Step | Hyp | Ref
| Expression |
1 | | simpl 484 |
. 2
⊢ ((𝐽 ∈ Comp ∧ ∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ ∃𝑧 ∈ 𝐴 𝜑)) → 𝐽 ∈ Comp) |
2 | | iscmp.1 |
. . 3
⊢ 𝑋 = ∪
𝐽 |
3 | 2 | cmpcov2 22586 |
. 2
⊢ ((𝐽 ∈ Comp ∧ ∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ ∃𝑧 ∈ 𝐴 𝜑)) → ∃𝑢 ∈ (𝒫 𝐽 ∩ Fin)(𝑋 = ∪ 𝑢 ∧ ∀𝑦 ∈ 𝑢 ∃𝑧 ∈ 𝐴 𝜑)) |
4 | | elfpw 9165 |
. . . 4
⊢ (𝑢 ∈ (𝒫 𝐽 ∩ Fin) ↔ (𝑢 ⊆ 𝐽 ∧ 𝑢 ∈ Fin)) |
5 | | simplrl 775 |
. . . . . . . 8
⊢ (((𝐽 ∈ Comp ∧ (𝑢 ⊆ 𝐽 ∧ 𝑢 ∈ Fin)) ∧ (𝑋 = ∪ 𝑢 ∧ ∀𝑦 ∈ 𝑢 ∃𝑧 ∈ 𝐴 𝜑)) → 𝑢 ⊆ 𝐽) |
6 | | velpw 4544 |
. . . . . . . 8
⊢ (𝑢 ∈ 𝒫 𝐽 ↔ 𝑢 ⊆ 𝐽) |
7 | 5, 6 | sylibr 233 |
. . . . . . 7
⊢ (((𝐽 ∈ Comp ∧ (𝑢 ⊆ 𝐽 ∧ 𝑢 ∈ Fin)) ∧ (𝑋 = ∪ 𝑢 ∧ ∀𝑦 ∈ 𝑢 ∃𝑧 ∈ 𝐴 𝜑)) → 𝑢 ∈ 𝒫 𝐽) |
8 | | simplrr 776 |
. . . . . . 7
⊢ (((𝐽 ∈ Comp ∧ (𝑢 ⊆ 𝐽 ∧ 𝑢 ∈ Fin)) ∧ (𝑋 = ∪ 𝑢 ∧ ∀𝑦 ∈ 𝑢 ∃𝑧 ∈ 𝐴 𝜑)) → 𝑢 ∈ Fin) |
9 | 7, 8 | elind 4134 |
. . . . . 6
⊢ (((𝐽 ∈ Comp ∧ (𝑢 ⊆ 𝐽 ∧ 𝑢 ∈ Fin)) ∧ (𝑋 = ∪ 𝑢 ∧ ∀𝑦 ∈ 𝑢 ∃𝑧 ∈ 𝐴 𝜑)) → 𝑢 ∈ (𝒫 𝐽 ∩ Fin)) |
10 | | simprl 769 |
. . . . . 6
⊢ (((𝐽 ∈ Comp ∧ (𝑢 ⊆ 𝐽 ∧ 𝑢 ∈ Fin)) ∧ (𝑋 = ∪ 𝑢 ∧ ∀𝑦 ∈ 𝑢 ∃𝑧 ∈ 𝐴 𝜑)) → 𝑋 = ∪ 𝑢) |
11 | | simprr 771 |
. . . . . . 7
⊢ (((𝐽 ∈ Comp ∧ (𝑢 ⊆ 𝐽 ∧ 𝑢 ∈ Fin)) ∧ (𝑋 = ∪ 𝑢 ∧ ∀𝑦 ∈ 𝑢 ∃𝑧 ∈ 𝐴 𝜑)) → ∀𝑦 ∈ 𝑢 ∃𝑧 ∈ 𝐴 𝜑) |
12 | | cmpcovf.2 |
. . . . . . . 8
⊢ (𝑧 = (𝑓‘𝑦) → (𝜑 ↔ 𝜓)) |
13 | 12 | ac6sfi 9102 |
. . . . . . 7
⊢ ((𝑢 ∈ Fin ∧ ∀𝑦 ∈ 𝑢 ∃𝑧 ∈ 𝐴 𝜑) → ∃𝑓(𝑓:𝑢⟶𝐴 ∧ ∀𝑦 ∈ 𝑢 𝜓)) |
14 | 8, 11, 13 | syl2anc 585 |
. . . . . 6
⊢ (((𝐽 ∈ Comp ∧ (𝑢 ⊆ 𝐽 ∧ 𝑢 ∈ Fin)) ∧ (𝑋 = ∪ 𝑢 ∧ ∀𝑦 ∈ 𝑢 ∃𝑧 ∈ 𝐴 𝜑)) → ∃𝑓(𝑓:𝑢⟶𝐴 ∧ ∀𝑦 ∈ 𝑢 𝜓)) |
15 | | unieq 4855 |
. . . . . . . . 9
