![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elfpw | Structured version Visualization version GIF version |
Description: Membership in a class of finite subsets. (Contributed by Stefan O'Rear, 4-Apr-2015.) (Revised by Mario Carneiro, 22-Aug-2015.) |
Ref | Expression |
---|---|
elfpw | ⊢ (𝐴 ∈ (𝒫 𝐵 ∩ Fin) ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ∈ Fin)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3962 | . 2 ⊢ (𝐴 ∈ (𝒫 𝐵 ∩ Fin) ↔ (𝐴 ∈ 𝒫 𝐵 ∧ 𝐴 ∈ Fin)) | |
2 | elpwg 4600 | . . 3 ⊢ (𝐴 ∈ Fin → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
3 | 2 | pm5.32ri 574 | . 2 ⊢ ((𝐴 ∈ 𝒫 𝐵 ∧ 𝐴 ∈ Fin) ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ∈ Fin)) |
4 | 1, 3 | bitri 274 | 1 ⊢ (𝐴 ∈ (𝒫 𝐵 ∩ Fin) ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ∈ Fin)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 394 ∈ wcel 2099 ∩ cin 3945 ⊆ wss 3946 𝒫 cpw 4597 Fincfn 8966 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-v 3464 df-in 3953 df-ss 3963 df-pw 4599 |
This theorem is referenced by: bitsinv2 16438 bitsf1ocnv 16439 2ebits 16442 bitsinvp1 16444 sadcaddlem 16452 sadadd2lem 16454 sadadd3 16456 sadaddlem 16461 sadasslem 16465 sadeq 16467 firest 17442 acsfiindd 18573 restfpw 23171 cmpcov2 23382 cmpcovf 23383 cncmp 23384 tgcmp 23393 cmpcld 23394 cmpfi 23400 locfincmp 23518 comppfsc 23524 alexsublem 24036 alexsubALTlem2 24040 alexsubALTlem4 24042 alexsubALT 24043 ptcmplem2 24045 ptcmplem3 24046 ptcmplem5 24048 tsmsfbas 24120 tsmslem1 24121 tsmsgsum 24131 tsmssubm 24135 tsmsres 24136 tsmsf1o 24137 tsmsmhm 24138 tsmsadd 24139 tsmsxplem1 24145 tsmsxplem2 24146 tsmsxp 24147 xrge0gsumle 24837 xrge0tsms 24838 xrge0tsmsd 32930 indf1ofs 33872 mvrsfpw 35347 elmpst 35377 istotbnd3 37485 sstotbnd2 37488 sstotbnd 37489 sstotbnd3 37490 equivtotbnd 37492 totbndbnd 37503 prdstotbnd 37508 isnacs3 42404 pwfi2f1o 42794 hbtlem6 42827 |
Copyright terms: Public domain | W3C validator |