MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovprc Structured version   Visualization version   GIF version

Theorem ovprc 7353
Description: The value of an operation when the one of the arguments is a proper class. Note: this theorem is dependent on our particular definitions of operation value, function value, and ordered pair. (Contributed by Mario Carneiro, 26-Apr-2015.)
Hypothesis
Ref Expression
ovprc1.1 Rel dom 𝐹
Assertion
Ref Expression
ovprc (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐹𝐵) = ∅)

Proof of Theorem ovprc
StepHypRef Expression
1 df-ov 7318 . 2 (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
2 df-br 5088 . . . 4 (𝐴dom 𝐹 𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ dom 𝐹)
3 ovprc1.1 . . . . 5 Rel dom 𝐹
43brrelex12i 5660 . . . 4 (𝐴dom 𝐹 𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
52, 4sylbir 234 . . 3 (⟨𝐴, 𝐵⟩ ∈ dom 𝐹 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
6 ndmfv 6843 . . 3 (¬ ⟨𝐴, 𝐵⟩ ∈ dom 𝐹 → (𝐹‘⟨𝐴, 𝐵⟩) = ∅)
75, 6nsyl5 159 . 2 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐹‘⟨𝐴, 𝐵⟩) = ∅)
81, 7eqtrid 2789 1 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐹𝐵) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1540  wcel 2105  Vcvv 3441  c0 4267  cop 4577   class class class wbr 5087  dom cdm 5607  Rel wrel 5612  cfv 6465  (class class class)co 7315
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-sep 5238  ax-nul 5245  ax-pr 5367
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-ral 3063  df-rex 3072  df-rab 3405  df-v 3443  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4268  df-if 4472  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4851  df-br 5088  df-opab 5150  df-xp 5613  df-rel 5614  df-dm 5617  df-iota 6417  df-fv 6473  df-ov 7318
This theorem is referenced by:  ovprc1  7354  ovprc2  7355  ovrcl  7356  elbasov  16989  firest  17213  psrplusg  21222  psrmulr  21225  psrvscafval  21231  mplval  21269  opsrle  21320  opsrbaslem  21322  opsrbaslemOLD  21323  evlval  21377  matbas0pc  21628  mdetfval  21807  madufval  21858  mdegfval  25299  nbgrprc0  27810  gonan0  33459  brovmptimex  41858
  Copyright terms: Public domain W3C validator