⊢ (𝑠 = 𝑢 → ∪ 𝑠 = ∪
𝑢) |
16 | 15 | eqeq2d 2747 |
. . . . . . . 8
⊢ (𝑠 = 𝑢 → (𝑋 = ∪ 𝑠 ↔ 𝑋 = ∪ 𝑢)) |
17 | | feq2 6612 |
. . . . . . . . . 10
⊢ (𝑠 = 𝑢 → (𝑓:𝑠⟶𝐴 ↔ 𝑓:𝑢⟶𝐴)) |
18 | | raleq 3354 |
. . . . . . . . . 10
⊢ (𝑠 = 𝑢 → (∀𝑦 ∈ 𝑠 𝜓 ↔ ∀𝑦 ∈ 𝑢 𝜓)) |
19 | 17, 18 | anbi12d 632 |
. . . . . . . . 9
⊢ (𝑠 = 𝑢 → ((𝑓:𝑠⟶𝐴 ∧ ∀𝑦 ∈ 𝑠 𝜓) ↔ (𝑓:𝑢⟶𝐴 ∧ ∀𝑦 ∈ 𝑢 𝜓))) |
20 | 19 | exbidv 1922 |
. . . . . . . 8
⊢ (𝑠 = 𝑢 → (∃𝑓(𝑓:𝑠⟶𝐴 ∧ ∀𝑦 ∈ 𝑠 𝜓) ↔ ∃𝑓(𝑓:𝑢⟶𝐴 ∧ ∀𝑦 ∈ 𝑢 𝜓))) |
21 | 16, 20 | anbi12d 632 |
. . . . . . 7
⊢ (𝑠 = 𝑢 → ((𝑋 = ∪ 𝑠 ∧ ∃𝑓(𝑓:𝑠⟶𝐴 ∧ ∀𝑦 ∈ 𝑠 𝜓)) ↔ (𝑋 = ∪ 𝑢 ∧ ∃𝑓(𝑓:𝑢⟶𝐴 ∧ ∀𝑦 ∈ 𝑢 𝜓)))) |
22 | 21 | rspcev 3566 |
. . . . . 6
⊢ ((𝑢 ∈ (𝒫 𝐽 ∩ Fin) ∧ (𝑋 = ∪
𝑢 ∧ ∃𝑓(𝑓:𝑢⟶𝐴 ∧ ∀𝑦 ∈ 𝑢 𝜓))) → ∃𝑠 ∈ (𝒫 𝐽 ∩ Fin)(𝑋 = ∪ 𝑠 ∧ ∃𝑓(𝑓:𝑠⟶𝐴 ∧ ∀𝑦 ∈ 𝑠 𝜓))) |
23 | 9, 10, 14, 22 | syl12anc 835 |
. . . . 5
⊢ (((𝐽 ∈ Comp ∧ (𝑢 ⊆ 𝐽 ∧ 𝑢 ∈ Fin)) ∧ (𝑋 = ∪ 𝑢 ∧ ∀𝑦 ∈ 𝑢 ∃𝑧 ∈ 𝐴 𝜑)) → ∃𝑠 ∈ (𝒫 𝐽 ∩ Fin)(𝑋 = ∪ 𝑠 ∧ ∃𝑓(𝑓:𝑠⟶𝐴 ∧ ∀𝑦 ∈ 𝑠 𝜓))) |
24 | 23 | ex 414 |
. . . 4
⊢ ((𝐽 ∈ Comp ∧ (𝑢 ⊆ 𝐽 ∧ 𝑢 ∈ Fin)) → ((𝑋 = ∪ 𝑢 ∧ ∀𝑦 ∈ 𝑢 ∃𝑧 ∈ 𝐴 𝜑) → ∃𝑠 ∈ (𝒫 𝐽 ∩ Fin)(𝑋 = ∪ 𝑠 ∧ ∃𝑓(𝑓:𝑠⟶𝐴 ∧ ∀𝑦 ∈ 𝑠 𝜓)))) |
25 | 4, 24 | sylan2b 595 |
. . 3
⊢ ((𝐽 ∈ Comp ∧ 𝑢 ∈ (𝒫 𝐽 ∩ Fin)) → ((𝑋 = ∪
𝑢 ∧ ∀𝑦 ∈ 𝑢 ∃𝑧 ∈ 𝐴 𝜑) → ∃𝑠 ∈ (𝒫 𝐽 ∩ Fin)(𝑋 = ∪ 𝑠 ∧ ∃𝑓(𝑓:𝑠⟶𝐴 ∧ ∀𝑦 ∈ 𝑠 𝜓)))) |
26 | 25 | rexlimdva 3149 |
. 2
⊢ (𝐽 ∈ Comp →
(∃𝑢 ∈ (𝒫
𝐽 ∩ Fin)(𝑋 = ∪
𝑢 ∧ ∀𝑦 ∈ 𝑢 ∃𝑧 ∈ 𝐴 𝜑) → ∃𝑠 ∈ (𝒫 𝐽 ∩ Fin)(𝑋 = ∪ 𝑠 ∧ ∃𝑓(𝑓:𝑠⟶𝐴 ∧ ∀𝑦 ∈ 𝑠 𝜓)))) |
27 | 1, 3, 26 | sylc 65 |
1
⊢ ((𝐽 ∈ Comp ∧ ∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ ∃𝑧 ∈ 𝐴 𝜑)) → ∃𝑠 ∈ (𝒫 𝐽 ∩ Fin)(𝑋 = ∪ 𝑠 ∧ ∃𝑓(𝑓:𝑠⟶𝐴 ∧ ∀𝑦 ∈ 𝑠 𝜓))) |