Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elfpw | Structured version Visualization version GIF version |
Description: Membership in a class of finite subsets. (Contributed by Stefan O'Rear, 4-Apr-2015.) (Revised by Mario Carneiro, 22-Aug-2015.) |
Ref | Expression |
---|---|
elfpw | ⊢ (𝐴 ∈ (𝒫 𝐵 ∩ Fin) ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ∈ Fin)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3899 | . 2 ⊢ (𝐴 ∈ (𝒫 𝐵 ∩ Fin) ↔ (𝐴 ∈ 𝒫 𝐵 ∧ 𝐴 ∈ Fin)) | |
2 | elpwg 4533 | . . 3 ⊢ (𝐴 ∈ Fin → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
3 | 2 | pm5.32ri 575 | . 2 ⊢ ((𝐴 ∈ 𝒫 𝐵 ∧ 𝐴 ∈ Fin) ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ∈ Fin)) |
4 | 1, 3 | bitri 274 | 1 ⊢ (𝐴 ∈ (𝒫 𝐵 ∩ Fin) ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ∈ Fin)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∈ wcel 2108 ∩ cin 3882 ⊆ wss 3883 𝒫 cpw 4530 Fincfn 8691 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-pw 4532 |
This theorem is referenced by: bitsinv2 16078 bitsf1ocnv 16079 2ebits 16082 bitsinvp1 16084 sadcaddlem 16092 sadadd2lem 16094 sadadd3 16096 sadaddlem 16101 sadasslem 16105 sadeq 16107 firest 17060 acsfiindd 18186 restfpw 22238 cmpcov2 22449 cmpcovf 22450 cncmp 22451 tgcmp 22460 cmpcld 22461 cmpfi 22467 locfincmp 22585 comppfsc 22591 alexsublem 23103 alexsubALTlem2 23107 alexsubALTlem4 23109 alexsubALT 23110 ptcmplem2 23112 ptcmplem3 23113 ptcmplem5 23115 tsmsfbas 23187 tsmslem1 23188 tsmsgsum 23198 tsmssubm 23202 tsmsres 23203 tsmsf1o 23204 tsmsmhm 23205 tsmsadd 23206 tsmsxplem1 23212 tsmsxplem2 23213 tsmsxp 23214 xrge0gsumle 23902 xrge0tsms 23903 xrge0tsmsd 31219 indf1ofs 31894 mvrsfpw 33368 elmpst 33398 istotbnd3 35856 sstotbnd2 35859 sstotbnd 35860 sstotbnd3 35861 equivtotbnd 35863 totbndbnd 35874 prdstotbnd 35879 isnacs3 40448 pwfi2f1o 40837 hbtlem6 40870 |
Copyright terms: Public domain | W3C validator |