| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elfpw | Structured version Visualization version GIF version | ||
| Description: Membership in a class of finite subsets. (Contributed by Stefan O'Rear, 4-Apr-2015.) (Revised by Mario Carneiro, 22-Aug-2015.) |
| Ref | Expression |
|---|---|
| elfpw | ⊢ (𝐴 ∈ (𝒫 𝐵 ∩ Fin) ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ∈ Fin)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin 3930 | . 2 ⊢ (𝐴 ∈ (𝒫 𝐵 ∩ Fin) ↔ (𝐴 ∈ 𝒫 𝐵 ∧ 𝐴 ∈ Fin)) | |
| 2 | elpwg 4566 | . . 3 ⊢ (𝐴 ∈ Fin → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
| 3 | 2 | pm5.32ri 575 | . 2 ⊢ ((𝐴 ∈ 𝒫 𝐵 ∧ 𝐴 ∈ Fin) ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ∈ Fin)) |
| 4 | 1, 3 | bitri 275 | 1 ⊢ (𝐴 ∈ (𝒫 𝐵 ∩ Fin) ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ∈ Fin)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ∩ cin 3913 ⊆ wss 3914 𝒫 cpw 4563 Fincfn 8918 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-in 3921 df-ss 3931 df-pw 4565 |
| This theorem is referenced by: bitsinv2 16413 bitsf1ocnv 16414 2ebits 16417 bitsinvp1 16419 sadcaddlem 16427 sadadd2lem 16429 sadadd3 16431 sadaddlem 16436 sadasslem 16440 sadeq 16442 firest 17395 acsfiindd 18512 restfpw 23066 cmpcov2 23277 cmpcovf 23278 cncmp 23279 tgcmp 23288 cmpcld 23289 cmpfi 23295 locfincmp 23413 comppfsc 23419 alexsublem 23931 alexsubALTlem2 23935 alexsubALTlem4 23937 alexsubALT 23938 ptcmplem2 23940 ptcmplem3 23941 ptcmplem5 23943 tsmsfbas 24015 tsmslem1 24016 tsmsgsum 24026 tsmssubm 24030 tsmsres 24031 tsmsf1o 24032 tsmsmhm 24033 tsmsadd 24034 tsmsxplem1 24040 tsmsxplem2 24041 tsmsxp 24042 xrge0gsumle 24722 xrge0tsms 24723 indf1ofs 32789 xrge0tsmsd 33002 mvrsfpw 35493 elmpst 35523 istotbnd3 37765 sstotbnd2 37768 sstotbnd 37769 sstotbnd3 37770 equivtotbnd 37772 totbndbnd 37783 prdstotbnd 37788 isnacs3 42698 pwfi2f1o 43085 hbtlem6 43118 |
| Copyright terms: Public domain | W3C validator |