Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > alexsubALTlem1 | Structured version Visualization version GIF version |
Description: Lemma for alexsubALT 23110. A compact space has a subbase such that every cover taken from it has a finite subcover. (Contributed by Jeff Hankins, 27-Jan-2010.) |
Ref | Expression |
---|---|
alexsubALT.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
alexsubALTlem1 | ⊢ (𝐽 ∈ Comp → ∃𝑥(𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cmptop 22454 | . . 3 ⊢ (𝐽 ∈ Comp → 𝐽 ∈ Top) | |
2 | fitop 21957 | . . . . 5 ⊢ (𝐽 ∈ Top → (fi‘𝐽) = 𝐽) | |
3 | 2 | fveq2d 6760 | . . . 4 ⊢ (𝐽 ∈ Top → (topGen‘(fi‘𝐽)) = (topGen‘𝐽)) |
4 | tgtop 22031 | . . . 4 ⊢ (𝐽 ∈ Top → (topGen‘𝐽) = 𝐽) | |
5 | 3, 4 | eqtr2d 2779 | . . 3 ⊢ (𝐽 ∈ Top → 𝐽 = (topGen‘(fi‘𝐽))) |
6 | 1, 5 | syl 17 | . 2 ⊢ (𝐽 ∈ Comp → 𝐽 = (topGen‘(fi‘𝐽))) |
7 | velpw 4535 | . . . 4 ⊢ (𝑐 ∈ 𝒫 𝐽 ↔ 𝑐 ⊆ 𝐽) | |
8 | alexsubALT.1 | . . . . . 6 ⊢ 𝑋 = ∪ 𝐽 | |
9 | 8 | cmpcov 22448 | . . . . 5 ⊢ ((𝐽 ∈ Comp ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐) → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) |
10 | 9 | 3exp 1117 | . . . 4 ⊢ (𝐽 ∈ Comp → (𝑐 ⊆ 𝐽 → (𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑))) |
11 | 7, 10 | syl5bi 241 | . . 3 ⊢ (𝐽 ∈ Comp → (𝑐 ∈ 𝒫 𝐽 → (𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑))) |
12 | 11 | ralrimiv 3106 | . 2 ⊢ (𝐽 ∈ Comp → ∀𝑐 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑)) |
13 | 2fveq3 6761 | . . . . 5 ⊢ (𝑥 = 𝐽 → (topGen‘(fi‘𝑥)) = (topGen‘(fi‘𝐽))) | |
14 | 13 | eqeq2d 2749 | . . . 4 ⊢ (𝑥 = 𝐽 → (𝐽 = (topGen‘(fi‘𝑥)) ↔ 𝐽 = (topGen‘(fi‘𝐽)))) |
15 | pweq 4546 | . . . . 5 ⊢ (𝑥 = 𝐽 → 𝒫 𝑥 = 𝒫 𝐽) | |
16 | 15 | raleqdv 3339 | . . . 4 ⊢ (𝑥 = 𝐽 → (∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ↔ ∀𝑐 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑))) |
17 | 14, 16 | anbi12d 630 | . . 3 ⊢ (𝑥 = 𝐽 → ((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑)) ↔ (𝐽 = (topGen‘(fi‘𝐽)) ∧ ∀𝑐 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑)))) |
18 | 17 | spcegv 3526 | . 2 ⊢ (𝐽 ∈ Comp → ((𝐽 = (topGen‘(fi‘𝐽)) ∧ ∀𝑐 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑)) → ∃𝑥(𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑)))) |
19 | 6, 12, 18 | mp2and 695 | 1 ⊢ (𝐽 ∈ Comp → ∃𝑥(𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∃wex 1783 ∈ wcel 2108 ∀wral 3063 ∃wrex 3064 ∩ cin 3882 ⊆ wss 3883 𝒫 cpw 4530 ∪ cuni 4836 ‘cfv 6418 Fincfn 8691 ficfi 9099 topGenctg 17065 Topctop 21950 Compccmp 22445 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-om 7688 df-1o 8267 df-er 8456 df-en 8692 df-fin 8695 df-fi 9100 df-topgen 17071 df-top 21951 df-cmp 22446 |
This theorem is referenced by: alexsubALT 23110 |
Copyright terms: Public domain | W3C validator |