| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ovprc | Structured version Visualization version GIF version | ||
| Description: The value of an operation when the one of the arguments is a proper class. Note: this theorem is dependent on our particular definitions of operation value, function value, and ordered pair. (Contributed by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| ovprc1.1 | ⊢ Rel dom 𝐹 |
| Ref | Expression |
|---|---|
| ovprc | ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐹𝐵) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov 7358 | . 2 ⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) | |
| 2 | df-br 5096 | . . . 4 ⊢ (𝐴dom 𝐹 𝐵 ↔ 〈𝐴, 𝐵〉 ∈ dom 𝐹) | |
| 3 | ovprc1.1 | . . . . 5 ⊢ Rel dom 𝐹 | |
| 4 | 3 | brrelex12i 5676 | . . . 4 ⊢ (𝐴dom 𝐹 𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| 5 | 2, 4 | sylbir 235 | . . 3 ⊢ (〈𝐴, 𝐵〉 ∈ dom 𝐹 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| 6 | ndmfv 6863 | . . 3 ⊢ (¬ 〈𝐴, 𝐵〉 ∈ dom 𝐹 → (𝐹‘〈𝐴, 𝐵〉) = ∅) | |
| 7 | 5, 6 | nsyl5 159 | . 2 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐹‘〈𝐴, 𝐵〉) = ∅) |
| 8 | 1, 7 | eqtrid 2780 | 1 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐹𝐵) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ∅c0 4282 〈cop 4583 class class class wbr 5095 dom cdm 5621 Rel wrel 5626 ‘cfv 6489 (class class class)co 7355 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-xp 5627 df-rel 5628 df-dm 5631 df-iota 6445 df-fv 6497 df-ov 7358 |
| This theorem is referenced by: ovprc1 7394 ovprc2 7395 ovrcl 7396 elbasov 17134 firest 17343 psrplusg 21883 psrmulr 21889 psrvscafval 21895 mplval 21935 opsrle 21993 opsrbaslem 21995 evlval 22046 matbas0pc 22344 mdetfval 22521 madufval 22572 mdegfval 26014 nbgrprc0 29333 gonan0 35508 brovmptimex 44184 clnbgrprc0 47982 gricrcl 48076 grlicrcl 48169 grilcbri2 48173 upfval 49337 reldmprcof1 49542 reldmprcof2 49543 lmdfval 49810 cmdfval 49811 |
| Copyright terms: Public domain | W3C validator |