Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elfpw | Structured version Visualization version GIF version |
Description: Membership in a class of finite subsets. (Contributed by Stefan O'Rear, 4-Apr-2015.) (Revised by Mario Carneiro, 22-Aug-2015.) |
Ref | Expression |
---|---|
elfpw | ⊢ (𝐴 ∈ (𝒫 𝐵 ∩ Fin) ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ∈ Fin)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3903 | . 2 ⊢ (𝐴 ∈ (𝒫 𝐵 ∩ Fin) ↔ (𝐴 ∈ 𝒫 𝐵 ∧ 𝐴 ∈ Fin)) | |
2 | elpwg 4536 | . . 3 ⊢ (𝐴 ∈ Fin → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
3 | 2 | pm5.32ri 576 | . 2 ⊢ ((𝐴 ∈ 𝒫 𝐵 ∧ 𝐴 ∈ Fin) ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ∈ Fin)) |
4 | 1, 3 | bitri 274 | 1 ⊢ (𝐴 ∈ (𝒫 𝐵 ∩ Fin) ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ∈ Fin)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∈ wcel 2106 ∩ cin 3886 ⊆ wss 3887 𝒫 cpw 4533 Fincfn 8733 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-ss 3904 df-pw 4535 |
This theorem is referenced by: bitsinv2 16150 bitsf1ocnv 16151 2ebits 16154 bitsinvp1 16156 sadcaddlem 16164 sadadd2lem 16166 sadadd3 16168 sadaddlem 16173 sadasslem 16177 sadeq 16179 firest 17143 acsfiindd 18271 restfpw 22330 cmpcov2 22541 cmpcovf 22542 cncmp 22543 tgcmp 22552 cmpcld 22553 cmpfi 22559 locfincmp 22677 comppfsc 22683 alexsublem 23195 alexsubALTlem2 23199 alexsubALTlem4 23201 alexsubALT 23202 ptcmplem2 23204 ptcmplem3 23205 ptcmplem5 23207 tsmsfbas 23279 tsmslem1 23280 tsmsgsum 23290 tsmssubm 23294 tsmsres 23295 tsmsf1o 23296 tsmsmhm 23297 tsmsadd 23298 tsmsxplem1 23304 tsmsxplem2 23305 tsmsxp 23306 xrge0gsumle 23996 xrge0tsms 23997 xrge0tsmsd 31317 indf1ofs 31994 mvrsfpw 33468 elmpst 33498 istotbnd3 35929 sstotbnd2 35932 sstotbnd 35933 sstotbnd3 35934 equivtotbnd 35936 totbndbnd 35947 prdstotbnd 35952 isnacs3 40532 pwfi2f1o 40921 hbtlem6 40954 |
Copyright terms: Public domain | W3C validator |