Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemkfid1N Structured version   Visualization version   GIF version

Theorem cdlemkfid1N 40900
Description: Lemma for cdlemkfid3N 40904. (Contributed by NM, 29-Jul-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdlemk5.b 𝐵 = (Base‘𝐾)
cdlemk5.l = (le‘𝐾)
cdlemk5.j = (join‘𝐾)
cdlemk5.m = (meet‘𝐾)
cdlemk5.a 𝐴 = (Atoms‘𝐾)
cdlemk5.h 𝐻 = (LHyp‘𝐾)
cdlemk5.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemk5.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemkfid1N (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → ((𝑃 (𝑅𝐺)) ((𝐹𝑃) (𝑅‘(𝐺𝐹)))) = (𝐺𝑃))

Proof of Theorem cdlemkfid1N
StepHypRef Expression
1 simp1 1136 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simp23 1209 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → 𝐺𝑇)
3 simp3r 1203 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
4 cdlemk5.l . . . . 5 = (le‘𝐾)
5 cdlemk5.j . . . . 5 = (join‘𝐾)
6 cdlemk5.a . . . . 5 𝐴 = (Atoms‘𝐾)
7 cdlemk5.h . . . . 5 𝐻 = (LHyp‘𝐾)
8 cdlemk5.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
9 cdlemk5.r . . . . 5 𝑅 = ((trL‘𝐾)‘𝑊)
104, 5, 6, 7, 8, 9trljat3 40147 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 (𝑅𝐺)) = ((𝐺𝑃) (𝑅𝐺)))
111, 2, 3, 10syl3anc 1373 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (𝑃 (𝑅𝐺)) = ((𝐺𝑃) (𝑅𝐺)))
12 simp1l 1198 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → 𝐾 ∈ HL)
13 simp21 1207 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → 𝐹𝑇)
14 simp3rl 1247 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → 𝑃𝐴)
154, 6, 7, 8ltrnat 40119 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐴) → (𝐹𝑃) ∈ 𝐴)
161, 13, 14, 15syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (𝐹𝑃) ∈ 𝐴)
174, 6, 7, 8ltrnat 40119 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝑃𝐴) → (𝐺𝑃) ∈ 𝐴)
181, 2, 14, 17syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (𝐺𝑃) ∈ 𝐴)
195, 6hlatjcom 39346 . . . . 5 ((𝐾 ∈ HL ∧ (𝐹𝑃) ∈ 𝐴 ∧ (𝐺𝑃) ∈ 𝐴) → ((𝐹𝑃) (𝐺𝑃)) = ((𝐺𝑃) (𝐹𝑃)))
2012, 16, 18, 19syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → ((𝐹𝑃) (𝐺𝑃)) = ((𝐺𝑃) (𝐹𝑃)))
214, 5, 6, 7, 8, 9trlcoabs2N 40701 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) (𝑅‘(𝐺𝐹))) = ((𝐹𝑃) (𝐺𝑃)))
221, 13, 2, 3, 21syl121anc 1377 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → ((𝐹𝑃) (𝑅‘(𝐺𝐹))) = ((𝐹𝑃) (𝐺𝑃)))
237, 8, 9trlcocnv 40699 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝑅‘(𝐹𝐺)) = (𝑅‘(𝐺𝐹)))
241, 13, 2, 23syl3anc 1373 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (𝑅‘(𝐹𝐺)) = (𝑅‘(𝐺𝐹)))
2524oveq2d 7369 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → ((𝐺𝑃) (𝑅‘(𝐹𝐺))) = ((𝐺𝑃) (𝑅‘(𝐺𝐹))))
264, 5, 6, 7, 8, 9trlcoabs2N 40701 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺𝑇𝐹𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐺𝑃) (𝑅‘(𝐹𝐺))) = ((𝐺𝑃) (𝐹𝑃)))
271, 2, 13, 3, 26syl121anc 1377 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → ((𝐺𝑃) (𝑅‘(𝐹𝐺))) = ((𝐺𝑃) (𝐹𝑃)))
2825, 27eqtr3d 2766 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → ((𝐺𝑃) (𝑅‘(𝐺𝐹))) = ((𝐺𝑃) (𝐹𝑃)))
2920, 22, 283eqtr4d 2774 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → ((𝐹𝑃) (𝑅‘(𝐺𝐹))) = ((𝐺𝑃) (𝑅‘(𝐺𝐹))))
3011, 29oveq12d 7371 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → ((𝑃 (𝑅𝐺)) ((𝐹𝑃) (𝑅‘(𝐺𝐹)))) = (((𝐺𝑃) (𝑅𝐺)) ((𝐺𝑃) (𝑅‘(𝐺𝐹)))))
31 cdlemk5.b . . . . 5 𝐵 = (Base‘𝐾)
3231, 7, 8, 9trlcl 40143 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → (𝑅𝐺) ∈ 𝐵)
331, 2, 32syl2anc 584 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (𝑅𝐺) ∈ 𝐵)
34 simp1r 1199 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → 𝑊𝐻)
35 simp3l 1202 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (𝑅𝐺) ≠ (𝑅𝐹))
366, 7, 8, 9trlcocnvat 40703 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺𝑇𝐹𝑇) ∧ (𝑅𝐺) ≠ (𝑅𝐹)) → (𝑅‘(𝐺𝐹)) ∈ 𝐴)
