| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > ch0 | Structured version Visualization version GIF version | ||
| Description: The zero vector belongs to any closed subspace of a Hilbert space. (Contributed by NM, 24-Aug-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ch0 | ⊢ (𝐻 ∈ Cℋ → 0ℎ ∈ 𝐻) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chsh 31225 | . 2 ⊢ (𝐻 ∈ Cℋ → 𝐻 ∈ Sℋ ) | |
| 2 | sh0 31217 | . 2 ⊢ (𝐻 ∈ Sℋ → 0ℎ ∈ 𝐻) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐻 ∈ Cℋ → 0ℎ ∈ 𝐻) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 0ℎc0v 30925 Sℋ csh 30929 Cℋ cch 30930 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-hilex 31000 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-xp 5627 df-cnv 5629 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fv 6497 df-ov 7358 df-sh 31208 df-ch 31222 |
| This theorem is referenced by: omlsii 31404 nonbooli 31652 strlem1 32251 |
| Copyright terms: Public domain | W3C validator |