| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alexsubALTlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for alexsubALT 23967. A compact space has a subbase such that every cover taken from it has a finite subcover. (Contributed by Jeff Hankins, 27-Jan-2010.) |
| Ref | Expression |
|---|---|
| alexsubALT.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| alexsubALTlem1 | ⊢ (𝐽 ∈ Comp → ∃𝑥(𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cmptop 23311 | . . 3 ⊢ (𝐽 ∈ Comp → 𝐽 ∈ Top) | |
| 2 | fitop 22816 | . . . . 5 ⊢ (𝐽 ∈ Top → (fi‘𝐽) = 𝐽) | |
| 3 | 2 | fveq2d 6826 | . . . 4 ⊢ (𝐽 ∈ Top → (topGen‘(fi‘𝐽)) = (topGen‘𝐽)) |
| 4 | tgtop 22889 | . . . 4 ⊢ (𝐽 ∈ Top → (topGen‘𝐽) = 𝐽) | |
| 5 | 3, 4 | eqtr2d 2767 | . . 3 ⊢ (𝐽 ∈ Top → 𝐽 = (topGen‘(fi‘𝐽))) |
| 6 | 1, 5 | syl 17 | . 2 ⊢ (𝐽 ∈ Comp → 𝐽 = (topGen‘(fi‘𝐽))) |
| 7 | velpw 4555 | . . . 4 ⊢ (𝑐 ∈ 𝒫 𝐽 ↔ 𝑐 ⊆ 𝐽) | |
| 8 | alexsubALT.1 | . . . . . 6 ⊢ 𝑋 = ∪ 𝐽 | |
| 9 | 8 | cmpcov 23305 | . . . . 5 ⊢ ((𝐽 ∈ Comp ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐) → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) |
| 10 | 9 | 3exp 1119 | . . . 4 ⊢ (𝐽 ∈ Comp → (𝑐 ⊆ 𝐽 → (𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑))) |
| 11 | 7, 10 | biimtrid 242 | . . 3 ⊢ (𝐽 ∈ Comp → (𝑐 ∈ 𝒫 𝐽 → (𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑))) |
| 12 | 11 | ralrimiv 3123 | . 2 ⊢ (𝐽 ∈ Comp → ∀𝑐 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑)) |
| 13 | 2fveq3 6827 | . . . . 5 ⊢ (𝑥 = 𝐽 → (topGen‘(fi‘𝑥)) = (topGen‘(fi‘𝐽))) | |
| 14 | 13 | eqeq2d 2742 | . . . 4 ⊢ (𝑥 = 𝐽 → (𝐽 = (topGen‘(fi‘𝑥)) ↔ 𝐽 = (topGen‘(fi‘𝐽)))) |
| 15 | pweq 4564 | . . . . 5 ⊢ (𝑥 = 𝐽 → 𝒫 𝑥 = 𝒫 𝐽) | |
| 16 | 15 | raleqdv 3292 | . . . 4 ⊢ (𝑥 = 𝐽 → (∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) ↔ ∀𝑐 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑))) |
| 17 | 14, 16 | anbi12d 632 | . . 3 ⊢ (𝑥 = 𝐽 → ((𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑)) ↔ (𝐽 = (topGen‘(fi‘𝐽)) ∧ ∀𝑐 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑)))) |
| 18 | 17 | spcegv 3552 | . 2 ⊢ (𝐽 ∈ Comp → ((𝐽 = (topGen‘(fi‘𝐽)) ∧ ∀𝑐 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑)) → ∃𝑥(𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑)))) |
| 19 | 6, 12, 18 | mp2and 699 | 1 ⊢ (𝐽 ∈ Comp → ∃𝑥(𝐽 = (topGen‘(fi‘𝑥)) ∧ ∀𝑐 ∈ 𝒫 𝑥(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 ∩ cin 3901 ⊆ wss 3902 𝒫 cpw 4550 ∪ cuni 4859 ‘cfv 6481 Fincfn 8869 ficfi 9294 topGenctg 17341 Topctop 22809 Compccmp 23302 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-om 7797 df-1o 8385 df-2o 8386 df-en 8870 df-fin 8873 df-fi 9295 df-topgen 17347 df-top 22810 df-cmp 23303 |
| This theorem is referenced by: alexsubALT 23967 |
| Copyright terms: Public domain | W3C validator |