MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alexsubALTlem1 Structured version   Visualization version   GIF version

Theorem alexsubALTlem1 23550
Description: Lemma for alexsubALT 23554. A compact space has a subbase such that every cover taken from it has a finite subcover. (Contributed by Jeff Hankins, 27-Jan-2010.)
Hypothesis
Ref Expression
alexsubALT.1 𝑋 = βˆͺ 𝐽
Assertion
Ref Expression
alexsubALTlem1 (𝐽 ∈ Comp β†’ βˆƒπ‘₯(𝐽 = (topGenβ€˜(fiβ€˜π‘₯)) ∧ βˆ€π‘ ∈ 𝒫 π‘₯(𝑋 = βˆͺ 𝑐 β†’ βˆƒπ‘‘ ∈ (𝒫 𝑐 ∩ Fin)𝑋 = βˆͺ 𝑑)))
Distinct variable groups:   𝑐,𝑑,π‘₯,𝐽   𝑋,𝑐,𝑑,π‘₯

Proof of Theorem alexsubALTlem1
StepHypRef Expression
1 cmptop 22898 . . 3 (𝐽 ∈ Comp β†’ 𝐽 ∈ Top)
2 fitop 22401 . . . . 5 (𝐽 ∈ Top β†’ (fiβ€˜π½) = 𝐽)
32fveq2d 6895 . . . 4 (𝐽 ∈ Top β†’ (topGenβ€˜(fiβ€˜π½)) = (topGenβ€˜π½))
4 tgtop 22475 . . . 4 (𝐽 ∈ Top β†’ (topGenβ€˜π½) = 𝐽)
53, 4eqtr2d 2773 . . 3 (𝐽 ∈ Top β†’ 𝐽 = (topGenβ€˜(fiβ€˜π½)))
61, 5syl 17 . 2 (𝐽 ∈ Comp β†’ 𝐽 = (topGenβ€˜(fiβ€˜π½)))
7 velpw 4607 . . . 4 (𝑐 ∈ 𝒫 𝐽 ↔ 𝑐 βŠ† 𝐽)
8 alexsubALT.1 . . . . . 6 𝑋 = βˆͺ 𝐽
98cmpcov 22892 . . . . 5 ((𝐽 ∈ Comp ∧ 𝑐 βŠ† 𝐽 ∧ 𝑋 = βˆͺ 𝑐) β†’ βˆƒπ‘‘ ∈ (𝒫 𝑐 ∩ Fin)𝑋 = βˆͺ 𝑑)
1093exp 1119 . . . 4 (𝐽 ∈ Comp β†’ (𝑐 βŠ† 𝐽 β†’ (𝑋 = βˆͺ 𝑐 β†’ βˆƒπ‘‘ ∈ (𝒫 𝑐 ∩ Fin)𝑋 = βˆͺ 𝑑)))
117, 10biimtrid 241 . . 3 (𝐽 ∈ Comp β†’ (𝑐 ∈ 𝒫 𝐽 β†’ (𝑋 = βˆͺ 𝑐 β†’ βˆƒπ‘‘ ∈ (𝒫 𝑐 ∩ Fin)𝑋 = βˆͺ 𝑑)))
1211ralrimiv 3145 . 2 (𝐽 ∈ Comp β†’ βˆ€π‘ ∈ 𝒫 𝐽(𝑋 = βˆͺ 𝑐 β†’ βˆƒπ‘‘ ∈ (𝒫 𝑐 ∩ Fin)𝑋 = βˆͺ 𝑑))
13 2fveq3 6896 . . . . 5 (π‘₯ = 𝐽 β†’ (topGenβ€˜(fiβ€˜π‘₯)) = (topGenβ€˜(fiβ€˜π½)))
1413eqeq2d 2743 . . . 4 (π‘₯ = 𝐽 β†’ (𝐽 = (topGenβ€˜(fiβ€˜π‘₯)) ↔ 𝐽 = (topGenβ€˜(fiβ€˜π½))))
15 pweq 4616 . . . . 5 (π‘₯ = 𝐽 β†’ 𝒫 π‘₯ = 𝒫 𝐽)
1615raleqdv 3325 . . . 4 (π‘₯ = 𝐽 β†’ (βˆ€π‘ ∈ 𝒫 π‘₯(𝑋 = βˆͺ 𝑐 β†’ βˆƒπ‘‘ ∈ (𝒫 𝑐 ∩ Fin)𝑋 = βˆͺ 𝑑) ↔ βˆ€π‘ ∈ 𝒫 𝐽(𝑋 = βˆͺ 𝑐 β†’ βˆƒπ‘‘ ∈ (𝒫 𝑐 ∩ Fin)𝑋 = βˆͺ 𝑑)))
1714, 16anbi12d 631 . . 3 (π‘₯ = 𝐽 β†’ ((𝐽 = (topGenβ€˜(fiβ€˜π‘₯)) ∧ βˆ€π‘ ∈ 𝒫 π‘₯(𝑋 = βˆͺ 𝑐 β†’ βˆƒπ‘‘ ∈ (𝒫 𝑐 ∩ Fin)𝑋 = βˆͺ 𝑑)) ↔ (𝐽 = (topGenβ€˜(fiβ€˜π½)) ∧ βˆ€π‘ ∈ 𝒫 𝐽(𝑋 = βˆͺ 𝑐 β†’ βˆƒπ‘‘ ∈ (𝒫 𝑐 ∩ Fin)𝑋 = βˆͺ 𝑑))))
1817spcegv 3587 . 2 (𝐽 ∈ Comp β†’ ((𝐽 = (topGenβ€˜(fiβ€˜π½)) ∧ βˆ€π‘ ∈ 𝒫 𝐽(𝑋 = βˆͺ 𝑐 β†’ βˆƒπ‘‘ ∈ (𝒫 𝑐 ∩ Fin)𝑋 = βˆͺ 𝑑)) β†’ βˆƒπ‘₯(𝐽 = (topGenβ€˜(fiβ€˜π‘₯)) ∧ βˆ€π‘ ∈ 𝒫 π‘₯(𝑋 = βˆͺ 𝑐 β†’ βˆƒπ‘‘ ∈ (𝒫 𝑐 ∩ Fin)𝑋 = βˆͺ 𝑑))))
196, 12, 18mp2and 697 1 (𝐽 ∈ Comp β†’ βˆƒπ‘₯(𝐽 = (topGenβ€˜(fiβ€˜π‘₯)) ∧ βˆ€π‘ ∈ 𝒫 π‘₯(𝑋 = βˆͺ 𝑐 β†’ βˆƒπ‘‘ ∈ (𝒫 𝑐 ∩ Fin)𝑋 = βˆͺ 𝑑)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541  βˆƒwex 1781   ∈ wcel 2106  βˆ€wral 3061  βˆƒwrex 3070   ∩ cin 3947   βŠ† wss 3948  π’« cpw 4602  βˆͺ cuni 4908  β€˜cfv 6543  Fincfn 8938  ficfi 9404  topGenctg 17382  Topctop 22394  Compccmp 22889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-om 7855  df-1o 8465  df-er 8702  df-en 8939  df-fin 8942  df-fi 9405  df-topgen 17388  df-top 22395  df-cmp 22890
This theorem is referenced by:  alexsubALT  23554
  Copyright terms: Public domain W3C validator