Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk40f Structured version   Visualization version   GIF version

Theorem cdlemk40f 40522
Description: TODO: fix comment. (Contributed by NM, 31-Jul-2013.)
Hypotheses
Ref Expression
cdlemk40.x 𝑋 = (𝑧𝑇 𝜑)
cdlemk40.u 𝑈 = (𝑔𝑇 ↦ if(𝐹 = 𝑁, 𝑔, 𝑋))
Assertion
Ref Expression
cdlemk40f ((𝐹𝑁𝐺𝑇) → (𝑈𝐺) = 𝐺 / 𝑔𝑋)
Distinct variable groups:   𝑔,𝐹   𝑔,𝑁   𝑇,𝑔
Allowed substitution hints:   𝜑(𝑧,𝑔)   𝑇(𝑧)   𝑈(𝑧,𝑔)   𝐹(𝑧)   𝐺(𝑧,𝑔)   𝑁(𝑧)   𝑋(𝑧,𝑔)

Proof of Theorem cdlemk40f
StepHypRef Expression
1 cdlemk40.x . . 3 𝑋 = (𝑧𝑇 𝜑)
2 cdlemk40.u . . 3 𝑈 = (𝑔𝑇 ↦ if(𝐹 = 𝑁, 𝑔, 𝑋))
31, 2cdlemk40 40520 . 2 (𝐺𝑇 → (𝑈𝐺) = if(𝐹 = 𝑁, 𝐺, 𝐺 / 𝑔𝑋))
4 ifnefalse 4542 . 2 (𝐹𝑁 → if(𝐹 = 𝑁, 𝐺, 𝐺 / 𝑔𝑋) = 𝐺 / 𝑔𝑋)
53, 4sylan9eqr 2787 1 ((𝐹𝑁𝐺𝑇) → (𝑈𝐺) = 𝐺 / 𝑔𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  wne 2929  csb 3889  ifcif 4530  cmpt 5232  cfv 6549  crio 7374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-iota 6501  df-fun 6551  df-fv 6557  df-riota 7375
This theorem is referenced by:  cdlemk43N  40566  cdlemk35u  40567  cdlemk55u1  40568  cdlemk39u1  40570  cdlemk19u1  40572
  Copyright terms: Public domain W3C validator