![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemk40f | Structured version Visualization version GIF version |
Description: TODO: fix comment. (Contributed by NM, 31-Jul-2013.) |
Ref | Expression |
---|---|
cdlemk40.x | ⊢ 𝑋 = (℩𝑧 ∈ 𝑇 𝜑) |
cdlemk40.u | ⊢ 𝑈 = (𝑔 ∈ 𝑇 ↦ if(𝐹 = 𝑁, 𝑔, 𝑋)) |
Ref | Expression |
---|---|
cdlemk40f | ⊢ ((𝐹 ≠ 𝑁 ∧ 𝐺 ∈ 𝑇) → (𝑈‘𝐺) = ⦋𝐺 / 𝑔⦌𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdlemk40.x | . . 3 ⊢ 𝑋 = (℩𝑧 ∈ 𝑇 𝜑) | |
2 | cdlemk40.u | . . 3 ⊢ 𝑈 = (𝑔 ∈ 𝑇 ↦ if(𝐹 = 𝑁, 𝑔, 𝑋)) | |
3 | 1, 2 | cdlemk40 40861 | . 2 ⊢ (𝐺 ∈ 𝑇 → (𝑈‘𝐺) = if(𝐹 = 𝑁, 𝐺, ⦋𝐺 / 𝑔⦌𝑋)) |
4 | ifnefalse 4542 | . 2 ⊢ (𝐹 ≠ 𝑁 → if(𝐹 = 𝑁, 𝐺, ⦋𝐺 / 𝑔⦌𝑋) = ⦋𝐺 / 𝑔⦌𝑋) | |
5 | 3, 4 | sylan9eqr 2795 | 1 ⊢ ((𝐹 ≠ 𝑁 ∧ 𝐺 ∈ 𝑇) → (𝑈‘𝐺) = ⦋𝐺 / 𝑔⦌𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1535 ∈ wcel 2104 ≠ wne 2936 ⦋csb 3908 ifcif 4530 ↦ cmpt 5232 ‘cfv 6558 ℩crio 7380 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1963 ax-7 2003 ax-8 2106 ax-9 2114 ax-10 2137 ax-11 2153 ax-12 2173 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5430 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1087 df-tru 1538 df-fal 1548 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2536 df-eu 2565 df-clab 2711 df-cleq 2725 df-clel 2812 df-nfc 2888 df-ne 2937 df-ral 3058 df-rex 3067 df-rab 3433 df-v 3479 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4915 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5689 df-rel 5690 df-cnv 5691 df-co 5692 df-dm 5693 df-iota 6510 df-fun 6560 df-fv 6566 df-riota 7381 |
This theorem is referenced by: cdlemk43N 40907 cdlemk35u 40908 cdlemk55u1 40909 cdlemk39u1 40911 cdlemk19u1 40913 |
Copyright terms: Public domain | W3C validator |