢ (𝑔 = 𝐺 → (𝑍 ∨ (𝑅‘(𝑔 ∘ ◡𝑏))) = (𝑍 ∨ (𝑅‘(𝐺 ∘ ◡𝑏)))) |
8 | 4, 7 | oveq12d 7466 | . . 3 ⊢ (𝑔 = 𝐺 → ((𝑃 ∨ (𝑅‘𝑔)) ∧ (𝑍 ∨ (𝑅‘(𝑔 ∘ ◡𝑏)))) = ((𝑃 ∨ (𝑅‘𝐺)) ∧ (𝑍 ∨ (𝑅‘(𝐺 ∘ ◡𝑏))))) |
9 | 2, 8 | eqtrid 2792 | . 2 ⊢ (𝑔 = 𝐺 → 𝑌 = ((𝑃 ∨ (𝑅‘𝐺)) ∧ (𝑍 ∨ (𝑅‘(𝐺 ∘ ◡𝑏))))) |
10 | 1, 9 | csbiegf 3955 | 1 ⊢ (𝐺 ∈ 𝑇 → ⦋𝐺 / 𝑔⦌𝑌 = ((𝑃 ∨ (𝑅‘𝐺)) ∧ (𝑍 ∨ (𝑅‘(𝐺 ∘ ◡𝑏))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ⦋csb 3921 ◡ccnv 5699 ∘ ccom 5704 ‘cfv 6573 (class class class)co 7448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-co 5709 df-iota 6525 df-fv 6581 df-ov 7451 |
This theorem is referenced by: cdlemkid2 40881 cdlemkfid3N 40882 cdlemky 40883 cdlemk42yN 40901 |
Copyright terms: Public domain | W3C validator |