MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lebnum Structured version   Visualization version   GIF version

Theorem lebnum 24912
Description: The Lebesgue number lemma, or Lebesgue covering lemma. If 𝑋 is a compact metric space and 𝑈 is an open cover of 𝑋, then there exists a positive real number 𝑑 such that every ball of size 𝑑 (and every subset of a ball of size 𝑑, including every subset of diameter less than 𝑑) is a subset of some member of the cover. (Contributed by Mario Carneiro, 14-Feb-2015.) (Proof shortened by Mario Carneiro, 5-Sep-2015.) (Proof shortened by AV, 30-Sep-2020.)
Hypotheses
Ref Expression
lebnum.j 𝐽 = (MetOpen‘𝐷)
lebnum.d (𝜑𝐷 ∈ (Met‘𝑋))
lebnum.c (𝜑𝐽 ∈ Comp)
lebnum.s (𝜑𝑈𝐽)
lebnum.u (𝜑𝑋 = 𝑈)
Assertion
Ref Expression
lebnum (𝜑 → ∃𝑑 ∈ ℝ+𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢)
Distinct variable groups:   𝑢,𝑑,𝑥,𝐷   𝐽,𝑑,𝑥   𝑈,𝑑,𝑢,𝑥   𝜑,𝑑,𝑥   𝑋,𝑑,𝑢,𝑥
Allowed substitution hints:   𝜑(𝑢)   𝐽(𝑢)

Proof of Theorem lebnum
Dummy variables 𝑘 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lebnum.c . . 3 (𝜑𝐽 ∈ Comp)
2 lebnum.s . . 3 (𝜑𝑈𝐽)
3 lebnum.d . . . . . 6 (𝜑𝐷 ∈ (Met‘𝑋))
4 metxmet 24271 . . . . . 6 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
53, 4syl 17 . . . . 5 (𝜑𝐷 ∈ (∞Met‘𝑋))
6 lebnum.j . . . . . 6 𝐽 = (MetOpen‘𝐷)
76mopnuni 24378 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
85, 7syl 17 . . . 4 (𝜑𝑋 = 𝐽)
9 lebnum.u . . . 4 (𝜑𝑋 = 𝑈)
108, 9eqtr3d 2772 . . 3 (𝜑 𝐽 = 𝑈)
11 eqid 2735 . . . 4 𝐽 = 𝐽
1211cmpcov 23325 . . 3 ((𝐽 ∈ Comp ∧ 𝑈𝐽 𝐽 = 𝑈) → ∃𝑤 ∈ (𝒫 𝑈 ∩ Fin) 𝐽 = 𝑤)
131, 2, 10, 12syl3anc 1373 . 2 (𝜑 → ∃𝑤 ∈ (𝒫 𝑈 ∩ Fin) 𝐽 = 𝑤)
14 1rp 13010 . . . 4 1 ∈ ℝ+
15 simprl 770 . . . . . . . . . 10 ((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) → 𝑤 ∈ (𝒫 𝑈 ∩ Fin))
1615elin1d 4179 . . . . . . . . 9 ((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) → 𝑤 ∈ 𝒫 𝑈)
1716elpwid 4584 . . . . . . . 8 ((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) → 𝑤𝑈)
1817ad2antrr 726 . . . . . . 7 ((((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ 𝑋𝑤) ∧ 𝑥𝑋) → 𝑤𝑈)
19 simplr 768 . . . . . . 7 ((((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ 𝑋𝑤) ∧ 𝑥𝑋) → 𝑋𝑤)
2018, 19sseldd 3959 . . . . . 6 ((((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ 𝑋𝑤) ∧ 𝑥𝑋) → 𝑋𝑈)
215ad3antrrr 730 . . . . . . 7 ((((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ 𝑋𝑤) ∧ 𝑥𝑋) → 𝐷 ∈ (∞Met‘𝑋))
22 simpr 484 . . . . . . 7 ((((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ 𝑋𝑤) ∧ 𝑥𝑋) → 𝑥𝑋)
23 rpxr 13016 . . . . . . . 8 (1 ∈ ℝ+ → 1 ∈ ℝ*)
2414, 23mp1i 13 . . . . . . 7 ((((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ 𝑋𝑤) ∧ 𝑥𝑋) → 1 ∈ ℝ*)
25 blssm 24355 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋 ∧ 1 ∈ ℝ*) → (𝑥(ball‘𝐷)1) ⊆ 𝑋)
2621, 22, 24, 25syl3anc 1373 . . . . . 6 ((((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ 𝑋𝑤) ∧ 𝑥𝑋) → (𝑥(ball‘𝐷)1) ⊆ 𝑋)
27 sseq2 3985 . . . . . . 7 (𝑢 = 𝑋 → ((𝑥(ball‘𝐷)1) ⊆ 𝑢 ↔ (𝑥(ball‘𝐷)1) ⊆ 𝑋))
