| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alexsubALTlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for alexsubALT 23938. A compact space has a subbase such that every cover taken from it has a finite subcover. (Contributed by Jeff Hankins, 27-Jan-2010.) |
| Ref | Expression |
|---|---|
| alexsubALT.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| alexsubALTlem1 | ⊢ (𝐽 ∈ Comp → ∃𝑥(𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cmptop 23282 | . . 3 ⊢ (𝐽 ∈ Comp → 𝐽 ∈ Top) | |
| 2 | fitop 22787 | . . . . 5 ⊢ (𝐽 ∈ Top → (fi‘𝐽) = 𝐽) | |
| 3 | 2 | fveq2d 6862 | . . . 4 ⊢ (𝐽 ∈ Top → (topGen‘(fi‘𝐽)) = (topGen‘𝐽)) |
| 4 | tgtop 22860 | . . . 4 ⊢ (𝐽 ∈ Top → (topGen‘𝐽) = 𝐽) | |
| 5 | 3, 4 | eqtr2d 2765 | . . 3 ⊢ (𝐽 ∈ Top → 𝐽 = (topGen‘(fi‘𝐽))) |
| 6 | 1, 5 | syl 17 | . 2 ⊢ (𝐽 ∈ Comp → 𝐽 = (topGen‘(fi‘𝐽))) |
| 7 | velpw 4568 | . . . 4 ⊢ (𝑐 ∈ 𝒫 𝐽 ↔ 𝑐 ⊆ 𝐽) | |
| 8 | alexsubALT.1 | . . . . . 6 ⊢ 𝑋 = ∪ 𝐽 | |
| 9 | 8 | cmpcov 23276 | . . . . 5 ⊢ ((𝐽 ∈ Comp ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐) → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) |
| 10 | 9 | 3exp 1119 | . . . 4 ⊢ (𝐽 ∈ Comp → (𝑐 ⊆ 𝐽 → (𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑))) |
| 11 | 7, 10 | biimtrid 242 | . . 3 ⊢ (𝐽 ∈ Comp → (𝑐 ∈ 𝒫 𝐽 → (𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑))) |
| 12 | 11 | ralrimiv 3124 | . 2 ⊢ (𝐽 ∈ Comp → ∀𝑐 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑)) |
| 13 | 2fveq3 6863 | . . . . 5 ⊢ (𝑥 = 𝐽 → (topGen‘(fi‘𝑥)) = (topGen‘(fi‘𝐽))) | |
| 14 | 13 | eqeq2d 2740 | . . . 4 ⊢ (𝑥 = 𝐽 → (𝐽 = (topGen‘(fi‘𝑥)) ↔ 𝐽 = (topGen‘(fi‘𝐽)))) |
| 15 | pweq 4577 | . . . . 5 ⊢ (𝑥 = 𝐽 → 𝒫 𝑥 = 𝒫 𝐽) | |
| 16 | 15 | raleqdv 3299 | . . . 4 ⊢ (𝑥 = 𝐽 → (∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ↔ ∀𝑐 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑))) |
| 17 | 14, 16 | anbi12d 632 | . . 3 ⊢ (𝑥 = 𝐽 → ((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑)) ↔ (𝐽 = (topGen‘(fi‘𝐽)) ∧ ∀𝑐 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑)))) |
| 18 | 17 | spcegv 3563 | . 2 ⊢ (𝐽 ∈ Comp → ((𝐽 = (topGen‘(fi‘𝐽)) ∧ ∀𝑐 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑)) → ∃𝑥(𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑)))) |
| 19 | 6, 12, 18 | mp2and 699 | 1 ⊢ (𝐽 ∈ Comp → ∃𝑥(𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 ∩ cin 3913 ⊆ wss 3914 𝒫 cpw 4563 ∪ cuni 4871 ‘cfv 6511 Fincfn 8918 ficfi 9361 topGenctg 17400 Topctop 22780 Compccmp 23273 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-om 7843 df-1o 8434 df-2o 8435 df-en 8919 df-fin 8922 df-fi 9362 df-topgen 17406 df-top 22781 df-cmp 23274 |
| This theorem is referenced by: alexsubALT 23938 |
| Copyright terms: Public domain | W3C validator |