Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  alexsubALTlem1 Structured version   Visualization version   GIF version

Theorem alexsubALTlem1 22747
 Description: Lemma for alexsubALT 22751. A compact space has a subbase such that every cover taken from it has a finite subcover. (Contributed by Jeff Hankins, 27-Jan-2010.)
Hypothesis
Ref Expression
alexsubALT.1 𝑋 = 𝐽
Assertion
Ref Expression
alexsubALTlem1 (𝐽 ∈ Comp → ∃𝑥(𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑)))
Distinct variable groups:   𝑐,𝑑,𝑥,𝐽   𝑋,𝑐,𝑑,𝑥

Proof of Theorem alexsubALTlem1
StepHypRef Expression
1 cmptop 22095 . . 3 (𝐽 ∈ Comp → 𝐽 ∈ Top)
2 fitop 21600 . . . . 5 (𝐽 ∈ Top → (fi‘𝐽) = 𝐽)
32fveq2d 6662 . . . 4 (𝐽 ∈ Top → (topGen‘(fi‘𝐽)) = (topGen‘𝐽))
4 tgtop 21673 . . . 4 (𝐽 ∈ Top → (topGen‘𝐽) = 𝐽)
53, 4eqtr2d 2794 . . 3 (𝐽 ∈ Top → 𝐽 = (topGen‘(fi‘𝐽)))
61, 5syl 17 . 2 (𝐽 ∈ Comp → 𝐽 = (topGen‘(fi‘𝐽)))
7 velpw 4499 . . . 4 (𝑐 ∈ 𝒫 𝐽𝑐𝐽)
8 alexsubALT.1 . . . . . 6 𝑋 = 𝐽
98cmpcov 22089 . . . . 5 ((𝐽 ∈ Comp ∧ 𝑐𝐽𝑋 = 𝑐) → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑)
1093exp 1116 . . . 4 (𝐽 ∈ Comp → (𝑐𝐽 → (𝑋 = 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑)))
117, 10syl5bi 245 . . 3 (𝐽 ∈ Comp → (𝑐 ∈ 𝒫 𝐽 → (𝑋 = 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑)))
1211ralrimiv 3112 . 2 (𝐽 ∈ Comp → ∀𝑐 ∈ 𝒫 𝐽(𝑋 = 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑))
13 2fveq3 6663 . . . . 5 (𝑥 = 𝐽 → (topGen‘(fi‘𝑥)) = (topGen‘(fi‘𝐽)))
1413eqeq2d 2769 . . . 4 (𝑥 = 𝐽 → (𝐽 = (topGen‘(fi‘𝑥)) ↔ 𝐽 = (topGen‘(fi‘𝐽))))
15 pweq 4510 . . . . 5 (𝑥 = 𝐽 → 𝒫 𝑥 = 𝒫 𝐽)
1615raleqdv 3329 . . . 4 (𝑥 = 𝐽 → (∀𝑐 ∈ 𝒫 𝑥(𝑋 = 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑) ↔ ∀𝑐 ∈ 𝒫 𝐽(𝑋 = 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑)))
1714, 16anbi12d 633 . . 3 (𝑥 = 𝐽 → ((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑)) ↔ (𝐽 = (topGen‘(fi‘𝐽)) ∧ ∀𝑐 ∈ 𝒫 𝐽(𝑋 = 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑))))
1817spcegv 3515 . 2 (𝐽 ∈ Comp → ((𝐽 = (topGen‘(fi‘𝐽)) ∧ ∀𝑐 ∈ 𝒫 𝐽(𝑋 = 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑)) → ∃𝑥(𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑))))
196, 12, 18mp2and 698 1 (𝐽 ∈ Comp → ∃𝑥(𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = 𝑑)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538  ∃wex 1781   ∈ wcel 2111  ∀wral 3070  ∃wrex 3071   ∩ cin 3857   ⊆ wss 3858  𝒫 cpw 4494  ∪ cuni 4798  ‘cfv 6335  Fincfn 8527  ficfi 8907  topGenctg 16769  Topctop 21593  Compccmp 22086 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3697  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-int 4839  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-om 7580  df-1o 8112  df-er 8299  df-en 8528  df-fin 8531  df-fi 8908  df-topgen 16775  df-top 21594  df-cmp 22087 This theorem is referenced by:  alexsubALT  22751
 Copyright terms: Public domain W3C validator