| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elfpw | Structured version Visualization version GIF version | ||
| Description: Membership in a class of finite subsets. (Contributed by Stefan O'Rear, 4-Apr-2015.) (Revised by Mario Carneiro, 22-Aug-2015.) |
| Ref | Expression |
|---|---|
| elfpw | ⊢ (𝐴 ∈ (𝒫 𝐵 ∩ Fin) ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ∈ Fin)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin 3921 | . 2 ⊢ (𝐴 ∈ (𝒫 𝐵 ∩ Fin) ↔ (𝐴 ∈ 𝒫 𝐵 ∧ 𝐴 ∈ Fin)) | |
| 2 | elpwg 4556 | . . 3 ⊢ (𝐴 ∈ Fin → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
| 3 | 2 | pm5.32ri 575 | . 2 ⊢ ((𝐴 ∈ 𝒫 𝐵 ∧ 𝐴 ∈ Fin) ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ∈ Fin)) |
| 4 | 1, 3 | bitri 275 | 1 ⊢ (𝐴 ∈ (𝒫 𝐵 ∩ Fin) ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ∈ Fin)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ∩ cin 3904 ⊆ wss 3905 𝒫 cpw 4553 Fincfn 8879 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3440 df-in 3912 df-ss 3922 df-pw 4555 |
| This theorem is referenced by: bitsinv2 16372 bitsf1ocnv 16373 2ebits 16376 bitsinvp1 16378 sadcaddlem 16386 sadadd2lem 16388 sadadd3 16390 sadaddlem 16395 sadasslem 16399 sadeq 16401 firest 17354 acsfiindd 18477 restfpw 23082 cmpcov2 23293 cmpcovf 23294 cncmp 23295 tgcmp 23304 cmpcld 23305 cmpfi 23311 locfincmp 23429 comppfsc 23435 alexsublem 23947 alexsubALTlem2 23951 alexsubALTlem4 23953 alexsubALT 23954 ptcmplem2 23956 ptcmplem3 23957 ptcmplem5 23959 tsmsfbas 24031 tsmslem1 24032 tsmsgsum 24042 tsmssubm 24046 tsmsres 24047 tsmsf1o 24048 tsmsmhm 24049 tsmsadd 24050 tsmsxplem1 24056 tsmsxplem2 24057 tsmsxp 24058 xrge0gsumle 24738 xrge0tsms 24739 indf1ofs 32822 xrge0tsmsd 33028 mvrsfpw 35481 elmpst 35511 istotbnd3 37753 sstotbnd2 37756 sstotbnd 37757 sstotbnd3 37758 equivtotbnd 37760 totbndbnd 37771 prdstotbnd 37776 isnacs3 42686 pwfi2f1o 43072 hbtlem6 43105 |
| Copyright terms: Public domain | W3C validator |