Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > ch0 | Structured version Visualization version GIF version |
Description: The zero vector belongs to any closed subspace of a Hilbert space. (Contributed by NM, 24-Aug-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ch0 | ⊢ (𝐻 ∈ Cℋ → 0ℎ ∈ 𝐻) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chsh 29487 | . 2 ⊢ (𝐻 ∈ Cℋ → 𝐻 ∈ Sℋ ) | |
2 | sh0 29479 | . 2 ⊢ (𝐻 ∈ Sℋ → 0ℎ ∈ 𝐻) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐻 ∈ Cℋ → 0ℎ ∈ 𝐻) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 0ℎc0v 29187 Sℋ csh 29191 Cℋ cch 29192 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-hilex 29262 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-xp 5586 df-cnv 5588 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fv 6426 df-ov 7258 df-sh 29470 df-ch 29484 |
This theorem is referenced by: omlsii 29666 nonbooli 29914 strlem1 30513 |
Copyright terms: Public domain | W3C validator |