MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lebnum Structured version   Visualization version   GIF version

Theorem lebnum 24127
Description: The Lebesgue number lemma, or Lebesgue covering lemma. If 𝑋 is a compact metric space and 𝑈 is an open cover of 𝑋, then there exists a positive real number 𝑑 such that every ball of size 𝑑 (and every subset of a ball of size 𝑑, including every subset of diameter less than 𝑑) is a subset of some member of the cover. (Contributed by Mario Carneiro, 14-Feb-2015.) (Proof shortened by Mario Carneiro, 5-Sep-2015.) (Proof shortened by AV, 30-Sep-2020.)
Hypotheses
Ref Expression
lebnum.j 𝐽 = (MetOpen‘𝐷)
lebnum.d (𝜑𝐷 ∈ (Met‘𝑋))
lebnum.c (𝜑𝐽 ∈ Comp)
lebnum.s (𝜑𝑈𝐽)
lebnum.u (𝜑𝑋 = 𝑈)
Assertion
Ref Expression
lebnum (𝜑 → ∃𝑑 ∈ ℝ+𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢)
Distinct variable groups:   𝑢,𝑑,𝑥,𝐷   𝐽,𝑑,𝑥   𝑈,𝑑,𝑢,𝑥   𝜑,𝑑,𝑥   𝑋,𝑑,𝑢,𝑥
Allowed substitution hints:   𝜑(𝑢)   𝐽(𝑢)

Proof of Theorem lebnum
Dummy variables 𝑘 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lebnum.c . . 3 (𝜑𝐽 ∈ Comp)
2 lebnum.s . . 3 (𝜑𝑈𝐽)
3 lebnum.d . . . . . 6 (𝜑𝐷 ∈ (Met‘𝑋))
4 metxmet 23487 . . . . . 6 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
53, 4syl 17 . . . . 5 (𝜑𝐷 ∈ (∞Met‘𝑋))
6 lebnum.j . . . . . 6 𝐽 = (MetOpen‘𝐷)
76mopnuni 23594 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
85, 7syl 17 . . . 4 (𝜑𝑋 = 𝐽)
9 lebnum.u . . . 4 (𝜑𝑋 = 𝑈)
108, 9eqtr3d 2780 . . 3 (𝜑 𝐽 = 𝑈)
11 eqid 2738 . . . 4 𝐽 = 𝐽
1211cmpcov 22540 . . 3 ((𝐽 ∈ Comp ∧ 𝑈𝐽 𝐽 = 𝑈) → ∃𝑤 ∈ (𝒫 𝑈 ∩ Fin) 𝐽 = 𝑤)
131, 2, 10, 12syl3anc 1370 . 2 (𝜑 → ∃𝑤 ∈ (𝒫 𝑈 ∩ Fin) 𝐽 = 𝑤)
14 1rp 12734 . . . 4 1 ∈ ℝ+
15 simprl 768 . . . . . . . . . 10 ((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) → 𝑤 ∈ (𝒫 𝑈 ∩ Fin))
1615elin1d 4132 . . . . . . . . 9 ((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) → 𝑤 ∈ 𝒫 𝑈)
1716elpwid 4544 . . . . . . . 8 ((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) → 𝑤𝑈)
1817ad2antrr 723 . . . . . . 7 ((((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ 𝑋𝑤) ∧ 𝑥𝑋) → 𝑤𝑈)
19 simplr 766 . . . . . . 7 ((((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ 𝑋𝑤) ∧ 𝑥𝑋) → 𝑋𝑤)
2018, 19sseldd 3922 . . . . . 6 ((((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ 𝑋𝑤) ∧ 𝑥𝑋) → 𝑋𝑈)
215ad3antrrr 727 . . . . . . 7 ((((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ 𝑋𝑤) ∧ 𝑥𝑋) → 𝐷 ∈ (∞Met‘𝑋))
22 simpr 485 . . . . . . 7 ((((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ 𝑋𝑤) ∧ 𝑥𝑋) → 𝑥𝑋)
23 rpxr 12739 . . . . . . . 8 (1 ∈ ℝ+ → 1 ∈ ℝ*)
2414, 23mp1i 13 . . . . . . 7 ((((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ 𝑋𝑤) ∧ 𝑥𝑋) → 1 ∈ ℝ*)
25 blssm 23571 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋 ∧ 1 ∈ ℝ*) → (𝑥(ball‘𝐷)1) ⊆ 𝑋)
2621, 22, 24, 25syl3anc 1370 . . . . . 6 ((((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ 𝑋𝑤) ∧ 𝑥𝑋) → (𝑥(ball‘𝐷)1) ⊆ 𝑋)
27 sseq2 3947 . . . . . . 7 (𝑢 = 𝑋 → ((𝑥(ball‘𝐷)1) ⊆ 𝑢 ↔ (𝑥(ball‘𝐷)1) ⊆ 𝑋))
2827rspcev 3561 . . . . . 6 ((𝑋𝑈 ∧ (𝑥(ball‘𝐷)1) ⊆ 𝑋) → ∃𝑢𝑈 (𝑥(ball‘𝐷)1) ⊆ 𝑢)
2920, 26, 28syl2anc 584 . . . . 5 ((((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ 𝑋𝑤) ∧ 𝑥𝑋) → ∃𝑢𝑈 (𝑥(ball‘𝐷)1) ⊆ 𝑢)
3029ralrimiva 3103 . . . 4 (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ 𝑋𝑤) → ∀𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)1) ⊆ 𝑢)
31 oveq2 7283 . . . . . . . 8 (𝑑 = 1 → (𝑥(ball‘𝐷)𝑑) = (𝑥(ball‘𝐷)1))
3231sseq1d 3952 . . . . . . 7 (𝑑 = 1 → ((𝑥(ball‘𝐷)𝑑) ⊆ 𝑢 ↔ (𝑥(ball‘𝐷)1) ⊆ 𝑢))
3332rexbidv 3226 . . . . . 6 (𝑑 = 1 → (∃𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢 ↔ ∃𝑢𝑈 (𝑥(ball‘𝐷)1) ⊆ 𝑢))
3433ralbidv 3112 . . . . 5 (𝑑 = 1 → (∀𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢 ↔ ∀𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)1) ⊆ 𝑢))
