HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  ch0 Structured version   Visualization version   GIF version

Theorem ch0 31164
Description: The zero vector belongs to any closed subspace of a Hilbert space. (Contributed by NM, 24-Aug-1999.) (New usage is discouraged.)
Assertion
Ref Expression
ch0 (𝐻C → 0𝐻)

Proof of Theorem ch0
StepHypRef Expression
1 chsh 31160 . 2 (𝐻C𝐻S )
2 sh0 31152 . 2 (𝐻S → 0𝐻)
31, 2syl 17 1 (𝐻C → 0𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  0c0v 30860   S csh 30864   C cch 30865
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-hilex 30935
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-xp 5647  df-cnv 5649  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fv 6522  df-ov 7393  df-sh 31143  df-ch 31157
This theorem is referenced by:  omlsii  31339  nonbooli  31587  strlem1  32186
  Copyright terms: Public domain W3C validator