3712, 34, 2, 13, 35, 36syl221anc 1383 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (𝑅‘(𝐺𝐹)) ∈ 𝐴)
384, 6, 7, 8ltrnel 40118 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐺𝑃) ∈ 𝐴 ∧ ¬ (𝐺𝑃) 𝑊))
391, 2, 3, 38syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → ((𝐺𝑃) ∈ 𝐴 ∧ ¬ (𝐺𝑃) 𝑊))
407, 8ltrncnv 40125 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹𝑇)
411, 13, 40syl2anc 584 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → 𝐹𝑇)
427, 8, 9trlcnv 40144 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) = (𝑅𝐹))
431, 13, 42syl2anc 584 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (𝑅𝐹) = (𝑅𝐹))
4435, 43neeqtrrd 2999 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (𝑅𝐺) ≠ (𝑅𝐹))
45 simp22 1208 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → 𝐹 ≠ ( I ↾ 𝐵))
4631, 7, 8ltrncnvnid 40106 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) → 𝐹 ≠ ( I ↾ 𝐵))
471, 13, 45, 46syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → 𝐹 ≠ ( I ↾ 𝐵))
4831, 7, 8, 9trlcone 40707 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺𝑇𝐹𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ 𝐹 ≠ ( I ↾ 𝐵))) → (𝑅𝐺) ≠ (𝑅‘(𝐺𝐹)))
491, 2, 41, 44, 47, 48syl122anc 1381 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (𝑅𝐺) ≠ (𝑅‘(𝐺𝐹)))
50 eqid 2729 . . . . . 6 (0.‘𝐾) = (0.‘𝐾)
5150, 6, 7, 8, 9trlator0 40150 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → ((𝑅𝐺) ∈ 𝐴 ∨ (𝑅𝐺) = (0.‘𝐾)))
521, 2, 51syl2anc 584 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → ((𝑅𝐺) ∈ 𝐴 ∨ (𝑅𝐺) = (0.‘𝐾)))
534, 7, 8, 9trlle 40163 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → (𝑅𝐺) 𝑊)
5412, 34, 2, 53syl21anc 837 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (𝑅𝐺) 𝑊)
557, 8ltrnco 40698 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝐹𝑇) → (𝐺𝐹) ∈ 𝑇)
561, 2, 41, 55syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (𝐺𝐹) ∈ 𝑇)
574, 7, 8, 9trlle 40163 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺𝐹) ∈ 𝑇) → (𝑅‘(𝐺𝐹)) 𝑊)
581, 56, 57syl2anc 584 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (𝑅‘(𝐺𝐹)) 𝑊)
594, 5, 50, 6, 7lhp2at0nle 40014 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐺𝑃) ∈ 𝐴 ∧ ¬ (𝐺𝑃) 𝑊) ∧ (𝑅𝐺) ≠ (𝑅‘(𝐺𝐹))) ∧ (((𝑅𝐺) ∈ 𝐴 ∨ (𝑅𝐺) = (0.‘𝐾)) ∧ (𝑅𝐺) 𝑊) ∧ ((𝑅‘(𝐺𝐹)) ∈ 𝐴 ∧ (𝑅‘(𝐺𝐹)) 𝑊)) → ¬ (𝑅‘(𝐺𝐹)) ((𝐺𝑃) (𝑅𝐺)))
601, 39, 49, 52, 54, 37, 58, 59syl322anc 1400 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → ¬ (𝑅‘(𝐺𝐹)) ((𝐺𝑃) (𝑅𝐺)))
61 cdlemk5.m . . . 4 = (meet‘𝐾)
6231, 4, 5, 61, 62llnma1b 39765 . . 3 ((𝐾 ∈ HL ∧ ((𝑅𝐺) ∈ 𝐵 ∧ (𝐺𝑃) ∈ 𝐴 ∧ (𝑅‘(𝐺𝐹)) ∈ 𝐴) ∧ ¬ (𝑅‘(𝐺𝐹)) ((𝐺𝑃) (𝑅𝐺))) → (((𝐺𝑃) (𝑅𝐺)) ((𝐺𝑃) (𝑅‘(𝐺𝐹)))) = (𝐺𝑃))
6312, 33, 18, 37, 60, 62syl131anc 1385 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (((𝐺𝑃) (𝑅𝐺)) ((𝐺𝑃) (𝑅‘(𝐺𝐹)))) = (𝐺𝑃))
6430, 63eqtrd 2764 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → ((𝑃 (𝑅𝐺)) ((𝐹𝑃) (𝑅‘(𝐺𝐹)))) = (𝐺𝑃))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5095   I cid 5517  ccnv 5622  cres 5625  ccom 5627  cfv 6486  (class class class)co 7353  Basecbs 17138  lecple 17186  joincjn 18235  meetcmee 18236  0.cp0 18345  Atomscatm 39241  HLchlt 39328  LHypclh 39963  LTrncltrn 40080  trLctrl 40137
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-riotaBAD 38931
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-undef 8213  df-map 8762  df-proset 18218  df-poset 18237  df-plt 18252  df-lub 18268  df-glb 18269  df-join 18270  df-meet 18271  df-p0 18347  df-p1 18348  df-lat 18356  df-clat 18423  df-oposet 39154  df-ol 39156  df-oml 39157  df-covers 39244  df-ats 39245  df-atl 39276  df-cvlat 39300  df-hlat 39329  df-llines 39477  df-lplanes 39478  df-lvols 39479  df-lines 39480  df-psubsp 39482  df-pmap 39483  df-padd 39775  df-lhyp 39967  df-laut 39968  df-ldil 40083  df-ltrn 40084  df-trl 40138
This theorem is referenced by:  cdlemkfid2N  40902  cdlemkfid3N  40904
  Copyright terms: Public domain W3C validator