Step | Hyp | Ref
| Expression |
1 | | lebnum.c |
. . 3
⊢ (𝜑 → 𝐽 ∈ Comp) |
2 | | lebnum.s |
. . 3
⊢ (𝜑 → 𝑈 ⊆ 𝐽) |
3 | | lebnum.d |
. . . . . 6
⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) |
4 | | metxmet 23487 |
. . . . . 6
⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) |
5 | 3, 4 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |
6 | | lebnum.j |
. . . . . 6
⊢ 𝐽 = (MetOpen‘𝐷) |
7 | 6 | mopnuni 23594 |
. . . . 5
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = ∪ 𝐽) |
8 | 5, 7 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑋 = ∪ 𝐽) |
9 | | lebnum.u |
. . . 4
⊢ (𝜑 → 𝑋 = ∪ 𝑈) |
10 | 8, 9 | eqtr3d 2780 |
. . 3
⊢ (𝜑 → ∪ 𝐽 =
∪ 𝑈) |
11 | | eqid 2738 |
. . . 4
⊢ ∪ 𝐽 =
∪ 𝐽 |
12 | 11 | cmpcov 22540 |
. . 3
⊢ ((𝐽 ∈ Comp ∧ 𝑈 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪
𝑈) → ∃𝑤 ∈ (𝒫 𝑈 ∩ Fin)∪ 𝐽 =
∪ 𝑤) |
13 | 1, 2, 10, 12 | syl3anc 1370 |
. 2
⊢ (𝜑 → ∃𝑤 ∈ (𝒫 𝑈 ∩ Fin)∪
𝐽 = ∪ 𝑤) |
14 | | 1rp 12734 |
. . . 4
⊢ 1 ∈
ℝ+ |
15 | | simprl 768 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ ∪ 𝐽 =
∪ 𝑤)) → 𝑤 ∈ (𝒫 𝑈 ∩ Fin)) |
16 | 15 | elin1d 4132 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ ∪ 𝐽 =
∪ 𝑤)) → 𝑤 ∈ 𝒫 𝑈) |
17 | 16 | elpwid 4544 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ ∪ 𝐽 =
∪ 𝑤)) → 𝑤 ⊆ 𝑈) |
18 | 17 | ad2antrr 723 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ ∪ 𝐽 =
∪ 𝑤)) ∧ 𝑋 ∈ 𝑤) ∧ 𝑥 ∈ 𝑋) → 𝑤 ⊆ 𝑈) |
19 | | simplr 766 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ ∪ 𝐽 =
∪ 𝑤)) ∧ 𝑋 ∈ 𝑤) ∧ 𝑥 ∈ 𝑋) → 𝑋 ∈ 𝑤) |
20 | 18, 19 | sseldd 3922 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ ∪ 𝐽 =
∪ 𝑤)) ∧ 𝑋 ∈ 𝑤) ∧ 𝑥 ∈ 𝑋) → 𝑋 ∈ 𝑈) |
21 | 5 | ad3antrrr 727 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ ∪ 𝐽 =
∪ 𝑤)) ∧ 𝑋 ∈ 𝑤) ∧ 𝑥 ∈ 𝑋) → 𝐷 ∈ (∞Met‘𝑋)) |
22 | | simpr 485 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ ∪ 𝐽 =
∪ 𝑤)) ∧ 𝑋 ∈ 𝑤) ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ 𝑋) |
23 | | rpxr 12739 |
. . . . . . . 8
⊢ (1 ∈
ℝ+ → 1 ∈ ℝ*) |
24 | 14, 23 | mp1i 13 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ ∪ 𝐽 =
∪ 𝑤)) ∧ 𝑋 ∈ 𝑤) ∧ 𝑥 ∈ 𝑋) → 1 ∈
ℝ*) |
25 | | blssm 23571 |
. . . . . . 7
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ 𝑋 ∧ 1 ∈ ℝ*) →
(𝑥(ball‘𝐷)1) ⊆ 𝑋) |
26 | 21, 22, 24, 25 | syl3anc 1370 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ ∪ 𝐽 =
∪ 𝑤)) ∧ 𝑋 ∈ 𝑤) ∧ 𝑥 ∈ 𝑋) → (𝑥(ball‘𝐷)1) ⊆ 𝑋) |
