Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemkfid1N Structured version   Visualization version   GIF version

Theorem cdlemkfid1N 40904
Description: Lemma for cdlemkfid3N 40908. (Contributed by NM, 29-Jul-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdlemk5.b 𝐵 = (Base‘𝐾)
cdlemk5.l = (le‘𝐾)
cdlemk5.j = (join‘𝐾)
cdlemk5.m = (meet‘𝐾)
cdlemk5.a 𝐴 = (Atoms‘𝐾)
cdlemk5.h 𝐻 = (LHyp‘𝐾)
cdlemk5.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemk5.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemkfid1N (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → ((𝑃 (𝑅𝐺)) ((𝐹𝑃) (𝑅‘(𝐺𝐹)))) = (𝐺𝑃))

Proof of Theorem cdlemkfid1N
StepHypRef Expression
1 simp1 1135 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simp23 1207 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → 𝐺𝑇)
3 simp3r 1201 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
4 cdlemk5.l . . . . 5 = (le‘𝐾)
5 cdlemk5.j . . . . 5 = (join‘𝐾)
6 cdlemk5.a . . . . 5 𝐴 = (Atoms‘𝐾)
7 cdlemk5.h . . . . 5 𝐻 = (LHyp‘𝐾)
8 cdlemk5.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
9 cdlemk5.r . . . . 5 𝑅 = ((trL‘𝐾)‘𝑊)
104, 5, 6, 7, 8, 9trljat3 40151 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 (𝑅𝐺)) = ((𝐺𝑃) (𝑅𝐺)))
111, 2, 3, 10syl3anc 1370 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (𝑃 (𝑅𝐺)) = ((𝐺𝑃) (𝑅𝐺)))
12 simp1l 1196 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → 𝐾 ∈ HL)
13 simp21 1205 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → 𝐹𝑇)
14 simp3rl 1245 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → 𝑃𝐴)
154, 6, 7, 8ltrnat 40123 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐴) → (𝐹𝑃) ∈ 𝐴)
161, 13, 14, 15syl3anc 1370 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (𝐹𝑃) ∈ 𝐴)
174, 6, 7, 8ltrnat 40123 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝑃𝐴) → (𝐺𝑃) ∈ 𝐴)
181, 2, 14, 17syl3anc 1370 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (𝐺𝑃) ∈ 𝐴)
195, 6hlatjcom 39350 . . . . 5 ((𝐾 ∈ HL ∧ (𝐹𝑃) ∈ 𝐴 ∧ (𝐺𝑃) ∈ 𝐴) → ((𝐹𝑃) (𝐺𝑃)) = ((𝐺𝑃) (𝐹𝑃)))
2012, 16, 18, 19syl3anc 1370 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → ((𝐹𝑃) (𝐺𝑃)) = ((𝐺𝑃) (𝐹𝑃)))
214, 5, 6, 7, 8, 9trlcoabs2N 40705 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) (𝑅‘(𝐺𝐹))) = ((𝐹𝑃) (𝐺𝑃)))
221, 13, 2, 3, 21syl121anc 1374 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → ((𝐹𝑃) (𝑅‘(𝐺𝐹))) = ((𝐹𝑃) (𝐺𝑃)))
237, 8, 9trlcocnv 40703 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝑅‘(𝐹𝐺)) = (𝑅‘(𝐺𝐹)))
241, 13, 2, 23syl3anc 1370 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (𝑅‘(𝐹𝐺)) = (𝑅‘(𝐺𝐹)))
2524oveq2d 7447 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → ((𝐺𝑃) (𝑅‘(𝐹𝐺))) = ((𝐺𝑃) (𝑅‘(𝐺𝐹))))
264, 5, 6, 7, 8, 9trlcoabs2N 40705 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺𝑇𝐹𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐺𝑃) (𝑅‘(𝐹𝐺))) = ((𝐺𝑃) (𝐹𝑃)))
271, 2, 13, 3, 26syl121anc 1374 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → ((𝐺𝑃) (𝑅‘(𝐹𝐺))) = ((𝐺𝑃) (𝐹𝑃)))
2825, 27eqtr3d 2777 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → ((𝐺𝑃) (𝑅‘(𝐺𝐹))) = ((𝐺𝑃) (𝐹𝑃)))
2920, 22, 283eqtr4d 2785 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → ((𝐹𝑃) (𝑅‘(𝐺𝐹))) = ((𝐺𝑃) (𝑅‘(𝐺𝐹))))
3011, 29oveq12d 7449 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → ((𝑃 (𝑅𝐺)) ((𝐹𝑃) (𝑅‘(𝐺𝐹)))) = (((𝐺𝑃) (𝑅𝐺)) ((𝐺𝑃) (𝑅‘(𝐺𝐹)))))
31 cdlemk5.b . . . . 5 𝐵 = (Base‘𝐾)
3231, 7, 8, 9trlcl 40147 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → (𝑅𝐺) ∈ 𝐵)
331, 2, 32syl2anc 584 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (𝑅𝐺) ∈ 𝐵)
34 simp1r 1197 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → 𝑊𝐻)
35 simp3l 1200 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (𝑅𝐺) ≠ (𝑅𝐹))
366, 7, 8, 9trlcocnvat 40707 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺𝑇𝐹𝑇) ∧ (𝑅𝐺) ≠ (𝑅𝐹)) → (𝑅‘(𝐺𝐹)) ∈ 𝐴)
3712, 34, 2, 13, 35, 36syl221anc 1380 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (𝑅‘(𝐺𝐹)) ∈ 𝐴)
