| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elfpw | Structured version Visualization version GIF version | ||
| Description: Membership in a class of finite subsets. (Contributed by Stefan O'Rear, 4-Apr-2015.) (Revised by Mario Carneiro, 22-Aug-2015.) |
| Ref | Expression |
|---|---|
| elfpw | ⊢ (𝐴 ∈ (𝒫 𝐵 ∩ Fin) ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ∈ Fin)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin 3918 | . 2 ⊢ (𝐴 ∈ (𝒫 𝐵 ∩ Fin) ↔ (𝐴 ∈ 𝒫 𝐵 ∧ 𝐴 ∈ Fin)) | |
| 2 | elpwg 4553 | . . 3 ⊢ (𝐴 ∈ Fin → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
| 3 | 2 | pm5.32ri 575 | . 2 ⊢ ((𝐴 ∈ 𝒫 𝐵 ∧ 𝐴 ∈ Fin) ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ∈ Fin)) |
| 4 | 1, 3 | bitri 275 | 1 ⊢ (𝐴 ∈ (𝒫 𝐵 ∩ Fin) ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ∈ Fin)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2111 ∩ cin 3901 ⊆ wss 3902 𝒫 cpw 4550 Fincfn 8869 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-in 3909 df-ss 3919 df-pw 4552 |
| This theorem is referenced by: bitsinv2 16354 bitsf1ocnv 16355 2ebits 16358 bitsinvp1 16360 sadcaddlem 16368 sadadd2lem 16370 sadadd3 16372 sadaddlem 16377 sadasslem 16381 sadeq 16383 firest 17336 acsfiindd 18459 restfpw 23095 cmpcov2 23306 cmpcovf 23307 cncmp 23308 tgcmp 23317 cmpcld 23318 cmpfi 23324 locfincmp 23442 comppfsc 23448 alexsublem 23960 alexsubALTlem2 23964 alexsubALTlem4 23966 alexsubALT 23967 ptcmplem2 23969 ptcmplem3 23970 ptcmplem5 23972 tsmsfbas 24044 tsmslem1 24045 tsmsgsum 24055 tsmssubm 24059 tsmsres 24060 tsmsf1o 24061 tsmsmhm 24062 tsmsadd 24063 tsmsxplem1 24069 tsmsxplem2 24070 tsmsxp 24071 xrge0gsumle 24750 xrge0tsms 24751 indf1ofs 32845 xrge0tsmsd 33040 mvrsfpw 35548 elmpst 35578 istotbnd3 37817 sstotbnd2 37820 sstotbnd 37821 sstotbnd3 37822 equivtotbnd 37824 totbndbnd 37835 prdstotbnd 37840 isnacs3 42749 pwfi2f1o 43135 hbtlem6 43168 |
| Copyright terms: Public domain | W3C validator |