3534rspcev 3561 . . . 4 ((1 ∈ ℝ+ ∧ ∀𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)1) ⊆ 𝑢) → ∃𝑑 ∈ ℝ+𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢)
3614, 30, 35sylancr 587 . . 3 (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ 𝑋𝑤) → ∃𝑑 ∈ ℝ+𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢)
373ad2antrr 723 . . . . 5 (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ ¬ 𝑋𝑤) → 𝐷 ∈ (Met‘𝑋))
381ad2antrr 723 . . . . 5 (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ ¬ 𝑋𝑤) → 𝐽 ∈ Comp)
3917adantr 481 . . . . . 6 (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ ¬ 𝑋𝑤) → 𝑤𝑈)
402ad2antrr 723 . . . . . 6 (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ ¬ 𝑋𝑤) → 𝑈𝐽)
4139, 40sstrd 3931 . . . . 5 (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ ¬ 𝑋𝑤) → 𝑤𝐽)
428ad2antrr 723 . . . . . 6 (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ ¬ 𝑋𝑤) → 𝑋 = 𝐽)
43 simplrr 775 . . . . . 6 (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ ¬ 𝑋𝑤) → 𝐽 = 𝑤)
4442, 43eqtrd 2778 . . . . 5 (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ ¬ 𝑋𝑤) → 𝑋 = 𝑤)
4515elin2d 4133 . . . . . 6 ((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) → 𝑤 ∈ Fin)
4645adantr 481 . . . . 5 (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ ¬ 𝑋𝑤) → 𝑤 ∈ Fin)
47 simpr 485 . . . . 5 (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ ¬ 𝑋𝑤) → ¬ 𝑋𝑤)
48 eqid 2738 . . . . 5 (𝑦𝑋 ↦ Σ𝑘𝑤 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )) = (𝑦𝑋 ↦ Σ𝑘𝑤 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))
49 eqid 2738 . . . . 5 (topGen‘ran (,)) = (topGen‘ran (,))
506, 37, 38, 41, 44, 46, 47, 48, 49lebnumlem3 24126 . . . 4 (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ ¬ 𝑋𝑤) → ∃𝑑 ∈ ℝ+𝑥𝑋𝑢𝑤 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢)
51 ssrexv 3988 . . . . . . 7 (𝑤𝑈 → (∃𝑢𝑤 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢 → ∃𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢))
5239, 51syl 17 . . . . . 6 (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ ¬ 𝑋𝑤) → (∃𝑢𝑤 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢 → ∃𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢))
5352ralimdv 3109 . . . . 5 (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ ¬ 𝑋𝑤) → (∀𝑥𝑋𝑢𝑤 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢 → ∀𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢))
5453reximdv 3202 . . . 4 (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ ¬ 𝑋𝑤) → (∃𝑑 ∈ ℝ+𝑥𝑋𝑢𝑤 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢 → ∃𝑑 ∈ ℝ+𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢))
5550, 54mpd 15 . . 3 (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ ¬ 𝑋𝑤) → ∃𝑑 ∈ ℝ+𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢)
5636, 55pm2.61dan 810 . 2 ((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) → ∃𝑑 ∈ ℝ+𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢)
5713, 56rexlimddv 3220 1 (𝜑 → ∃𝑑 ∈ ℝ+𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1539  wcel 2106  wral 3064  wrex 3065  cdif 3884  cin 3886  wss 3887  𝒫 cpw 4533   cuni 4839  cmpt 5157  ran crn 5590  cfv 6433  (class class class)co 7275  Fincfn 8733  infcinf 9200  1c1 10872  *cxr 11008   < clt 11009  +crp 12730  (,)cioo 13079  Σcsu 15397  topGenctg 17148  ∞Metcxmet 20582  Metcmet 20583  ballcbl 20584  MetOpencmopn 20587  Compccmp 22537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-ec 8500  df-map 8617  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-sum 15398  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-mulg 18701  df-cntz 18923  df-cmn 19388  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-cn 22378  df-cnp 22379  df-cmp 22538  df-tx 22713  df-hmeo 22906  df-xms 23473  df-ms 23474  df-tms 23475
This theorem is referenced by:  xlebnum  24128  lebnumii  24129
  Copyright terms: Public domain W3C validator