Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemkfid1N Structured version   Visualization version   GIF version

Theorem cdlemkfid1N 40318
Description: Lemma for cdlemkfid3N 40322. (Contributed by NM, 29-Jul-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdlemk5.b 𝐡 = (Baseβ€˜πΎ)
cdlemk5.l ≀ = (leβ€˜πΎ)
cdlemk5.j ∨ = (joinβ€˜πΎ)
cdlemk5.m ∧ = (meetβ€˜πΎ)
cdlemk5.a 𝐴 = (Atomsβ€˜πΎ)
cdlemk5.h 𝐻 = (LHypβ€˜πΎ)
cdlemk5.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
cdlemk5.r 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
Assertion
Ref Expression
cdlemkfid1N (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 ∈ 𝑇) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))) β†’ ((𝑃 ∨ (π‘…β€˜πΊ)) ∧ ((πΉβ€˜π‘ƒ) ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹)))) = (πΊβ€˜π‘ƒ))

Proof of Theorem cdlemkfid1N
StepHypRef Expression
1 simp1 1134 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 ∈ 𝑇) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
2 simp23 1206 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 ∈ 𝑇) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))) β†’ 𝐺 ∈ 𝑇)
3 simp3r 1200 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 ∈ 𝑇) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))) β†’ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))
4 cdlemk5.l . . . . 5 ≀ = (leβ€˜πΎ)
5 cdlemk5.j . . . . 5 ∨ = (joinβ€˜πΎ)
6 cdlemk5.a . . . . 5 𝐴 = (Atomsβ€˜πΎ)
7 cdlemk5.h . . . . 5 𝐻 = (LHypβ€˜πΎ)
8 cdlemk5.t . . . . 5 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
9 cdlemk5.r . . . . 5 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
104, 5, 6, 7, 8, 9trljat3 39565 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ (𝑃 ∨ (π‘…β€˜πΊ)) = ((πΊβ€˜π‘ƒ) ∨ (π‘…β€˜πΊ)))
111, 2, 3, 10syl3anc 1369 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 ∈ 𝑇) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))) β†’ (𝑃 ∨ (π‘…β€˜πΊ)) = ((πΊβ€˜π‘ƒ) ∨ (π‘…β€˜πΊ)))
12 simp1l 1195 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 ∈ 𝑇) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))) β†’ 𝐾 ∈ HL)
13 simp21 1204 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 ∈ 𝑇) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))) β†’ 𝐹 ∈ 𝑇)
14 simp3rl 1244 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 ∈ 𝑇) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))) β†’ 𝑃 ∈ 𝐴)
154, 6, 7, 8ltrnat 39537 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴) β†’ (πΉβ€˜π‘ƒ) ∈ 𝐴)
161, 13, 14, 15syl3anc 1369 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 ∈ 𝑇) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))) β†’ (πΉβ€˜π‘ƒ) ∈ 𝐴)
174, 6, 7, 8ltrnat 39537 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴) β†’ (πΊβ€˜π‘ƒ) ∈ 𝐴)
181, 2, 14, 17syl3anc 1369 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 ∈ 𝑇) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))) β†’ (πΊβ€˜π‘ƒ) ∈ 𝐴)
195, 6hlatjcom 38764 . . . . 5 ((𝐾 ∈ HL ∧ (πΉβ€˜π‘ƒ) ∈ 𝐴 ∧ (πΊβ€˜π‘ƒ) ∈ 𝐴) β†’ ((πΉβ€˜π‘ƒ) ∨ (πΊβ€˜π‘ƒ)) = ((πΊβ€˜π‘ƒ) ∨ (πΉβ€˜π‘ƒ)))
