![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ovprc | Structured version Visualization version GIF version |
Description: The value of an operation when the one of the arguments is a proper class. Note: this theorem is dependent on our particular definitions of operation value, function value, and ordered pair. (Contributed by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
ovprc1.1 | ⊢ Rel dom 𝐹 |
Ref | Expression |
---|---|
ovprc | ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐹𝐵) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov 7422 | . 2 ⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) | |
2 | df-br 5150 | . . . 4 ⊢ (𝐴dom 𝐹 𝐵 ↔ 〈𝐴, 𝐵〉 ∈ dom 𝐹) | |
3 | ovprc1.1 | . . . . 5 ⊢ Rel dom 𝐹 | |
4 | 3 | brrelex12i 5733 | . . . 4 ⊢ (𝐴dom 𝐹 𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
5 | 2, 4 | sylbir 234 | . . 3 ⊢ (〈𝐴, 𝐵〉 ∈ dom 𝐹 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
6 | ndmfv 6931 | . . 3 ⊢ (¬ 〈𝐴, 𝐵〉 ∈ dom 𝐹 → (𝐹‘〈𝐴, 𝐵〉) = ∅) | |
7 | 5, 6 | nsyl5 159 | . 2 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐹‘〈𝐴, 𝐵〉) = ∅) |
8 | 1, 7 | eqtrid 2777 | 1 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐹𝐵) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 Vcvv 3461 ∅c0 4322 〈cop 4636 class class class wbr 5149 dom cdm 5678 Rel wrel 5683 ‘cfv 6549 (class class class)co 7419 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-opab 5212 df-xp 5684 df-rel 5685 df-dm 5688 df-iota 6501 df-fv 6557 df-ov 7422 |
This theorem is referenced by: ovprc1 7458 ovprc2 7459 ovrcl 7460 elbasov 17195 firest 17422 psrplusg 21903 psrmulr 21909 psrvscafval 21915 mplval 21956 opsrle 22012 opsrbaslem 22014 opsrbaslemOLD 22015 evlval 22068 matbas0pc 22358 mdetfval 22537 madufval 22588 mdegfval 26047 nbgrprc0 29224 gonan0 35135 brovmptimex 43601 clnbgrprc0 47299 gricbri 47370 |
Copyright terms: Public domain | W3C validator |