MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovprc Structured version   Visualization version   GIF version

Theorem ovprc 6913
Description: The value of an operation when the one of the arguments is a proper class. Note: this theorem is dependent on our particular definitions of operation value, function value, and ordered pair. (Contributed by Mario Carneiro, 26-Apr-2015.)
Hypothesis
Ref Expression
ovprc1.1 Rel dom 𝐹
Assertion
Ref Expression
ovprc (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐹𝐵) = ∅)

Proof of Theorem ovprc
StepHypRef Expression
1 df-ov 6879 . 2 (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
2 df-br 4842 . . . . 5 (𝐴dom 𝐹 𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ dom 𝐹)
3 ovprc1.1 . . . . . 6 Rel dom 𝐹
43brrelex12i 5360 . . . . 5 (𝐴dom 𝐹 𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
52, 4sylbir 227 . . . 4 (⟨𝐴, 𝐵⟩ ∈ dom 𝐹 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
65con3i 152 . . 3 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ¬ ⟨𝐴, 𝐵⟩ ∈ dom 𝐹)
7 ndmfv 6439 . . 3 (¬ ⟨𝐴, 𝐵⟩ ∈ dom 𝐹 → (𝐹‘⟨𝐴, 𝐵⟩) = ∅)
86, 7syl 17 . 2 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐹‘⟨𝐴, 𝐵⟩) = ∅)
91, 8syl5eq 2843 1 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐹𝐵) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 385   = wceq 1653  wcel 2157  Vcvv 3383  c0 4113  cop 4372   class class class wbr 4841  dom cdm 5310  Rel wrel 5315  cfv 6099  (class class class)co 6876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2354  ax-ext 2775  ax-sep 4973  ax-nul 4981  ax-pow 5033  ax-pr 5095
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2590  df-eu 2607  df-clab 2784  df-cleq 2790  df-clel 2793  df-nfc 2928  df-ral 3092  df-rex 3093  df-rab 3096  df-v 3385  df-dif 3770  df-un 3772  df-in 3774  df-ss 3781  df-nul 4114  df-if 4276  df-sn 4367  df-pr 4369  df-op 4373  df-uni 4627  df-br 4842  df-opab 4904  df-xp 5316  df-rel 5317  df-dm 5320  df-iota 6062  df-fv 6107  df-ov 6879
This theorem is referenced by:  ovprc1  6914  ovprc2  6915  ovrcl  6916  elbasov  16243  firest  16405  psrplusg  19701  psrmulr  19704  psrvscafval  19710  mplval  19748  opsrle  19795  opsrbaslem  19797  evlval  19843  matbas0pc  20537  mdetfval  20715  madufval  20766  mdegfval  24160  nbgrprc0  26560  brovmptimex  39095
  Copyright terms: Public domain W3C validator