2827rspcev 3601 . . . . . 6 ((𝑋𝑈 ∧ (𝑥(ball‘𝐷)1) ⊆ 𝑋) → ∃𝑢𝑈 (𝑥(ball‘𝐷)1) ⊆ 𝑢)
2920, 26, 28syl2anc 584 . . . . 5 ((((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ 𝑋𝑤) ∧ 𝑥𝑋) → ∃𝑢𝑈 (𝑥(ball‘𝐷)1) ⊆ 𝑢)
3029ralrimiva 3132 . . . 4 (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ 𝑋𝑤) → ∀𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)1) ⊆ 𝑢)
31 oveq2 7411 . . . . . . . 8 (𝑑 = 1 → (𝑥(ball‘𝐷)𝑑) = (𝑥(ball‘𝐷)1))
3231sseq1d 3990 . . . . . . 7 (𝑑 = 1 → ((𝑥(ball‘𝐷)𝑑) ⊆ 𝑢 ↔ (𝑥(ball‘𝐷)1) ⊆ 𝑢))
3332rexbidv 3164 . . . . . 6 (𝑑 = 1 → (∃𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢 ↔ ∃𝑢𝑈 (𝑥(ball‘𝐷)1) ⊆ 𝑢))
3433ralbidv 3163 . . . . 5 (𝑑 = 1 → (∀𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢 ↔ ∀𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)1) ⊆ 𝑢))
3534rspcev 3601 . . . 4 ((1 ∈ ℝ+ ∧ ∀𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)1) ⊆ 𝑢) → ∃𝑑 ∈ ℝ+𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢)
3614, 30, 35sylancr 587 . . 3 (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ 𝑋𝑤) → ∃𝑑 ∈ ℝ+𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢)
373ad2antrr 726 . . . . 5 (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ ¬ 𝑋𝑤) → 𝐷 ∈ (Met‘𝑋))
381ad2antrr 726 . . . . 5 (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ ¬ 𝑋𝑤) → 𝐽 ∈ Comp)
3917adantr 480 . . . . . 6 (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ ¬ 𝑋𝑤) → 𝑤𝑈)
402ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ ¬ 𝑋𝑤) → 𝑈𝐽)
4139, 40sstrd 3969 . . . . 5 (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ ¬ 𝑋𝑤) → 𝑤𝐽)
428ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ ¬ 𝑋𝑤) → 𝑋 = 𝐽)
43 simplrr 777 . . . . . 6 (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ ¬ 𝑋𝑤) → 𝐽 = 𝑤)
4442, 43eqtrd 2770 . . . . 5 (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ ¬ 𝑋𝑤) → 𝑋 = 𝑤)
4515elin2d 4180 . . . . . 6 ((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) → 𝑤 ∈ Fin)
4645adantr 480 . . . . 5 (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ ¬ 𝑋𝑤) → 𝑤 ∈ Fin)
47 simpr 484 . . . . 5 (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ ¬ 𝑋𝑤) → ¬ 𝑋𝑤)
48 eqid 2735 . . . . 5 (𝑦𝑋 ↦ Σ𝑘𝑤 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )) = (𝑦𝑋 ↦ Σ𝑘𝑤 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))
49 eqid 2735 . . . . 5 (topGen‘ran (,)) = (topGen‘ran (,))
506, 37, 38, 41, 44, 46, 47, 48, 49lebnumlem3 24911 . . . 4 (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ ¬ 𝑋𝑤) → ∃𝑑 ∈ ℝ+𝑥𝑋𝑢𝑤 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢)
51 ssrexv 4028 . . . . . . 7 (𝑤𝑈 → (∃𝑢𝑤 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢 → ∃𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢))
5239, 51syl 17 . . . . . 6 (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ ¬ 𝑋𝑤) → (∃𝑢𝑤 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢 → ∃𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢))
5352ralimdv 3154 . . . . 5 (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ ¬ 𝑋𝑤) → (∀𝑥𝑋𝑢𝑤 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢 → ∀𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢))