27 | | sseq2 3947 |
. . . . . . 7
⊢ (𝑢 = 𝑋 → ((𝑥(ball‘𝐷)1) ⊆ 𝑢 ↔ (𝑥(ball‘𝐷)1) ⊆ 𝑋)) |
28 | 27 | rspcev 3561 |
. . . . . 6
⊢ ((𝑋 ∈ 𝑈 ∧ (𝑥(ball‘𝐷)1) ⊆ 𝑋) → ∃𝑢 ∈ 𝑈 (𝑥(ball‘𝐷)1) ⊆ 𝑢) |
29 | 20, 26, 28 | syl2anc 584 |
. . . . 5
⊢ ((((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ ∪ 𝐽 =
∪ 𝑤)) ∧ 𝑋 ∈ 𝑤) ∧ 𝑥 ∈ 𝑋) → ∃𝑢 ∈ 𝑈 (𝑥(ball‘𝐷)1) ⊆ 𝑢) |
30 | 29 | ralrimiva 3103 |
. . . 4
⊢ (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ ∪ 𝐽 =
∪ 𝑤)) ∧ 𝑋 ∈ 𝑤) → ∀𝑥 ∈ 𝑋 ∃𝑢 ∈ 𝑈 (𝑥(ball‘𝐷)1) ⊆ 𝑢) |
31 | | oveq2 7283 |
. . . . . . . 8
⊢ (𝑑 = 1 → (𝑥(ball‘𝐷)𝑑) = (𝑥(ball‘𝐷)1)) |
32 | 31 | sseq1d 3952 |
. . . . . . 7
⊢ (𝑑 = 1 → ((𝑥(ball‘𝐷)𝑑) ⊆ 𝑢 ↔ (𝑥(ball‘𝐷)1) ⊆ 𝑢)) |
33 | 32 | rexbidv 3226 |
. . . . . 6
⊢ (𝑑 = 1 → (∃𝑢 ∈ 𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢 ↔ ∃𝑢 ∈ 𝑈 (𝑥(ball‘𝐷)1) ⊆ 𝑢)) |
34 | 33 | ralbidv 3112 |
. . . . 5
⊢ (𝑑 = 1 → (∀𝑥 ∈ 𝑋 ∃𝑢 ∈ 𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢 ↔ ∀𝑥 ∈ 𝑋 ∃𝑢 ∈ 𝑈 (𝑥(ball‘𝐷)1) ⊆ 𝑢)) |
35 | 34 | rspcev 3561 |
. . . 4
⊢ ((1
∈ ℝ+ ∧ ∀𝑥 ∈ 𝑋 ∃𝑢 ∈ 𝑈 (𝑥(ball‘𝐷)1) ⊆ 𝑢) → ∃𝑑 ∈ ℝ+ ∀𝑥 ∈ 𝑋 ∃𝑢 ∈ 𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢) |
36 | 14, 30, 35 | sylancr 587 |
. . 3
⊢ (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ ∪ 𝐽 =
∪ 𝑤)) ∧ 𝑋 ∈ 𝑤) → ∃𝑑 ∈ ℝ+ ∀𝑥 ∈ 𝑋 ∃𝑢 ∈ 𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢) |
37 | 3 | ad2antrr 723 |
. . . . 5
⊢ (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ ∪ 𝐽 =
∪ 𝑤)) ∧ ¬ 𝑋 ∈ 𝑤) → 𝐷 ∈ (Met‘𝑋)) |
38 | 1 | ad2antrr 723 |
. . . . 5
⊢ (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ ∪ 𝐽 =
∪ 𝑤)) ∧ ¬ 𝑋 ∈ 𝑤) → 𝐽 ∈ Comp) |
39 | 17 | adantr 481 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ ∪ 𝐽 =
∪ 𝑤)) ∧ ¬ 𝑋 ∈ 𝑤) → 𝑤 ⊆ 𝑈) |
40 | 2 | ad2antrr 723 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ ∪ 𝐽 =
∪ 𝑤)) ∧ ¬ 𝑋 ∈ 𝑤) → 𝑈 ⊆ 𝐽) |
41 | 39, 40 | sstrd 3931 |
. . . . 5
⊢ (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ ∪ 𝐽 =
∪ 𝑤)) ∧ ¬ 𝑋 ∈ 𝑤) → 𝑤 ⊆ 𝐽) |
42 | 8 | ad2antrr 723 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ ∪ 𝐽 =
∪ 𝑤)) ∧ ¬ 𝑋 ∈ 𝑤) → 𝑋 = ∪ 𝐽) |
43 | | simplrr 775 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ ∪ 𝐽 =
∪ 𝑤)) ∧ ¬ 𝑋 ∈ 𝑤) → ∪ 𝐽 = ∪
𝑤) |
44 | 42, 43 | eqtrd 2778 |
. . . . 5
⊢ (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ ∪ 𝐽 =
∪ 𝑤)) ∧ ¬ 𝑋 ∈ 𝑤) → 𝑋 = ∪ 𝑤) |
45 | 15 | elin2d 4133 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ ∪ 𝐽 =