2012, 16, 18, 19syl3anc 1369 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 ∈ 𝑇) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))) β†’ ((πΉβ€˜π‘ƒ) ∨ (πΊβ€˜π‘ƒ)) = ((πΊβ€˜π‘ƒ) ∨ (πΉβ€˜π‘ƒ)))
214, 5, 6, 7, 8, 9trlcoabs2N 40119 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ ((πΉβ€˜π‘ƒ) ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹))) = ((πΉβ€˜π‘ƒ) ∨ (πΊβ€˜π‘ƒ)))
221, 13, 2, 3, 21syl121anc 1373 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 ∈ 𝑇) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))) β†’ ((πΉβ€˜π‘ƒ) ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹))) = ((πΉβ€˜π‘ƒ) ∨ (πΊβ€˜π‘ƒ)))
237, 8, 9trlcocnv 40117 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) β†’ (π‘…β€˜(𝐹 ∘ ◑𝐺)) = (π‘…β€˜(𝐺 ∘ ◑𝐹)))
241, 13, 2, 23syl3anc 1369 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 ∈ 𝑇) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))) β†’ (π‘…β€˜(𝐹 ∘ ◑𝐺)) = (π‘…β€˜(𝐺 ∘ ◑𝐹)))
2524oveq2d 7430 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 ∈ 𝑇) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))) β†’ ((πΊβ€˜π‘ƒ) ∨ (π‘…β€˜(𝐹 ∘ ◑𝐺))) = ((πΊβ€˜π‘ƒ) ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹))))
264, 5, 6, 7, 8, 9trlcoabs2N 40119 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐺 ∈ 𝑇 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ ((πΊβ€˜π‘ƒ) ∨ (π‘…β€˜(𝐹 ∘ ◑𝐺))) = ((πΊβ€˜π‘ƒ) ∨ (πΉβ€˜π‘ƒ)))
271, 2, 13, 3, 26syl121anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 ∈ 𝑇) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))) β†’ ((πΊβ€˜π‘ƒ) ∨ (π‘…β€˜(𝐹 ∘ ◑𝐺))) = ((πΊβ€˜π‘ƒ) ∨ (πΉβ€˜π‘ƒ)))
2825, 27eqtr3d 2769 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 ∈ 𝑇) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))) β†’ ((πΊβ€˜π‘ƒ) ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹))) = ((πΊβ€˜π‘ƒ) ∨ (πΉβ€˜π‘ƒ)))
2920, 22, 283eqtr4d 2777 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 ∈ 𝑇) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))) β†’ ((πΉβ€˜π‘ƒ) ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹))) = ((πΊβ€˜π‘ƒ) ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹))))
3011, 29oveq12d 7432 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 ∈ 𝑇) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))) β†’ ((𝑃 ∨ (π‘…β€˜πΊ)) ∧ ((πΉβ€˜π‘ƒ) ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹)))) = (((πΊβ€˜π‘ƒ) ∨ (π‘…β€˜πΊ)) ∧ ((πΊβ€˜π‘ƒ) ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹)))))
31 cdlemk5.b . . . . 5 𝐡 = (Baseβ€˜πΎ)
3231, 7, 8, 9trlcl 39561 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐺 ∈ 𝑇) β†’ (π‘…β€˜πΊ) ∈ 𝐡)
331, 2, 32syl2anc 583 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 ∈ 𝑇) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))) β†’ (π‘…β€˜πΊ) ∈ 𝐡)
34 simp1r 1196 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 ∈ 𝑇) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))) β†’ π‘Š ∈ 𝐻)
35 simp3l 1199 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 ∈ 𝑇) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))) β†’ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ))
