![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elfpw | Structured version Visualization version GIF version |
Description: Membership in a class of finite subsets. (Contributed by Stefan O'Rear, 4-Apr-2015.) (Revised by Mario Carneiro, 22-Aug-2015.) |
Ref | Expression |
---|---|
elfpw | ⊢ (𝐴 ∈ (𝒫 𝐵 ∩ Fin) ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ∈ Fin)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3992 | . 2 ⊢ (𝐴 ∈ (𝒫 𝐵 ∩ Fin) ↔ (𝐴 ∈ 𝒫 𝐵 ∧ 𝐴 ∈ Fin)) | |
2 | elpwg 4625 | . . 3 ⊢ (𝐴 ∈ Fin → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
3 | 2 | pm5.32ri 575 | . 2 ⊢ ((𝐴 ∈ 𝒫 𝐵 ∧ 𝐴 ∈ Fin) ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ∈ Fin)) |
4 | 1, 3 | bitri 275 | 1 ⊢ (𝐴 ∈ (𝒫 𝐵 ∩ Fin) ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ∈ Fin)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2108 ∩ cin 3975 ⊆ wss 3976 𝒫 cpw 4622 Fincfn 9003 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-in 3983 df-ss 3993 df-pw 4624 |
This theorem is referenced by: bitsinv2 16489 bitsf1ocnv 16490 2ebits 16493 bitsinvp1 16495 sadcaddlem 16503 sadadd2lem 16505 sadadd3 16507 sadaddlem 16512 sadasslem 16516 sadeq 16518 firest 17492 acsfiindd 18623 restfpw 23208 cmpcov2 23419 cmpcovf 23420 cncmp 23421 tgcmp 23430 cmpcld 23431 cmpfi 23437 locfincmp 23555 comppfsc 23561 alexsublem 24073 alexsubALTlem2 24077 alexsubALTlem4 24079 alexsubALT 24080 ptcmplem2 24082 ptcmplem3 24083 ptcmplem5 24085 tsmsfbas 24157 tsmslem1 24158 tsmsgsum 24168 tsmssubm 24172 tsmsres 24173 tsmsf1o 24174 tsmsmhm 24175 tsmsadd 24176 tsmsxplem1 24182 tsmsxplem2 24183 tsmsxp 24184 xrge0gsumle 24874 xrge0tsms 24875 xrge0tsmsd 33041 indf1ofs 33990 mvrsfpw 35474 elmpst 35504 istotbnd3 37731 sstotbnd2 37734 sstotbnd 37735 sstotbnd3 37736 equivtotbnd 37738 totbndbnd 37749 prdstotbnd 37754 isnacs3 42666 pwfi2f1o 43053 hbtlem6 43086 |
Copyright terms: Public domain | W3C validator |