MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lebnum Structured version   Visualization version   GIF version

Theorem lebnum 24123
Description: The Lebesgue number lemma, or Lebesgue covering lemma. If 𝑋 is a compact metric space and 𝑈 is an open cover of 𝑋, then there exists a positive real number 𝑑 such that every ball of size 𝑑 (and every subset of a ball of size 𝑑, including every subset of diameter less than 𝑑) is a subset of some member of the cover. (Contributed by Mario Carneiro, 14-Feb-2015.) (Proof shortened by Mario Carneiro, 5-Sep-2015.) (Proof shortened by AV, 30-Sep-2020.)
Hypotheses
Ref Expression
lebnum.j 𝐽 = (MetOpen‘𝐷)
lebnum.d (𝜑𝐷 ∈ (Met‘𝑋))
lebnum.c (𝜑𝐽 ∈ Comp)
lebnum.s (𝜑𝑈𝐽)
lebnum.u (𝜑𝑋 = 𝑈)
Assertion
Ref Expression
lebnum (𝜑 → ∃𝑑 ∈ ℝ+𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢)
Distinct variable groups:   𝑢,𝑑,𝑥,𝐷   𝐽,𝑑,𝑥   𝑈,𝑑,𝑢,𝑥   𝜑,𝑑,𝑥   𝑋,𝑑,𝑢,𝑥
Allowed substitution hints:   𝜑(𝑢)   𝐽(𝑢)

Proof of Theorem lebnum
Dummy variables 𝑘 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lebnum.c . . 3 (𝜑𝐽 ∈ Comp)
2 lebnum.s . . 3 (𝜑𝑈𝐽)
3 lebnum.d . . . . . 6 (𝜑𝐷 ∈ (Met‘𝑋))
4 metxmet 23483 . . . . . 6 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
53, 4syl 17 . . . . 5 (𝜑𝐷 ∈ (∞Met‘𝑋))
6 lebnum.j . . . . . 6 𝐽 = (MetOpen‘𝐷)
76mopnuni 23590 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
85, 7syl 17 . . . 4 (𝜑𝑋 = 𝐽)
9 lebnum.u . . . 4 (𝜑𝑋 = 𝑈)
108, 9eqtr3d 2782 . . 3 (𝜑 𝐽 = 𝑈)
11 eqid 2740 . . . 4 𝐽 = 𝐽
1211cmpcov 22536 . . 3 ((𝐽 ∈ Comp ∧ 𝑈𝐽 𝐽 = 𝑈) → ∃𝑤 ∈ (𝒫 𝑈 ∩ Fin) 𝐽 = 𝑤)
131, 2, 10, 12syl3anc 1370 . 2 (𝜑 → ∃𝑤 ∈ (𝒫 𝑈 ∩ Fin) 𝐽 = 𝑤)
14 1rp 12731 . . . 4 1 ∈ ℝ+
15 simprl 768 . . . . . . . . . 10 ((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) → 𝑤 ∈ (𝒫 𝑈 ∩ Fin))
1615elin1d 4137 . . . . . . . . 9 ((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) → 𝑤 ∈ 𝒫 𝑈)
1716elpwid 4550 . . . . . . . 8 ((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) → 𝑤𝑈)
1817ad2antrr 723 . . . . . . 7 ((((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ 𝑋𝑤) ∧ 𝑥𝑋) → 𝑤𝑈)
19 simplr 766 . . . . . . 7 ((((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ 𝑋𝑤) ∧ 𝑥𝑋) → 𝑋𝑤)
2018, 19sseldd 3927 . . . . . 6 ((((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ 𝑋𝑤) ∧ 𝑥𝑋) → 𝑋𝑈)
215ad3antrrr 727 . . . . . . 7 ((((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ 𝑋𝑤) ∧ 𝑥𝑋) → 𝐷 ∈ (∞Met‘𝑋))
22 simpr 485 . . . . . . 7 ((((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ 𝑋𝑤) ∧ 𝑥𝑋) → 𝑥𝑋)
23 rpxr 12736 . . . . . . . 8 (1 ∈ ℝ+ → 1 ∈ ℝ*)
2414, 23mp1i 13 . . . . . . 7 ((((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ 𝑋𝑤) ∧ 𝑥𝑋) → 1 ∈ ℝ*)
25 blssm 23567 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋 ∧ 1 ∈ ℝ*) → (𝑥(ball‘𝐷)1) ⊆ 𝑋)
2621, 22, 24, 25syl3anc 1370 . . . . . 6 ((((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ 𝑋𝑤) ∧ 𝑥𝑋) → (𝑥(ball‘𝐷)1) ⊆ 𝑋)
27 sseq2 3952 . . . . . . 7 (𝑢 = 𝑋 → ((𝑥(ball‘𝐷)1) ⊆ 𝑢 ↔ (𝑥(ball‘𝐷)1) ⊆ 𝑋))
2827rspcev 3561 . . . . . 6 ((𝑋𝑈 ∧ (𝑥(ball‘𝐷)1) ⊆ 𝑋) → ∃𝑢𝑈 (𝑥(ball‘𝐷)1) ⊆ 𝑢)
2920, 26, 28syl2anc 584 . . . . 5 ((((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ 𝑋𝑤) ∧ 𝑥𝑋) → ∃𝑢𝑈 (𝑥(ball‘𝐷)1) ⊆ 𝑢)
3029ralrimiva 3110 . . . 4 (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ 𝑋𝑤) → ∀𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)1) ⊆ 𝑢)