384, 6, 7, 8ltrnel 40122 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐺𝑃) ∈ 𝐴 ∧ ¬ (𝐺𝑃) 𝑊))
391, 2, 3, 38syl3anc 1370 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → ((𝐺𝑃) ∈ 𝐴 ∧ ¬ (𝐺𝑃) 𝑊))
407, 8ltrncnv 40129 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹𝑇)
411, 13, 40syl2anc 584 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → 𝐹𝑇)
427, 8, 9trlcnv 40148 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) = (𝑅𝐹))
431, 13, 42syl2anc 584 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (𝑅𝐹) = (𝑅𝐹))
4435, 43neeqtrrd 3013 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (𝑅𝐺) ≠ (𝑅𝐹))
45 simp22 1206 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → 𝐹 ≠ ( I ↾ 𝐵))
4631, 7, 8ltrncnvnid 40110 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) → 𝐹 ≠ ( I ↾ 𝐵))
471, 13, 45, 46syl3anc 1370 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → 𝐹 ≠ ( I ↾ 𝐵))
4831, 7, 8, 9trlcone 40711 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺𝑇𝐹𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ 𝐹 ≠ ( I ↾ 𝐵))) → (𝑅𝐺) ≠ (𝑅‘(𝐺𝐹)))
491, 2, 41, 44, 47, 48syl122anc 1378 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (𝑅𝐺) ≠ (𝑅‘(𝐺𝐹)))
50 eqid 2735 . . . . . 6 (0.‘𝐾) = (0.‘𝐾)
5150, 6, 7, 8, 9trlator0 40154 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → ((𝑅𝐺) ∈ 𝐴 ∨ (𝑅𝐺) = (0.‘𝐾)))
521, 2, 51syl2anc 584 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → ((𝑅𝐺) ∈ 𝐴 ∨ (𝑅𝐺) = (0.‘𝐾)))
534, 7, 8, 9trlle 40167 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → (𝑅𝐺) 𝑊)
5412, 34, 2, 53syl21anc 838 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (𝑅𝐺) 𝑊)
557, 8ltrnco 40702 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝐹𝑇) → (𝐺𝐹) ∈ 𝑇)
561, 2, 41, 55syl3anc 1370 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (𝐺𝐹) ∈ 𝑇)
574, 7, 8, 9trlle 40167 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺𝐹) ∈ 𝑇) → (𝑅‘(𝐺𝐹)) 𝑊)
581, 56, 57syl2anc 584 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (𝑅‘(𝐺𝐹)) 𝑊)
594, 5, 50, 6, 7lhp2at0nle 40018 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐺𝑃) ∈ 𝐴 ∧ ¬ (𝐺𝑃) 𝑊) ∧ (𝑅𝐺) ≠ (𝑅‘(𝐺𝐹))) ∧ (((𝑅𝐺) ∈ 𝐴 ∨ (𝑅𝐺) = (0.‘𝐾)) ∧ (𝑅𝐺) 𝑊) ∧ ((𝑅‘(𝐺𝐹)) ∈ 𝐴 ∧ (𝑅‘(𝐺𝐹)) 𝑊)) → ¬ (𝑅‘(𝐺𝐹)) ((𝐺𝑃) (𝑅𝐺)))
601, 39, 49, 52, 54, 37, 58, 59syl322anc 1397 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → ¬ (𝑅‘(𝐺𝐹)) ((𝐺𝑃) (𝑅𝐺)))
61 cdlemk5.m . . . 4 = (meet‘𝐾)
6231, 4, 5, 61, 62llnma1b 39769 . . 3 ((𝐾 ∈ HL ∧ ((𝑅𝐺) ∈ 𝐵 ∧ (𝐺𝑃) ∈ 𝐴 ∧ (𝑅‘(𝐺𝐹)) ∈ 𝐴) ∧ ¬ (𝑅‘(𝐺𝐹)) ((𝐺𝑃) (𝑅𝐺))) → (((𝐺𝑃) (𝑅𝐺)) ((𝐺𝑃) (𝑅‘(𝐺𝐹)))) = (𝐺𝑃))
6312, 33, 18, 37, 60, 62syl131anc 1382 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (((𝐺𝑃) (𝑅𝐺)) ((𝐺𝑃) (𝑅‘(𝐺𝐹)))) = (𝐺𝑃))
6430, 63eqtrd 2775 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → ((𝑃 (𝑅𝐺)) ((𝐹𝑃) (𝑅‘(𝐺𝐹)))) = (𝐺𝑃))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  w3a 1086   = wceq 1537  wcel 2106  wne 2938   class class class wbr 5148   I cid 5582  ccnv 5688  cres 5691  ccom 5693  cfv 6563  (class class class)co 7431  Basecbs 17245  lecple 17305  joincjn 18369  meetcmee 18370  0.cp0 18481  Atomscatm 39245  HLchlt 39332  LHypclh 39967  LTrncltrn 40084  trLctrl 40141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-riotaBAD 38935
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-undef 8297  df-map 8867  df-proset 18352  df-poset 18371  df-plt 18388  df-lub 18404  df-glb 18405  df-join 18406  df-meet 18407  df-p0 18483  df-p1 18484  df-lat 18490  df-clat 18557  df-oposet 39158  df-ol 39160  df-oml 39161  df-covers 39248  df-ats 39249  df-atl 39280  df-cvlat 39304  df-hlat 39333  df-llines 39481  df-lplanes 39482  df-lvols 39483  df-lines 39484  df-psubsp 39486  df-pmap 39487  df-padd 39779  df-lhyp 39971  df-laut 39972  df-ldil 40087  df-ltrn 40088  df-trl 40142
This theorem is referenced by:  cdlemkfid2N  40906  cdlemkfid3N  40908
  Copyright terms: Public domain W3C validator