Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk40f Structured version   Visualization version   GIF version

Theorem cdlemk40f 37082
Description: TODO: fix comment. (Contributed by NM, 31-Jul-2013.)
Hypotheses
Ref Expression
cdlemk40.x 𝑋 = (𝑧𝑇 𝜑)
cdlemk40.u 𝑈 = (𝑔𝑇 ↦ if(𝐹 = 𝑁, 𝑔, 𝑋))
Assertion
Ref Expression
cdlemk40f ((𝐹𝑁𝐺𝑇) → (𝑈𝐺) = 𝐺 / 𝑔𝑋)
Distinct variable groups:   𝑔,𝐹   𝑔,𝑁   𝑇,𝑔
Allowed substitution hints:   𝜑(𝑧,𝑔)   𝑇(𝑧)   𝑈(𝑧,𝑔)   𝐹(𝑧)   𝐺(𝑧,𝑔)   𝑁(𝑧)   𝑋(𝑧,𝑔)

Proof of Theorem cdlemk40f
StepHypRef Expression
1 cdlemk40.x . . 3 𝑋 = (𝑧𝑇 𝜑)
2 cdlemk40.u . . 3 𝑈 = (𝑔𝑇 ↦ if(𝐹 = 𝑁, 𝑔, 𝑋))
31, 2cdlemk40 37080 . 2 (𝐺𝑇 → (𝑈𝐺) = if(𝐹 = 𝑁, 𝐺, 𝐺 / 𝑔𝑋))
4 ifnefalse 4319 . 2 (𝐹𝑁 → if(𝐹 = 𝑁, 𝐺, 𝐺 / 𝑔𝑋) = 𝐺 / 𝑔𝑋)
53, 4sylan9eqr 2836 1 ((𝐹𝑁𝐺𝑇) → (𝑈𝐺) = 𝐺 / 𝑔𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1601  wcel 2107  wne 2969  csb 3751  ifcif 4307  cmpt 4967  cfv 6137  crio 6884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5019  ax-nul 5027  ax-pr 5140
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4674  df-br 4889  df-opab 4951  df-mpt 4968  df-id 5263  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-iota 6101  df-fun 6139  df-fv 6145  df-riota 6885
This theorem is referenced by:  cdlemk43N  37126  cdlemk35u  37127  cdlemk55u1  37128  cdlemk39u1  37130  cdlemk19u1  37132
  Copyright terms: Public domain W3C validator