MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lebnum Structured version   Visualization version   GIF version

Theorem lebnum 25010
Description: The Lebesgue number lemma, or Lebesgue covering lemma. If 𝑋 is a compact metric space and 𝑈 is an open cover of 𝑋, then there exists a positive real number 𝑑 such that every ball of size 𝑑 (and every subset of a ball of size 𝑑, including every subset of diameter less than 𝑑) is a subset of some member of the cover. (Contributed by Mario Carneiro, 14-Feb-2015.) (Proof shortened by Mario Carneiro, 5-Sep-2015.) (Proof shortened by AV, 30-Sep-2020.)
Hypotheses
Ref Expression
lebnum.j 𝐽 = (MetOpen‘𝐷)
lebnum.d (𝜑𝐷 ∈ (Met‘𝑋))
lebnum.c (𝜑𝐽 ∈ Comp)
lebnum.s (𝜑𝑈𝐽)
lebnum.u (𝜑𝑋 = 𝑈)
Assertion
Ref Expression
lebnum (𝜑 → ∃𝑑 ∈ ℝ+𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢)
Distinct variable groups:   𝑢,𝑑,𝑥,𝐷   𝐽,𝑑,𝑥   𝑈,𝑑,𝑢,𝑥   𝜑,𝑑,𝑥   𝑋,𝑑,𝑢,𝑥
Allowed substitution hints:   𝜑(𝑢)   𝐽(𝑢)

Proof of Theorem lebnum
Dummy variables 𝑘 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lebnum.c . . 3 (𝜑𝐽 ∈ Comp)
2 lebnum.s . . 3 (𝜑𝑈𝐽)
3 lebnum.d . . . . . 6 (𝜑𝐷 ∈ (Met‘𝑋))
4 metxmet 24360 . . . . . 6 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
53, 4syl 17 . . . . 5 (𝜑𝐷 ∈ (∞Met‘𝑋))
6 lebnum.j . . . . . 6 𝐽 = (MetOpen‘𝐷)
76mopnuni 24467 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
85, 7syl 17 . . . 4 (𝜑𝑋 = 𝐽)
9 lebnum.u . . . 4 (𝜑𝑋 = 𝑈)
108, 9eqtr3d 2777 . . 3 (𝜑 𝐽 = 𝑈)
11 eqid 2735 . . . 4 𝐽 = 𝐽
1211cmpcov 23413 . . 3 ((𝐽 ∈ Comp ∧ 𝑈𝐽 𝐽 = 𝑈) → ∃𝑤 ∈ (𝒫 𝑈 ∩ Fin) 𝐽 = 𝑤)
131, 2, 10, 12syl3anc 1370 . 2 (𝜑 → ∃𝑤 ∈ (𝒫 𝑈 ∩ Fin) 𝐽 = 𝑤)
14 1rp 13036 . . . 4 1 ∈ ℝ+
15 simprl 771 . . . . . . . . . 10 ((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) → 𝑤 ∈ (𝒫 𝑈 ∩ Fin))
1615elin1d 4214 . . . . . . . . 9 ((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) → 𝑤 ∈ 𝒫 𝑈)
1716elpwid 4614 . . . . . . . 8 ((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) → 𝑤𝑈)
1817ad2antrr 726 . . . . . . 7 ((((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ 𝑋𝑤) ∧ 𝑥𝑋) → 𝑤𝑈)
19 simplr 769 . . . . . . 7 ((((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ 𝑋𝑤) ∧ 𝑥𝑋) → 𝑋𝑤)
2018, 19sseldd 3996 . . . . . 6 ((((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ 𝑋𝑤) ∧ 𝑥𝑋) → 𝑋𝑈)
215ad3antrrr 730 . . . . . . 7 ((((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ 𝑋𝑤) ∧ 𝑥𝑋) → 𝐷 ∈ (∞Met‘𝑋))
22 simpr 484 . . . . . . 7 ((((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ 𝑋𝑤) ∧ 𝑥𝑋) → 𝑥𝑋)
23 rpxr 13042 . . . . . . . 8 (1 ∈ ℝ+ → 1 ∈ ℝ*)
2414, 23mp1i 13 . . . . . . 7 ((((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ 𝑋𝑤) ∧ 𝑥𝑋) → 1 ∈ ℝ*)
25 blssm 24444 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋 ∧ 1 ∈ ℝ*) → (𝑥(ball‘𝐷)1) ⊆ 𝑋)
2621, 22, 24, 25syl3anc 1370 . . . . . 6 ((((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ 𝑋𝑤) ∧ 𝑥𝑋) → (𝑥(ball‘𝐷)1) ⊆ 𝑋)
27 sseq2 4022 . . . . . . 7 (𝑢 = 𝑋 → ((𝑥(ball‘𝐷)1) ⊆ 𝑢 ↔ (𝑥(ball‘𝐷)1) ⊆ 𝑋))
2827rspcev 3622 . . . . . 6 ((𝑋𝑈 ∧ (𝑥(ball‘𝐷)1) ⊆ 𝑋) → ∃𝑢𝑈 (𝑥(ball‘𝐷)1) ⊆ 𝑢)
2920, 26, 28syl2anc 584 . . . . 5 ((((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ 𝑋𝑤) ∧ 𝑥𝑋) → ∃𝑢𝑈 (𝑥(ball‘𝐷)1) ⊆ 𝑢)
3029ralrimiva 3144 . . . 4 (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ 𝑋𝑤) → ∀𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)1) ⊆ 𝑢)
31 oveq2 7439 . . . . . . . 8 (𝑑 = 1 → (𝑥(ball‘𝐷)𝑑) = (𝑥(ball‘𝐷)1))
3231sseq1d 4027 . . . . . . 7 (𝑑 = 1 → ((𝑥(ball‘𝐷)𝑑) ⊆ 𝑢 ↔ (𝑥(ball‘𝐷)1) ⊆ 𝑢))
3332rexbidv 3177 . . . . . 6 (𝑑 = 1 → (∃𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢 ↔ ∃𝑢𝑈 (𝑥(ball‘𝐷)1) ⊆ 𝑢))
3433ralbidv 3176 . . . . 5 (𝑑 = 1 → (∀𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢 ↔ ∀𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)1) ⊆ 𝑢))
3534rspcev 3622 . . . 4 ((1 ∈ ℝ+ ∧ ∀𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)1) ⊆ 𝑢) → ∃𝑑 ∈ ℝ+𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢)
3614, 30, 35sylancr 587 . . 3 (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ 𝑋𝑤) → ∃𝑑 ∈ ℝ+𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢)