∪ 𝑤)) → 𝑤 ∈ Fin) |
46 | 45 | adantr 481 |
. . . . 5
⊢ (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ ∪ 𝐽 =
∪ 𝑤)) ∧ ¬ 𝑋 ∈ 𝑤) → 𝑤 ∈ Fin) |
47 | | simpr 485 |
. . . . 5
⊢ (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ ∪ 𝐽 =
∪ 𝑤)) ∧ ¬ 𝑋 ∈ 𝑤) → ¬ 𝑋 ∈ 𝑤) |
48 | | eqid 2738 |
. . . . 5
⊢ (𝑦 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑤 inf(ran (𝑧 ∈ (𝑋 ∖ 𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )) = (𝑦 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑤 inf(ran (𝑧 ∈ (𝑋 ∖ 𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, <
)) |
49 | | eqid 2738 |
. . . . 5
⊢
(topGen‘ran (,)) = (topGen‘ran (,)) |
50 | 6, 37, 38, 41, 44, 46, 47, 48, 49 | lebnumlem3 24126 |
. . . 4
⊢ (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ ∪ 𝐽 =
∪ 𝑤)) ∧ ¬ 𝑋 ∈ 𝑤) → ∃𝑑 ∈ ℝ+ ∀𝑥 ∈ 𝑋 ∃𝑢 ∈ 𝑤 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢) |
51 | | ssrexv 3988 |
. . . . . . 7
⊢ (𝑤 ⊆ 𝑈 → (∃𝑢 ∈ 𝑤 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢 → ∃𝑢 ∈ 𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢)) |
52 | 39, 51 | syl 17 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ ∪ 𝐽 =
∪ 𝑤)) ∧ ¬ 𝑋 ∈ 𝑤) → (∃𝑢 ∈ 𝑤 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢 → ∃𝑢 ∈ 𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢)) |
53 | 52 | ralimdv 3109 |
. . . . 5
⊢ (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ ∪ 𝐽 =
∪ 𝑤)) ∧ ¬ 𝑋 ∈ 𝑤) → (∀𝑥 ∈ 𝑋 ∃𝑢 ∈ 𝑤 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢 → ∀𝑥 ∈ 𝑋 ∃𝑢 ∈ 𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢)) |
54 | 53 | reximdv 3202 |
. . . 4
⊢ (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ ∪ 𝐽 =
∪ 𝑤)) ∧ ¬ 𝑋 ∈ 𝑤) → (∃𝑑 ∈ ℝ+ ∀𝑥 ∈ 𝑋 ∃𝑢 ∈ 𝑤 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢 → ∃𝑑 ∈ ℝ+ ∀𝑥 ∈ 𝑋 ∃𝑢 ∈ 𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢)) |
55 | 50, 54 | mpd 15 |
. . 3
⊢ (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ ∪ 𝐽 =
∪ 𝑤)) ∧ ¬ 𝑋 ∈ 𝑤) → ∃𝑑 ∈ ℝ+ ∀𝑥 ∈ 𝑋 ∃𝑢 ∈ 𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢) |
56 | 36, 55 | pm2.61dan 810 |
. 2
⊢ ((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ ∪ 𝐽 =
∪ 𝑤)) → ∃𝑑 ∈ ℝ+ ∀𝑥 ∈ 𝑋 ∃𝑢 ∈ 𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢) |
57 | 13, 56 | rexlimddv 3220 |
1
⊢ (𝜑 → ∃𝑑 ∈ ℝ+ ∀𝑥 ∈ 𝑋 ∃𝑢 ∈ 𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢) |