MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lebnum Structured version   Visualization version   GIF version

Theorem lebnum 23568
Description: The Lebesgue number lemma, or Lebesgue covering lemma. If 𝑋 is a compact metric space and 𝑈 is an open cover of 𝑋, then there exists a positive real number 𝑑 such that every ball of size 𝑑 (and every subset of a ball of size 𝑑, including every subset of diameter less than 𝑑) is a subset of some member of the cover. (Contributed by Mario Carneiro, 14-Feb-2015.) (Proof shortened by Mario Carneiro, 5-Sep-2015.) (Proof shortened by AV, 30-Sep-2020.)
Hypotheses
Ref Expression
lebnum.j 𝐽 = (MetOpen‘𝐷)
lebnum.d (𝜑𝐷 ∈ (Met‘𝑋))
lebnum.c (𝜑𝐽 ∈ Comp)
lebnum.s (𝜑𝑈𝐽)
lebnum.u (𝜑𝑋 = 𝑈)
Assertion
Ref Expression
lebnum (𝜑 → ∃𝑑 ∈ ℝ+𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢)
Distinct variable groups:   𝑢,𝑑,𝑥,𝐷   𝐽,𝑑,𝑥   𝑈,𝑑,𝑢,𝑥   𝜑,𝑑,𝑥   𝑋,𝑑,𝑢,𝑥
Allowed substitution hints:   𝜑(𝑢)   𝐽(𝑢)

Proof of Theorem lebnum
Dummy variables 𝑘 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lebnum.c . . 3 (𝜑𝐽 ∈ Comp)
2 lebnum.s . . 3 (𝜑𝑈𝐽)
3 lebnum.d . . . . . 6 (𝜑𝐷 ∈ (Met‘𝑋))
4 metxmet 22944 . . . . . 6 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
53, 4syl 17 . . . . 5 (𝜑𝐷 ∈ (∞Met‘𝑋))
6 lebnum.j . . . . . 6 𝐽 = (MetOpen‘𝐷)
76mopnuni 23051 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
85, 7syl 17 . . . 4 (𝜑𝑋 = 𝐽)
9 lebnum.u . . . 4 (𝜑𝑋 = 𝑈)
108, 9eqtr3d 2858 . . 3 (𝜑 𝐽 = 𝑈)
11 eqid 2821 . . . 4 𝐽 = 𝐽
1211cmpcov 21997 . . 3 ((𝐽 ∈ Comp ∧ 𝑈𝐽 𝐽 = 𝑈) → ∃𝑤 ∈ (𝒫 𝑈 ∩ Fin) 𝐽 = 𝑤)
131, 2, 10, 12syl3anc 1367 . 2 (𝜑 → ∃𝑤 ∈ (𝒫 𝑈 ∩ Fin) 𝐽 = 𝑤)
14 1rp 12394 . . . 4 1 ∈ ℝ+
15 simprl 769 . . . . . . . . . 10 ((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) → 𝑤 ∈ (𝒫 𝑈 ∩ Fin))
1615elin1d 4175 . . . . . . . . 9 ((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) → 𝑤 ∈ 𝒫 𝑈)
1716elpwid 4550 . . . . . . . 8 ((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) → 𝑤𝑈)
1817ad2antrr 724 . . . . . . 7 ((((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ 𝑋𝑤) ∧ 𝑥𝑋) → 𝑤𝑈)
19 simplr 767 . . . . . . 7 ((((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ 𝑋𝑤) ∧ 𝑥𝑋) → 𝑋𝑤)
2018, 19sseldd 3968 . . . . . 6 ((((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ 𝑋𝑤) ∧ 𝑥𝑋) → 𝑋𝑈)
215ad3antrrr 728 . . . . . . 7 ((((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ 𝑋𝑤) ∧ 𝑥𝑋) → 𝐷 ∈ (∞Met‘𝑋))
22 simpr 487 . . . . . . 7 ((((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ 𝑋𝑤) ∧ 𝑥𝑋) → 𝑥𝑋)
23 rpxr 12399 . . . . . . . 8 (1 ∈ ℝ+ → 1 ∈ ℝ*)
2414, 23mp1i 13 . . . . . . 7 ((((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ 𝑋𝑤) ∧ 𝑥𝑋) → 1 ∈ ℝ*)
25 blssm 23028 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋 ∧ 1 ∈ ℝ*) → (𝑥(ball‘𝐷)1) ⊆ 𝑋)
2621, 22, 24, 25syl3anc 1367 . . . . . 6 ((((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ 𝑋𝑤) ∧ 𝑥𝑋) → (𝑥(ball‘𝐷)1) ⊆ 𝑋)
27 sseq2 3993 . . . . . . 7 (𝑢 = 𝑋 → ((𝑥(ball‘𝐷)1) ⊆ 𝑢 ↔ (𝑥(ball‘𝐷)1) ⊆ 𝑋))
2827rspcev 3623 . . . . . 6 ((𝑋𝑈 ∧ (𝑥(ball‘𝐷)1) ⊆ 𝑋) → ∃𝑢𝑈 (𝑥(ball‘𝐷)1) ⊆ 𝑢)
2920, 26, 28syl2anc 586 . . . . 5 ((((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ 𝑋𝑤) ∧ 𝑥𝑋) → ∃𝑢𝑈 (𝑥(ball‘𝐷)1) ⊆ 𝑢)
3029ralrimiva 3182 . . . 4 (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ 𝑋𝑤) → ∀𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)1) ⊆ 𝑢)
31 oveq2 7164 . . . . . . . 8 (𝑑 = 1 → (𝑥(ball‘𝐷)𝑑) = (𝑥(ball‘𝐷)1))
3231sseq1d 3998 . . . . . . 7 (𝑑 = 1 → ((𝑥(ball‘𝐷)𝑑) ⊆ 𝑢 ↔ (𝑥(ball‘𝐷)1) ⊆ 𝑢))
3332rexbidv 3297 . . . . . 6 (𝑑 = 1 → (∃𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢 ↔ ∃𝑢𝑈 (𝑥(ball‘𝐷)1) ⊆ 𝑢))
3433ralbidv 3197 . . . . 5 (𝑑 = 1 → (∀𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢 ↔ ∀𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)1) ⊆ 𝑢))
3534rspcev 3623 . . . 4 ((1 ∈ ℝ+ ∧ ∀𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)1) ⊆ 𝑢) → ∃𝑑 ∈ ℝ+𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢)
3614, 30, 35sylancr 589 . . 3 (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ 𝑋𝑤) → ∃𝑑 ∈ ℝ+𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢)
373ad2antrr 724 . . . . 5 (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ ¬ 𝑋𝑤) → 𝐷 ∈ (Met‘𝑋))