373ad2antrr 726 . . . . 5 (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ ¬ 𝑋𝑤) → 𝐷 ∈ (Met‘𝑋))
381ad2antrr 726 . . . . 5 (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ ¬ 𝑋𝑤) → 𝐽 ∈ Comp)
3917adantr 480 . . . . . 6 (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ ¬ 𝑋𝑤) → 𝑤𝑈)
402ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ ¬ 𝑋𝑤) → 𝑈𝐽)
4139, 40sstrd 4006 . . . . 5 (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ ¬ 𝑋𝑤) → 𝑤𝐽)
428ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ ¬ 𝑋𝑤) → 𝑋 = 𝐽)
43 simplrr 778 . . . . . 6 (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ ¬ 𝑋𝑤) → 𝐽 = 𝑤)
4442, 43eqtrd 2775 . . . . 5 (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ ¬ 𝑋𝑤) → 𝑋 = 𝑤)
4515elin2d 4215 . . . . . 6 ((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) → 𝑤 ∈ Fin)
4645adantr 480 . . . . 5 (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ ¬ 𝑋𝑤) → 𝑤 ∈ Fin)
47 simpr 484 . . . . 5 (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ ¬ 𝑋𝑤) → ¬ 𝑋𝑤)
48 eqid 2735 . . . . 5 (𝑦𝑋 ↦ Σ𝑘𝑤 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )) = (𝑦𝑋 ↦ Σ𝑘𝑤 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))
49 eqid 2735 . . . . 5 (topGen‘ran (,)) = (topGen‘ran (,))
506, 37, 38, 41, 44, 46, 47, 48, 49lebnumlem3 25009 . . . 4 (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ ¬ 𝑋𝑤) → ∃𝑑 ∈ ℝ+𝑥𝑋𝑢𝑤 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢)
51 ssrexv 4065 . . . . . . 7 (𝑤𝑈 → (∃𝑢𝑤 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢 → ∃𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢))
5239, 51syl 17 . . . . . 6 (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ ¬ 𝑋𝑤) → (∃𝑢𝑤 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢 → ∃𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢))
5352ralimdv 3167 . . . . 5 (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ ¬ 𝑋𝑤) → (∀𝑥𝑋𝑢𝑤 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢 → ∀𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢))
5453reximdv 3168 . . . 4 (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ ¬ 𝑋𝑤) → (∃𝑑 ∈ ℝ+𝑥𝑋𝑢𝑤 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢 → ∃𝑑 ∈ ℝ+𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢))
5550, 54mpd 15 . . 3 (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ ¬ 𝑋𝑤) → ∃𝑑 ∈ ℝ+𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢)
5636, 55pm2.61dan 813 . 2 ((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) → ∃𝑑 ∈ ℝ+𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢)
5713, 56rexlimddv 3159 1 (𝜑 → ∃𝑑 ∈ ℝ+𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2106  wral 3059  wrex 3068  cdif 3960  cin 3962  wss 3963  𝒫 cpw 4605   cuni 4912  cmpt 5231  ran crn 5690  cfv 6563  (class class class)co 7431  Fincfn 8984  infcinf 9479  1c1 11154  *cxr 11292   < clt 11293  +crp 13032  (,)cioo 13384  Σcsu 15719  topGenctg 17484  ∞Metcxmet 21367  Metcmet 21368  ballcbl 21369  MetOpencmopn 21372  Compccmp 23410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-ec 8746  df-map 8867  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-fi 9449  df-sup 9480  df-inf 9481  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ioo 13388  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-sum 15720  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17469  df-topn 17470  df-0g 17488  df-gsum 17489  df-topgen 17490  df-pt 17491  df-prds 17494  df-xrs 17549  df-qtop 17554  df-imas 17555  df-xps 17557  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-mulg 19099  df-cntz 19348  df-cmn 19815  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-cnfld 21383  df-top 22916  df-topon 22933  df-topsp 22955  df-bases 22969  df-cld 23043  df-ntr 23044  df-cls 23045  df-cn 23251  df-cnp 23252  df-cmp 23411  df-tx 23586  df-hmeo 23779  df-xms 24346  df-ms 24347  df-tms 24348
This theorem is referenced by:  xlebnum  25011  lebnumii  25012
  Copyright terms: Public domain W3C validator