31 oveq2 7277 . . . . . . . 8 (𝑑 = 1 → (𝑥(ball‘𝐷)𝑑) = (𝑥(ball‘𝐷)1))
3231sseq1d 3957 . . . . . . 7 (𝑑 = 1 → ((𝑥(ball‘𝐷)𝑑) ⊆ 𝑢 ↔ (𝑥(ball‘𝐷)1) ⊆ 𝑢))
3332rexbidv 3228 . . . . . 6 (𝑑 = 1 → (∃𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢 ↔ ∃𝑢𝑈 (𝑥(ball‘𝐷)1) ⊆ 𝑢))
3433ralbidv 3123 . . . . 5 (𝑑 = 1 → (∀𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢 ↔ ∀𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)1) ⊆ 𝑢))
3534rspcev 3561 . . . 4 ((1 ∈ ℝ+ ∧ ∀𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)1) ⊆ 𝑢) → ∃𝑑 ∈ ℝ+𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢)
3614, 30, 35sylancr 587 . . 3 (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ 𝑋𝑤) → ∃𝑑 ∈ ℝ+𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢)
373ad2antrr 723 . . . . 5 (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ ¬ 𝑋𝑤) → 𝐷 ∈ (Met‘𝑋))
381ad2antrr 723 . . . . 5 (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ ¬ 𝑋𝑤) → 𝐽 ∈ Comp)
3917adantr 481 . . . . . 6 (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ ¬ 𝑋𝑤) → 𝑤𝑈)
402ad2antrr 723 . . . . . 6 (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ ¬ 𝑋𝑤) → 𝑈𝐽)
4139, 40sstrd 3936 . . . . 5 (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ ¬ 𝑋𝑤) → 𝑤𝐽)
428ad2antrr 723 . . . . . 6 (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ ¬ 𝑋𝑤) → 𝑋 = 𝐽)
43 simplrr 775 . . . . . 6 (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ ¬ 𝑋𝑤) → 𝐽 = 𝑤)
4442, 43eqtrd 2780 . . . . 5 (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ ¬ 𝑋𝑤) → 𝑋 = 𝑤)
4515elin2d 4138 . . . . . 6 ((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) → 𝑤 ∈ Fin)
4645adantr 481 . . . . 5 (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ ¬ 𝑋𝑤) → 𝑤 ∈ Fin)
47 simpr 485 . . . . 5 (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ ¬ 𝑋𝑤) → ¬ 𝑋𝑤)
48 eqid 2740 . . . . 5 (𝑦𝑋 ↦ Σ𝑘𝑤 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )) = (𝑦𝑋 ↦ Σ𝑘𝑤 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))
49 eqid 2740 . . . . 5 (topGen‘ran (,)) = (topGen‘ran (,))
506, 37, 38, 41, 44, 46, 47, 48, 49lebnumlem3 24122 . . . 4 (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ ¬ 𝑋𝑤) → ∃𝑑 ∈ ℝ+𝑥𝑋𝑢𝑤 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢)
51 ssrexv 3993 . . . . . . 7 (𝑤𝑈 → (∃𝑢𝑤 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢 → ∃𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢))
5239, 51syl 17 . . . . . 6 (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ ¬ 𝑋𝑤) → (∃𝑢𝑤 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢 → ∃𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢))
5352ralimdv 3106 . . . . 5 (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ ¬ 𝑋𝑤) → (∀𝑥𝑋𝑢𝑤 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢 → ∀𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢))
5453reximdv 3204 . . . 4 (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ ¬ 𝑋𝑤) → (∃𝑑 ∈ ℝ+𝑥𝑋𝑢𝑤 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢 → ∃𝑑 ∈ ℝ+𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢))
5550, 54mpd 15 . . 3 (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ ¬ 𝑋𝑤) → ∃𝑑 ∈ ℝ+𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢)