381ad2antrr 724 . . . . 5 (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ ¬ 𝑋𝑤) → 𝐽 ∈ Comp)
3917adantr 483 . . . . . 6 (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ ¬ 𝑋𝑤) → 𝑤𝑈)
402ad2antrr 724 . . . . . 6 (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ ¬ 𝑋𝑤) → 𝑈𝐽)
4139, 40sstrd 3977 . . . . 5 (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ ¬ 𝑋𝑤) → 𝑤𝐽)
428ad2antrr 724 . . . . . 6 (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ ¬ 𝑋𝑤) → 𝑋 = 𝐽)
43 simplrr 776 . . . . . 6 (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ ¬ 𝑋𝑤) → 𝐽 = 𝑤)
4442, 43eqtrd 2856 . . . . 5 (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ ¬ 𝑋𝑤) → 𝑋 = 𝑤)
4515elin2d 4176 . . . . . 6 ((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) → 𝑤 ∈ Fin)
4645adantr 483 . . . . 5 (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ ¬ 𝑋𝑤) → 𝑤 ∈ Fin)
47 simpr 487 . . . . 5 (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ ¬ 𝑋𝑤) → ¬ 𝑋𝑤)
48 eqid 2821 . . . . 5 (𝑦𝑋 ↦ Σ𝑘𝑤 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )) = (𝑦𝑋 ↦ Σ𝑘𝑤 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))
49 eqid 2821 . . . . 5 (topGen‘ran (,)) = (topGen‘ran (,))
506, 37, 38, 41, 44, 46, 47, 48, 49lebnumlem3 23567 . . . 4 (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ ¬ 𝑋𝑤) → ∃𝑑 ∈ ℝ+𝑥𝑋𝑢𝑤 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢)
51 ssrexv 4034 . . . . . . 7 (𝑤𝑈 → (∃𝑢𝑤 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢 → ∃𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢))
5239, 51syl 17 . . . . . 6 (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ ¬ 𝑋𝑤) → (∃𝑢𝑤 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢 → ∃𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢))
5352ralimdv 3178 . . . . 5 (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ ¬ 𝑋𝑤) → (∀𝑥𝑋𝑢𝑤 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢 → ∀𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢))
5453reximdv 3273 . . . 4 (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ ¬ 𝑋𝑤) → (∃𝑑 ∈ ℝ+𝑥𝑋𝑢𝑤 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢 → ∃𝑑 ∈ ℝ+𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢))
5550, 54mpd 15 . . 3 (((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) ∧ ¬ 𝑋𝑤) → ∃𝑑 ∈ ℝ+𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢)
5636, 55pm2.61dan 811 . 2 ((𝜑 ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝐽 = 𝑤)) → ∃𝑑 ∈ ℝ+𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢)
5713, 56rexlimddv 3291 1 (𝜑 → ∃𝑑 ∈ ℝ+𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1537  wcel 2114  wral 3138  wrex 3139  cdif 3933  cin 3935  wss 3936  𝒫 cpw 4539   cuni 4838  cmpt 5146  ran crn 5556  cfv 6355  (class class class)co 7156  Fincfn 8509  infcinf 8905  1c1 10538  *cxr 10674   < clt 10675  +crp 12390  (,)cioo 12739  Σcsu 15042  topGenctg 16711  ∞Metcxmet 20530  Metcmet 20531  ballcbl 20532  MetOpencmopn 20535  Compccmp 21994
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-addf 10616  ax-mulf 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-ec 8291  df-map 8408  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-fi 8875  df-sup 8906  df-inf 8907  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-q 12350  df-rp 12391  df-xneg 12508  df-xadd 12509  df-xmul 12510  df-ioo 12743  df-ico 12745  df-icc 12746  df-fz 12894  df-fzo 13035  df-seq 13371  df-exp 13431  df-hash 13692  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-clim 14845  df-sum 15043  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-hom 16589  df-cco 16590  df-rest 16696  df-topn 16697  df-0g 16715  df-gsum 16716  df-topgen 16717  df-pt 16718  df-prds 16721  df-xrs 16775  df-qtop 16780  df-imas 16781  df-xps 16783  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-submnd 17957  df-mulg 18225  df-cntz 18447  df-cmn 18908  df-psmet 20537  df-xmet 20538  df-met 20539  df-bl 20540  df-mopn 20541  df-cnfld 20546  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-cld 21627  df-ntr 21628  df-cls 21629  df-cn 21835  df-cnp 21836  df-cmp 21995  df-tx 22170  df-hmeo 22363  df-xms 22930  df-ms 22931  df-tms 22932
This theorem is referenced by:  xlebnum  23569  lebnumii  23570
  Copyright terms: Public domain W3C validator