| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > ch0 | Structured version Visualization version GIF version | ||
| Description: The zero vector belongs to any closed subspace of a Hilbert space. (Contributed by NM, 24-Aug-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ch0 | ⊢ (𝐻 ∈ Cℋ → 0ℎ ∈ 𝐻) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chsh 31196 | . 2 ⊢ (𝐻 ∈ Cℋ → 𝐻 ∈ Sℋ ) | |
| 2 | sh0 31188 | . 2 ⊢ (𝐻 ∈ Sℋ → 0ℎ ∈ 𝐻) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐻 ∈ Cℋ → 0ℎ ∈ 𝐻) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 0ℎc0v 30896 Sℋ csh 30900 Cℋ cch 30901 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5229 ax-hilex 30971 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-xp 5617 df-cnv 5619 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fv 6484 df-ov 7344 df-sh 31179 df-ch 31193 |
| This theorem is referenced by: omlsii 31375 nonbooli 31623 strlem1 32222 |
| Copyright terms: Public domain | W3C validator |