![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elfpw | Structured version Visualization version GIF version |
Description: Membership in a class of finite subsets. (Contributed by Stefan O'Rear, 4-Apr-2015.) (Revised by Mario Carneiro, 22-Aug-2015.) |
Ref | Expression |
---|---|
elfpw | ⊢ (𝐴 ∈ (𝒫 𝐵 ∩ Fin) ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ∈ Fin)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3965 | . 2 ⊢ (𝐴 ∈ (𝒫 𝐵 ∩ Fin) ↔ (𝐴 ∈ 𝒫 𝐵 ∧ 𝐴 ∈ Fin)) | |
2 | elpwg 4606 | . . 3 ⊢ (𝐴 ∈ Fin → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
3 | 2 | pm5.32ri 577 | . 2 ⊢ ((𝐴 ∈ 𝒫 𝐵 ∧ 𝐴 ∈ Fin) ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ∈ Fin)) |
4 | 1, 3 | bitri 275 | 1 ⊢ (𝐴 ∈ (𝒫 𝐵 ∩ Fin) ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ∈ Fin)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 ∈ wcel 2107 ∩ cin 3948 ⊆ wss 3949 𝒫 cpw 4603 Fincfn 8939 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-v 3477 df-in 3956 df-ss 3966 df-pw 4605 |
This theorem is referenced by: bitsinv2 16384 bitsf1ocnv 16385 2ebits 16388 bitsinvp1 16390 sadcaddlem 16398 sadadd2lem 16400 sadadd3 16402 sadaddlem 16407 sadasslem 16411 sadeq 16413 firest 17378 acsfiindd 18506 restfpw 22683 cmpcov2 22894 cmpcovf 22895 cncmp 22896 tgcmp 22905 cmpcld 22906 cmpfi 22912 locfincmp 23030 comppfsc 23036 alexsublem 23548 alexsubALTlem2 23552 alexsubALTlem4 23554 alexsubALT 23555 ptcmplem2 23557 ptcmplem3 23558 ptcmplem5 23560 tsmsfbas 23632 tsmslem1 23633 tsmsgsum 23643 tsmssubm 23647 tsmsres 23648 tsmsf1o 23649 tsmsmhm 23650 tsmsadd 23651 tsmsxplem1 23657 tsmsxplem2 23658 tsmsxp 23659 xrge0gsumle 24349 xrge0tsms 24350 xrge0tsmsd 32209 indf1ofs 33024 mvrsfpw 34497 elmpst 34527 istotbnd3 36639 sstotbnd2 36642 sstotbnd 36643 sstotbnd3 36644 equivtotbnd 36646 totbndbnd 36657 prdstotbnd 36662 isnacs3 41448 pwfi2f1o 41838 hbtlem6 41871 |
Copyright terms: Public domain | W3C validator |