![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elfpw | Structured version Visualization version GIF version |
Description: Membership in a class of finite subsets. (Contributed by Stefan O'Rear, 4-Apr-2015.) (Revised by Mario Carneiro, 22-Aug-2015.) |
Ref | Expression |
---|---|
elfpw | ⊢ (𝐴 ∈ (𝒫 𝐵 ∩ Fin) ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ∈ Fin)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3978 | . 2 ⊢ (𝐴 ∈ (𝒫 𝐵 ∩ Fin) ↔ (𝐴 ∈ 𝒫 𝐵 ∧ 𝐴 ∈ Fin)) | |
2 | elpwg 4607 | . . 3 ⊢ (𝐴 ∈ Fin → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
3 | 2 | pm5.32ri 575 | . 2 ⊢ ((𝐴 ∈ 𝒫 𝐵 ∧ 𝐴 ∈ Fin) ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ∈ Fin)) |
4 | 1, 3 | bitri 275 | 1 ⊢ (𝐴 ∈ (𝒫 𝐵 ∩ Fin) ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ∈ Fin)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2105 ∩ cin 3961 ⊆ wss 3962 𝒫 cpw 4604 Fincfn 8983 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1539 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-v 3479 df-in 3969 df-ss 3979 df-pw 4606 |
This theorem is referenced by: bitsinv2 16476 bitsf1ocnv 16477 2ebits 16480 bitsinvp1 16482 sadcaddlem 16490 sadadd2lem 16492 sadadd3 16494 sadaddlem 16499 sadasslem 16503 sadeq 16505 firest 17478 acsfiindd 18610 restfpw 23202 cmpcov2 23413 cmpcovf 23414 cncmp 23415 tgcmp 23424 cmpcld 23425 cmpfi 23431 locfincmp 23549 comppfsc 23555 alexsublem 24067 alexsubALTlem2 24071 alexsubALTlem4 24073 alexsubALT 24074 ptcmplem2 24076 ptcmplem3 24077 ptcmplem5 24079 tsmsfbas 24151 tsmslem1 24152 tsmsgsum 24162 tsmssubm 24166 tsmsres 24167 tsmsf1o 24168 tsmsmhm 24169 tsmsadd 24170 tsmsxplem1 24176 tsmsxplem2 24177 tsmsxp 24178 xrge0gsumle 24868 xrge0tsms 24869 xrge0tsmsd 33047 indf1ofs 34006 mvrsfpw 35490 elmpst 35520 istotbnd3 37757 sstotbnd2 37760 sstotbnd 37761 sstotbnd3 37762 equivtotbnd 37764 totbndbnd 37775 prdstotbnd 37780 isnacs3 42697 pwfi2f1o 43084 hbtlem6 43117 |
Copyright terms: Public domain | W3C validator |