366, 7, 8, 9trlcocnvat 40121 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐺 ∈ 𝑇 ∧ 𝐹 ∈ 𝑇) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ)) β†’ (π‘…β€˜(𝐺 ∘ ◑𝐹)) ∈ 𝐴)
3712, 34, 2, 13, 35, 36syl221anc 1379 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 ∈ 𝑇) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))) β†’ (π‘…β€˜(𝐺 ∘ ◑𝐹)) ∈ 𝐴)
384, 6, 7, 8ltrnel 39536 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ ((πΊβ€˜π‘ƒ) ∈ 𝐴 ∧ Β¬ (πΊβ€˜π‘ƒ) ≀ π‘Š))
391, 2, 3, 38syl3anc 1369 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 ∈ 𝑇) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))) β†’ ((πΊβ€˜π‘ƒ) ∈ 𝐴 ∧ Β¬ (πΊβ€˜π‘ƒ) ≀ π‘Š))
407, 8ltrncnv 39543 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) β†’ ◑𝐹 ∈ 𝑇)
411, 13, 40syl2anc 583 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 ∈ 𝑇) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))) β†’ ◑𝐹 ∈ 𝑇)
427, 8, 9trlcnv 39562 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) β†’ (π‘…β€˜β—‘πΉ) = (π‘…β€˜πΉ))
431, 13, 42syl2anc 583 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 ∈ 𝑇) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))) β†’ (π‘…β€˜β—‘πΉ) = (π‘…β€˜πΉ))
4435, 43neeqtrrd 3010 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 ∈ 𝑇) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))) β†’ (π‘…β€˜πΊ) β‰  (π‘…β€˜β—‘πΉ))
45 simp22 1205 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 ∈ 𝑇) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))) β†’ 𝐹 β‰  ( I β†Ύ 𝐡))
4631, 7, 8ltrncnvnid 39524 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) β†’ ◑𝐹 β‰  ( I β†Ύ 𝐡))
471, 13, 45, 46syl3anc 1369 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 ∈ 𝑇) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))) β†’ ◑𝐹 β‰  ( I β†Ύ 𝐡))
4831, 7, 8, 9trlcone 40125 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐺 ∈ 𝑇 ∧ ◑𝐹 ∈ 𝑇) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜β—‘πΉ) ∧ ◑𝐹 β‰  ( I β†Ύ 𝐡))) β†’ (π‘…β€˜πΊ) β‰  (π‘…β€˜(𝐺 ∘ ◑𝐹)))
491, 2, 41, 44, 47, 48syl122anc 1377 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 ∈ 𝑇) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))) β†’ (π‘…β€˜πΊ) β‰  (π‘…β€˜(𝐺 ∘ ◑𝐹)))
50 eqid 2727 . . . . . 6 (0.β€˜πΎ) = (0.β€˜πΎ)
5150, 6, 7, 8, 9trlator0 39568 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐺 ∈ 𝑇) β†’ ((π‘…β€˜πΊ) ∈ 𝐴 ∨ (π‘…β€˜πΊ) = (0.β€˜πΎ)))
521, 2, 51syl2anc 583 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 ∈ 𝑇) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))) β†’ ((π‘…β€˜πΊ) ∈ 𝐴 ∨ (π‘…β€˜πΊ) = (0.β€˜πΎ)))
534, 7, 8, 9trlle 39581 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐺 ∈ 𝑇) β†’ (π‘…β€˜πΊ) ≀ π‘Š)
5412, 34, 2, 53syl21anc 837 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 ∈ 𝑇) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))) β†’ (π‘…β€˜πΊ) ≀ π‘Š)
557, 8ltrnco 40116 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐺 ∈ 𝑇 ∧ ◑𝐹 ∈ 𝑇) β†’ (𝐺 ∘ ◑𝐹) ∈ 𝑇)
