MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmpcovf Structured version   Visualization version   GIF version

Theorem cmpcovf 23420
Description: Combine cmpcov 23418 with ac6sfi 9348 to show the existence of a function that indexes the elements that are generating the open cover. (Contributed by Mario Carneiro, 14-Sep-2014.)
Hypotheses
Ref Expression
iscmp.1 𝑋 = 𝐽
cmpcovf.2 (𝑧 = (𝑓𝑦) → (𝜑𝜓))
Assertion
Ref Expression
cmpcovf ((𝐽 ∈ Comp ∧ ∀𝑥𝑋𝑦𝐽 (𝑥𝑦 ∧ ∃𝑧𝐴 𝜑)) → ∃𝑠 ∈ (𝒫 𝐽 ∩ Fin)(𝑋 = 𝑠 ∧ ∃𝑓(𝑓:𝑠𝐴 ∧ ∀𝑦𝑠 𝜓)))
Distinct variable groups:   𝑓,𝑠,𝑥,𝑦,𝑧,𝐴   𝐽,𝑠,𝑥,𝑦,𝑧   𝜑,𝑓,𝑠,𝑥   𝜓,𝑠,𝑧   𝑥,𝑋,𝑠
Allowed substitution hints:   𝜑(𝑦,𝑧)   𝜓(𝑥,𝑦,𝑓)   𝐽(𝑓)   𝑋(𝑦,𝑧,𝑓)

Proof of Theorem cmpcovf
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 simpl 482 . 2 ((𝐽 ∈ Comp ∧ ∀𝑥𝑋𝑦𝐽 (𝑥𝑦 ∧ ∃𝑧𝐴 𝜑)) → 𝐽 ∈ Comp)
2 iscmp.1 . . 3 𝑋 = 𝐽
32cmpcov2 23419 . 2 ((𝐽 ∈ Comp ∧ ∀𝑥𝑋𝑦𝐽 (𝑥𝑦 ∧ ∃𝑧𝐴 𝜑)) → ∃𝑢 ∈ (𝒫 𝐽 ∩ Fin)(𝑋 = 𝑢 ∧ ∀𝑦𝑢𝑧𝐴 𝜑))
4 elfpw 9424 . . . 4 (𝑢 ∈ (𝒫 𝐽 ∩ Fin) ↔ (𝑢𝐽𝑢 ∈ Fin))
5 simplrl 776 . . . . . . . 8 (((𝐽 ∈ Comp ∧ (𝑢𝐽𝑢 ∈ Fin)) ∧ (𝑋 = 𝑢 ∧ ∀𝑦𝑢𝑧𝐴 𝜑)) → 𝑢𝐽)
6 velpw 4627 . . . . . . . 8 (𝑢 ∈ 𝒫 𝐽𝑢𝐽)
75, 6sylibr 234 . . . . . . 7 (((𝐽 ∈ Comp ∧ (𝑢𝐽𝑢 ∈ Fin)) ∧ (𝑋 = 𝑢 ∧ ∀𝑦𝑢𝑧𝐴 𝜑)) → 𝑢 ∈ 𝒫 𝐽)
8 simplrr 777 . . . . . . 7 (((𝐽 ∈ Comp ∧ (𝑢𝐽𝑢 ∈ Fin)) ∧ (𝑋 = 𝑢 ∧ ∀𝑦𝑢𝑧𝐴 𝜑)) → 𝑢 ∈ Fin)
