Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elfpw | Structured version Visualization version GIF version |
Description: Membership in a class of finite subsets. (Contributed by Stefan O'Rear, 4-Apr-2015.) (Revised by Mario Carneiro, 22-Aug-2015.) |
Ref | Expression |
---|---|
elfpw | ⊢ (𝐴 ∈ (𝒫 𝐵 ∩ Fin) ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ∈ Fin)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3908 | . 2 ⊢ (𝐴 ∈ (𝒫 𝐵 ∩ Fin) ↔ (𝐴 ∈ 𝒫 𝐵 ∧ 𝐴 ∈ Fin)) | |
2 | elpwg 4542 | . . 3 ⊢ (𝐴 ∈ Fin → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
3 | 2 | pm5.32ri 576 | . 2 ⊢ ((𝐴 ∈ 𝒫 𝐵 ∧ 𝐴 ∈ Fin) ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ∈ Fin)) |
4 | 1, 3 | bitri 274 | 1 ⊢ (𝐴 ∈ (𝒫 𝐵 ∩ Fin) ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ∈ Fin)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∈ wcel 2110 ∩ cin 3891 ⊆ wss 3892 𝒫 cpw 4539 Fincfn 8714 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-ext 2711 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1545 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-v 3433 df-in 3899 df-ss 3909 df-pw 4541 |
This theorem is referenced by: bitsinv2 16146 bitsf1ocnv 16147 2ebits 16150 bitsinvp1 16152 sadcaddlem 16160 sadadd2lem 16162 sadadd3 16164 sadaddlem 16169 sadasslem 16173 sadeq 16175 firest 17139 acsfiindd 18267 restfpw 22326 cmpcov2 22537 cmpcovf 22538 cncmp 22539 tgcmp 22548 cmpcld 22549 cmpfi 22555 locfincmp 22673 comppfsc 22679 alexsublem 23191 alexsubALTlem2 23195 alexsubALTlem4 23197 alexsubALT 23198 ptcmplem2 23200 ptcmplem3 23201 ptcmplem5 23203 tsmsfbas 23275 tsmslem1 23276 tsmsgsum 23286 tsmssubm 23290 tsmsres 23291 tsmsf1o 23292 tsmsmhm 23293 tsmsadd 23294 tsmsxplem1 23300 tsmsxplem2 23301 tsmsxp 23302 xrge0gsumle 23992 xrge0tsms 23993 xrge0tsmsd 31311 indf1ofs 31988 mvrsfpw 33462 elmpst 33492 istotbnd3 35923 sstotbnd2 35926 sstotbnd 35927 sstotbnd3 35928 equivtotbnd 35930 totbndbnd 35941 prdstotbnd 35946 isnacs3 40527 pwfi2f1o 40916 hbtlem6 40949 |
Copyright terms: Public domain | W3C validator |