| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elfpw | Structured version Visualization version GIF version | ||
| Description: Membership in a class of finite subsets. (Contributed by Stefan O'Rear, 4-Apr-2015.) (Revised by Mario Carneiro, 22-Aug-2015.) |
| Ref | Expression |
|---|---|
| elfpw | ⊢ (𝐴 ∈ (𝒫 𝐵 ∩ Fin) ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ∈ Fin)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin 3933 | . 2 ⊢ (𝐴 ∈ (𝒫 𝐵 ∩ Fin) ↔ (𝐴 ∈ 𝒫 𝐵 ∧ 𝐴 ∈ Fin)) | |
| 2 | elpwg 4569 | . . 3 ⊢ (𝐴 ∈ Fin → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
| 3 | 2 | pm5.32ri 575 | . 2 ⊢ ((𝐴 ∈ 𝒫 𝐵 ∧ 𝐴 ∈ Fin) ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ∈ Fin)) |
| 4 | 1, 3 | bitri 275 | 1 ⊢ (𝐴 ∈ (𝒫 𝐵 ∩ Fin) ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ∈ Fin)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ∩ cin 3916 ⊆ wss 3917 𝒫 cpw 4566 Fincfn 8921 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-in 3924 df-ss 3934 df-pw 4568 |
| This theorem is referenced by: bitsinv2 16420 bitsf1ocnv 16421 2ebits 16424 bitsinvp1 16426 sadcaddlem 16434 sadadd2lem 16436 sadadd3 16438 sadaddlem 16443 sadasslem 16447 sadeq 16449 firest 17402 acsfiindd 18519 restfpw 23073 cmpcov2 23284 cmpcovf 23285 cncmp 23286 tgcmp 23295 cmpcld 23296 cmpfi 23302 locfincmp 23420 comppfsc 23426 alexsublem 23938 alexsubALTlem2 23942 alexsubALTlem4 23944 alexsubALT 23945 ptcmplem2 23947 ptcmplem3 23948 ptcmplem5 23950 tsmsfbas 24022 tsmslem1 24023 tsmsgsum 24033 tsmssubm 24037 tsmsres 24038 tsmsf1o 24039 tsmsmhm 24040 tsmsadd 24041 tsmsxplem1 24047 tsmsxplem2 24048 tsmsxp 24049 xrge0gsumle 24729 xrge0tsms 24730 indf1ofs 32796 xrge0tsmsd 33009 mvrsfpw 35500 elmpst 35530 istotbnd3 37772 sstotbnd2 37775 sstotbnd 37776 sstotbnd3 37777 equivtotbnd 37779 totbndbnd 37790 prdstotbnd 37795 isnacs3 42705 pwfi2f1o 43092 hbtlem6 43125 |
| Copyright terms: Public domain | W3C validator |