HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  ch0 Structured version   Visualization version   GIF version

Theorem ch0 31200
Description: The zero vector belongs to any closed subspace of a Hilbert space. (Contributed by NM, 24-Aug-1999.) (New usage is discouraged.)
Assertion
Ref Expression
ch0 (𝐻C → 0𝐻)

Proof of Theorem ch0
StepHypRef Expression
1 chsh 31196 . 2 (𝐻C𝐻S )
2 sh0 31188 . 2 (𝐻S → 0𝐻)
31, 2syl 17 1 (𝐻C → 0𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  0c0v 30896   S csh 30900   C cch 30901
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5229  ax-hilex 30971
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-xp 5617  df-cnv 5619  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fv 6484  df-ov 7344  df-sh 31179  df-ch 31193
This theorem is referenced by:  omlsii  31375  nonbooli  31623  strlem1  32222
  Copyright terms: Public domain W3C validator