![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ovprc | Structured version Visualization version GIF version |
Description: The value of an operation when the one of the arguments is a proper class. Note: this theorem is dependent on our particular definitions of operation value, function value, and ordered pair. (Contributed by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
ovprc1.1 | ⊢ Rel dom 𝐹 |
Ref | Expression |
---|---|
ovprc | ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐹𝐵) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov 7434 | . 2 ⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) | |
2 | df-br 5149 | . . . 4 ⊢ (𝐴dom 𝐹 𝐵 ↔ 〈𝐴, 𝐵〉 ∈ dom 𝐹) | |
3 | ovprc1.1 | . . . . 5 ⊢ Rel dom 𝐹 | |
4 | 3 | brrelex12i 5744 | . . . 4 ⊢ (𝐴dom 𝐹 𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
5 | 2, 4 | sylbir 235 | . . 3 ⊢ (〈𝐴, 𝐵〉 ∈ dom 𝐹 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
6 | ndmfv 6942 | . . 3 ⊢ (¬ 〈𝐴, 𝐵〉 ∈ dom 𝐹 → (𝐹‘〈𝐴, 𝐵〉) = ∅) | |
7 | 5, 6 | nsyl5 159 | . 2 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐹‘〈𝐴, 𝐵〉) = ∅) |
8 | 1, 7 | eqtrid 2787 | 1 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐹𝐵) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 Vcvv 3478 ∅c0 4339 〈cop 4637 class class class wbr 5148 dom cdm 5689 Rel wrel 5694 ‘cfv 6563 (class class class)co 7431 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-xp 5695 df-rel 5696 df-dm 5699 df-iota 6516 df-fv 6571 df-ov 7434 |
This theorem is referenced by: ovprc1 7470 ovprc2 7471 ovrcl 7472 elbasov 17252 firest 17479 psrplusg 21974 psrmulr 21980 psrvscafval 21986 mplval 22027 opsrle 22083 opsrbaslem 22085 opsrbaslemOLD 22086 evlval 22137 matbas0pc 22429 mdetfval 22608 madufval 22659 mdegfval 26116 nbgrprc0 29366 gonan0 35377 brovmptimex 44017 clnbgrprc0 47745 gricrcl 47821 grlicrcl 47903 grilcbri2 47907 |
Copyright terms: Public domain | W3C validator |