| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elfpw | Structured version Visualization version GIF version | ||
| Description: Membership in a class of finite subsets. (Contributed by Stefan O'Rear, 4-Apr-2015.) (Revised by Mario Carneiro, 22-Aug-2015.) |
| Ref | Expression |
|---|---|
| elfpw | ⊢ (𝐴 ∈ (𝒫 𝐵 ∩ Fin) ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ∈ Fin)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin 3914 | . 2 ⊢ (𝐴 ∈ (𝒫 𝐵 ∩ Fin) ↔ (𝐴 ∈ 𝒫 𝐵 ∧ 𝐴 ∈ Fin)) | |
| 2 | elpwg 4552 | . . 3 ⊢ (𝐴 ∈ Fin → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
| 3 | 2 | pm5.32ri 575 | . 2 ⊢ ((𝐴 ∈ 𝒫 𝐵 ∧ 𝐴 ∈ Fin) ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ∈ Fin)) |
| 4 | 1, 3 | bitri 275 | 1 ⊢ (𝐴 ∈ (𝒫 𝐵 ∩ Fin) ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ∈ Fin)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2113 ∩ cin 3897 ⊆ wss 3898 𝒫 cpw 4549 Fincfn 8875 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-in 3905 df-ss 3915 df-pw 4551 |
| This theorem is referenced by: bitsinv2 16356 bitsf1ocnv 16357 2ebits 16360 bitsinvp1 16362 sadcaddlem 16370 sadadd2lem 16372 sadadd3 16374 sadaddlem 16379 sadasslem 16383 sadeq 16385 firest 17338 acsfiindd 18461 restfpw 23095 cmpcov2 23306 cmpcovf 23307 cncmp 23308 tgcmp 23317 cmpcld 23318 cmpfi 23324 locfincmp 23442 comppfsc 23448 alexsublem 23960 alexsubALTlem2 23964 alexsubALTlem4 23966 alexsubALT 23967 ptcmplem2 23969 ptcmplem3 23970 ptcmplem5 23972 tsmsfbas 24044 tsmslem1 24045 tsmsgsum 24055 tsmssubm 24059 tsmsres 24060 tsmsf1o 24061 tsmsmhm 24062 tsmsadd 24063 tsmsxplem1 24069 tsmsxplem2 24070 tsmsxp 24071 xrge0gsumle 24750 xrge0tsms 24751 indf1ofs 32854 xrge0tsmsd 33049 mvrsfpw 35571 elmpst 35601 istotbnd3 37832 sstotbnd2 37835 sstotbnd 37836 sstotbnd3 37837 equivtotbnd 37839 totbndbnd 37850 prdstotbnd 37855 isnacs3 42828 pwfi2f1o 43214 hbtlem6 43247 |
| Copyright terms: Public domain | W3C validator |