| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elfpw | Structured version Visualization version GIF version | ||
| Description: Membership in a class of finite subsets. (Contributed by Stefan O'Rear, 4-Apr-2015.) (Revised by Mario Carneiro, 22-Aug-2015.) |
| Ref | Expression |
|---|---|
| elfpw | ⊢ (𝐴 ∈ (𝒫 𝐵 ∩ Fin) ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ∈ Fin)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin 3942 | . 2 ⊢ (𝐴 ∈ (𝒫 𝐵 ∩ Fin) ↔ (𝐴 ∈ 𝒫 𝐵 ∧ 𝐴 ∈ Fin)) | |
| 2 | elpwg 4578 | . . 3 ⊢ (𝐴 ∈ Fin → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
| 3 | 2 | pm5.32ri 575 | . 2 ⊢ ((𝐴 ∈ 𝒫 𝐵 ∧ 𝐴 ∈ Fin) ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ∈ Fin)) |
| 4 | 1, 3 | bitri 275 | 1 ⊢ (𝐴 ∈ (𝒫 𝐵 ∩ Fin) ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ∈ Fin)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2108 ∩ cin 3925 ⊆ wss 3926 𝒫 cpw 4575 Fincfn 8959 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-in 3933 df-ss 3943 df-pw 4577 |
| This theorem is referenced by: bitsinv2 16462 bitsf1ocnv 16463 2ebits 16466 bitsinvp1 16468 sadcaddlem 16476 sadadd2lem 16478 sadadd3 16480 sadaddlem 16485 sadasslem 16489 sadeq 16491 firest 17446 acsfiindd 18563 restfpw 23117 cmpcov2 23328 cmpcovf 23329 cncmp 23330 tgcmp 23339 cmpcld 23340 cmpfi 23346 locfincmp 23464 comppfsc 23470 alexsublem 23982 alexsubALTlem2 23986 alexsubALTlem4 23988 alexsubALT 23989 ptcmplem2 23991 ptcmplem3 23992 ptcmplem5 23994 tsmsfbas 24066 tsmslem1 24067 tsmsgsum 24077 tsmssubm 24081 tsmsres 24082 tsmsf1o 24083 tsmsmhm 24084 tsmsadd 24085 tsmsxplem1 24091 tsmsxplem2 24092 tsmsxp 24093 xrge0gsumle 24773 xrge0tsms 24774 indf1ofs 32843 xrge0tsmsd 33056 mvrsfpw 35528 elmpst 35558 istotbnd3 37795 sstotbnd2 37798 sstotbnd 37799 sstotbnd3 37800 equivtotbnd 37802 totbndbnd 37813 prdstotbnd 37818 isnacs3 42733 pwfi2f1o 43120 hbtlem6 43153 |
| Copyright terms: Public domain | W3C validator |