5453reximdv 3155 . . . 4 (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ ¬ 𝑋𝑤) → (∃𝑑 ∈ ℝ+𝑥𝑋𝑢𝑤 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢 → ∃𝑑 ∈ ℝ+𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢))
5550, 54mpd 15 . . 3 (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ ¬ 𝑋𝑤) → ∃𝑑 ∈ ℝ+𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢)
5636, 55pm2.61dan 812 . 2 ((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) → ∃𝑑 ∈ ℝ+𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢)
5713, 56rexlimddv 3147 1 (𝜑 → ∃𝑑 ∈ ℝ+𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3051  wrex 3060  cdif 3923  cin 3925  wss 3926  𝒫 cpw 4575   cuni 4883  cmpt 5201  ran crn 5655  cfv 6530  (class class class)co 7403  Fincfn 8957  infcinf 9451  1c1 11128  *cxr 11266   < clt 11267  +crp 13006  (,)cioo 13360  Σcsu 15700  topGenctg 17449  ∞Metcxmet 21298  Metcmet 21299  ballcbl 21300  MetOpencmopn 21303  Compccmp 23322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-inf2 9653  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205  ax-addf 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-of 7669  df-om 7860  df-1st 7986  df-2nd 7987  df-supp 8158  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-er 8717  df-ec 8719  df-map 8840  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9372  df-fi 9421  df-sup 9452  df-inf 9453  df-oi 9522  df-card 9951  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-2 12301  df-3 12302  df-4 12303  df-5 12304  df-6 12305  df-7 12306  df-8 12307  df-9 12308  df-n0 12500  df-z 12587  df-dec 12707  df-uz 12851  df-q 12963  df-rp 13007  df-xneg 13126  df-xadd 13127  df-xmul 13128  df-ioo 13364  df-ico 13366  df-icc 13367  df-fz 13523  df-fzo 13670  df-seq 14018  df-exp 14078  df-hash 14347  df-cj 15116  df-re 15117  df-im 15118  df-sqrt 15252  df-abs 15253  df-clim 15502  df-sum 15701  df-struct 17164  df-sets 17181  df-slot 17199  df-ndx 17211  df-base 17227  df-ress 17250  df-plusg 17282  df-mulr 17283  df-starv 17284  df-sca 17285  df-vsca 17286  df-ip 17287  df-tset 17288  df-ple 17289  df-ds 17291  df-unif 17292  df-hom 17293  df-cco 17294  df-rest 17434  df-topn 17435  df-0g 17453  df-gsum 17454  df-topgen 17455  df-pt 17456  df-prds 17459  df-xrs 17514  df-qtop 17519  df-imas 17520  df-xps 17522  df-mre 17596  df-mrc 17597  df-acs 17599  df-mgm 18616  df-sgrp 18695  df-mnd 18711  df-submnd 18760  df-mulg 19049  df-cntz 19298  df-cmn 19761  df-psmet 21305  df-xmet 21306  df-met 21307  df-bl 21308  df-mopn 21309  df-cnfld 21314  df-top 22830  df-topon 22847  df-topsp 22869  df-bases 22882  df-cld 22955  df-ntr 22956  df-cls 22957  df-cn 23163  df-cnp 23164  df-cmp 23323  df-tx 23498  df-hmeo 23691  df-xms 24257  df-ms 24258  df-tms 24259
This theorem is referenced by:  xlebnum  24913  lebnumii  24914
  Copyright terms: Public domain W3C validator