5636, 55pm2.61dan 810 . 2 ((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) → ∃𝑑 ∈ ℝ+𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢)
5713, 56rexlimddv 3222 1 (𝜑 → ∃𝑑 ∈ ℝ+𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1542  wcel 2110  wral 3066  wrex 3067  cdif 3889  cin 3891  wss 3892  𝒫 cpw 4539   cuni 4845  cmpt 5162  ran crn 5590  cfv 6431  (class class class)co 7269  Fincfn 8714  infcinf 9176  1c1 10871  *cxr 11007   < clt 11008  +crp 12727  (,)cioo 13076  Σcsu 15393  topGenctg 17144  ∞Metcxmet 20578  Metcmet 20579  ballcbl 20580  MetOpencmopn 20583  Compccmp 22533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7580  ax-inf2 9375  ax-cnex 10926  ax-resscn 10927  ax-1cn 10928  ax-icn 10929  ax-addcl 10930  ax-addrcl 10931  ax-mulcl 10932  ax-mulrcl 10933  ax-mulcom 10934  ax-addass 10935  ax-mulass 10936  ax-distr 10937  ax-i2m1 10938  ax-1ne0 10939  ax-1rid 10940  ax-rnegex 10941  ax-rrecex 10942  ax-cnre 10943  ax-pre-lttri 10944  ax-pre-lttrn 10945  ax-pre-ltadd 10946  ax-pre-mulgt0 10947  ax-pre-sup 10948  ax-addf 10949  ax-mulf 10950
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-iin 4933  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6200  df-ord 6267  df-on 6268  df-lim 6269  df-suc 6270  df-iota 6389  df-fun 6433  df-fn 6434  df-f 6435  df-f1 6436  df-fo 6437  df-f1o 6438  df-fv 6439  df-isom 6440  df-riota 7226  df-ov 7272  df-oprab 7273  df-mpo 7274  df-of 7525  df-om 7705  df-1st 7822  df-2nd 7823  df-supp 7967  df-frecs 8086  df-wrecs 8117  df-recs 8191  df-rdg 8230  df-1o 8286  df-2o 8287  df-er 8479  df-ec 8481  df-map 8598  df-ixp 8667  df-en 8715  df-dom 8716  df-sdom 8717  df-fin 8718  df-fsupp 9105  df-fi 9146  df-sup 9177  df-inf 9178  df-oi 9245  df-card 9696  df-pnf 11010  df-mnf 11011  df-xr 11012  df-ltxr 11013  df-le 11014  df-sub 11205  df-neg 11206  df-div 11631  df-nn 11972  df-2 12034  df-3 12035  df-4 12036  df-5 12037  df-6 12038  df-7 12039  df-8 12040  df-9 12041  df-n0 12232  df-z 12318  df-dec 12435  df-uz 12580  df-q 12686  df-rp 12728  df-xneg 12845  df-xadd 12846  df-xmul 12847  df-ioo 13080  df-ico 13082  df-icc 13083  df-fz 13237  df-fzo 13380  df-seq 13718  df-exp 13779  df-hash 14041  df-cj 14806  df-re 14807  df-im 14808  df-sqrt 14942  df-abs 14943  df-clim 15193  df-sum 15394  df-struct 16844  df-sets 16861  df-slot 16879  df-ndx 16891  df-base 16909  df-ress 16938  df-plusg 16971  df-mulr 16972  df-starv 16973  df-sca 16974  df-vsca 16975  df-ip 16976  df-tset 16977  df-ple 16978  df-ds 16980  df-unif 16981  df-hom 16982  df-cco 16983  df-rest 17129  df-topn 17130  df-0g 17148  df-gsum 17149  df-topgen 17150  df-pt 17151  df-prds 17154  df-xrs 17209  df-qtop 17214  df-imas 17215  df-xps 17217  df-mre 17291  df-mrc 17292  df-acs 17294  df-mgm 18322  df-sgrp 18371  df-mnd 18382  df-submnd 18427  df-mulg 18697  df-cntz 18919  df-cmn 19384  df-psmet 20585  df-xmet 20586  df-met 20587  df-bl 20588  df-mopn 20589  df-cnfld 20594  df-top 22039  df-topon 22056  df-topsp 22078  df-bases 22092  df-cld 22166  df-ntr 22167  df-cls 22168  df-cn 22374  df-cnp 22375  df-cmp 22534  df-tx 22709  df-hmeo 22902  df-xms 23469  df-ms 23470  df-tms 23471
This theorem is referenced by:  xlebnum  24124  lebnumii  24125
  Copyright terms: Public domain W3C validator