561, 2, 41, 55syl3anc 1369 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 ∈ 𝑇) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))) β†’ (𝐺 ∘ ◑𝐹) ∈ 𝑇)
574, 7, 8, 9trlle 39581 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐺 ∘ ◑𝐹) ∈ 𝑇) β†’ (π‘…β€˜(𝐺 ∘ ◑𝐹)) ≀ π‘Š)
581, 56, 57syl2anc 583 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 ∈ 𝑇) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))) β†’ (π‘…β€˜(𝐺 ∘ ◑𝐹)) ≀ π‘Š)
594, 5, 50, 6, 7lhp2at0nle 39432 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((πΊβ€˜π‘ƒ) ∈ 𝐴 ∧ Β¬ (πΊβ€˜π‘ƒ) ≀ π‘Š) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜(𝐺 ∘ ◑𝐹))) ∧ (((π‘…β€˜πΊ) ∈ 𝐴 ∨ (π‘…β€˜πΊ) = (0.β€˜πΎ)) ∧ (π‘…β€˜πΊ) ≀ π‘Š) ∧ ((π‘…β€˜(𝐺 ∘ ◑𝐹)) ∈ 𝐴 ∧ (π‘…β€˜(𝐺 ∘ ◑𝐹)) ≀ π‘Š)) β†’ Β¬ (π‘…β€˜(𝐺 ∘ ◑𝐹)) ≀ ((πΊβ€˜π‘ƒ) ∨ (π‘…β€˜πΊ)))
601, 39, 49, 52, 54, 37, 58, 59syl322anc 1396 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 ∈ 𝑇) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))) β†’ Β¬ (π‘…β€˜(𝐺 ∘ ◑𝐹)) ≀ ((πΊβ€˜π‘ƒ) ∨ (π‘…β€˜πΊ)))
61 cdlemk5.m . . . 4 ∧ = (meetβ€˜πΎ)
6231, 4, 5, 61, 62llnma1b 39183 . . 3 ((𝐾 ∈ HL ∧ ((π‘…β€˜πΊ) ∈ 𝐡 ∧ (πΊβ€˜π‘ƒ) ∈ 𝐴 ∧ (π‘…β€˜(𝐺 ∘ ◑𝐹)) ∈ 𝐴) ∧ Β¬ (π‘…β€˜(𝐺 ∘ ◑𝐹)) ≀ ((πΊβ€˜π‘ƒ) ∨ (π‘…β€˜πΊ))) β†’ (((πΊβ€˜π‘ƒ) ∨ (π‘…β€˜πΊ)) ∧ ((πΊβ€˜π‘ƒ) ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹)))) = (πΊβ€˜π‘ƒ))
6312, 33, 18, 37, 60, 62syl131anc 1381 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 ∈ 𝑇) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))) β†’ (((πΊβ€˜π‘ƒ) ∨ (π‘…β€˜πΊ)) ∧ ((πΊβ€˜π‘ƒ) ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹)))) = (πΊβ€˜π‘ƒ))
6430, 63eqtrd 2767 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 ∈ 𝑇) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))) β†’ ((𝑃 ∨ (π‘…β€˜πΊ)) ∧ ((πΉβ€˜π‘ƒ) ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹)))) = (πΊβ€˜π‘ƒ))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 395   ∨ wo 846   ∧ w3a 1085   = wceq 1534   ∈ wcel 2099   β‰  wne 2935   class class class wbr 5142   I cid 5569  β—‘ccnv 5671   β†Ύ cres 5674   ∘ ccom 5676  β€˜cfv 6542  (class class class)co 7414  Basecbs 17165  lecple 17225  joincjn 18288  meetcmee 18289  0.cp0 18400  Atomscatm 38659  HLchlt 38746  LHypclh 39381  LTrncltrn 39498  trLctrl 39555
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7732  ax-riotaBAD 38349
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-iin 4994  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-1st 7985  df-2nd 7986  df-undef 8270  df-map 8836  df-proset 18272  df-poset 18290  df-plt 18307  df-lub 18323  df-glb 18324  df-join 18325  df-meet 18326  df-p0 18402  df-p1 18403  df-lat 18409  df-clat 18476  df-oposet 38572  df-ol 38574  df-oml 38575  df-covers 38662  df-ats 38663  df-atl 38694  df-cvlat 38718  df-hlat 38747  df-llines 38895  df-lplanes 38896  df-lvols 38897  df-lines 38898  df-psubsp 38900  df-pmap 38901  df-padd 39193  df-lhyp 39385  df-laut 39386  df-ldil 39501  df-ltrn 39502  df-trl 39556
This theorem is referenced by:  cdlemkfid2N  40320  cdlemkfid3N  40322
  Copyright terms: Public domain W3C validator