97, 8elind 4223 . . . . . 6 (((𝐽 ∈ Comp ∧ (𝑢𝐽𝑢 ∈ Fin)) ∧ (𝑋 = 𝑢 ∧ ∀𝑦𝑢𝑧𝐴 𝜑)) → 𝑢 ∈ (𝒫 𝐽 ∩ Fin))
10 simprl 770 . . . . . 6 (((𝐽 ∈ Comp ∧ (𝑢𝐽𝑢 ∈ Fin)) ∧ (𝑋 = 𝑢 ∧ ∀𝑦𝑢𝑧𝐴 𝜑)) → 𝑋 = 𝑢)
11 simprr 772 . . . . . . 7 (((𝐽 ∈ Comp ∧ (𝑢𝐽𝑢 ∈ Fin)) ∧ (𝑋 = 𝑢 ∧ ∀𝑦𝑢𝑧𝐴 𝜑)) → ∀𝑦𝑢𝑧𝐴 𝜑)
12 cmpcovf.2 . . . . . . . 8 (𝑧 = (𝑓𝑦) → (𝜑𝜓))
1312ac6sfi 9348 . . . . . . 7 ((𝑢 ∈ Fin ∧ ∀𝑦𝑢𝑧𝐴 𝜑) → ∃𝑓(𝑓:𝑢𝐴 ∧ ∀𝑦𝑢 𝜓))
148, 11, 13syl2anc 583 . . . . . 6 (((𝐽 ∈ Comp ∧ (𝑢𝐽𝑢 ∈ Fin)) ∧ (𝑋 = 𝑢 ∧ ∀𝑦𝑢𝑧𝐴 𝜑)) → ∃𝑓(𝑓:𝑢𝐴 ∧ ∀𝑦𝑢 𝜓))
15 unieq 4942 . . . . . . . . 9 (𝑠 = 𝑢 𝑠 = 𝑢)
1615eqeq2d 2751 . . . . . . . 8 (𝑠 = 𝑢 → (𝑋 = 𝑠𝑋 = 𝑢))
17 feq2 6729 . . . . . . . . . 10 (𝑠 = 𝑢 → (𝑓:𝑠𝐴𝑓:𝑢𝐴))
18 raleq 3331 . . . . . . . . . 10 (𝑠 = 𝑢 → (∀𝑦𝑠 𝜓 ↔ ∀𝑦𝑢 𝜓))
1917, 18anbi12d 631 . . . . . . . . 9 (𝑠 = 𝑢 → ((𝑓:𝑠𝐴 ∧ ∀𝑦𝑠 𝜓) ↔ (𝑓:𝑢𝐴 ∧ ∀𝑦𝑢 𝜓)))
2019exbidv 1920 . . . . . . . 8 (𝑠 = 𝑢 → (∃𝑓(𝑓:𝑠𝐴 ∧ ∀𝑦𝑠 𝜓) ↔ ∃𝑓(𝑓:𝑢𝐴 ∧ ∀𝑦𝑢 𝜓)))
2116, 20anbi12d 631 . . . . . . 7 (𝑠 = 𝑢 → ((𝑋 = 𝑠 ∧ ∃𝑓(𝑓:𝑠𝐴 ∧ ∀𝑦𝑠 𝜓)) ↔ (𝑋 = 𝑢 ∧ ∃𝑓(𝑓:𝑢𝐴 ∧ ∀𝑦𝑢 𝜓))))
2221rspcev 3635 . . . . . 6 ((𝑢 ∈ (𝒫 𝐽 ∩ Fin) ∧ (𝑋 = 𝑢 ∧ ∃𝑓(𝑓:𝑢𝐴 ∧ ∀𝑦𝑢 𝜓))) → ∃𝑠 ∈ (𝒫 𝐽 ∩ Fin)(𝑋 = 𝑠 ∧ ∃𝑓(𝑓:𝑠𝐴 ∧ ∀𝑦𝑠 𝜓)))
239, 10, 14, 22syl12anc 836 . . . . 5 (((𝐽 ∈ Comp ∧ (𝑢𝐽𝑢 ∈ Fin)) ∧ (𝑋 = 𝑢 ∧ ∀𝑦𝑢𝑧𝐴 𝜑)) → ∃𝑠 ∈ (𝒫 𝐽 ∩ Fin)(𝑋 = 𝑠 ∧ ∃𝑓(𝑓:𝑠𝐴 ∧ ∀𝑦𝑠 𝜓)))
2423ex 412 . . . 4 ((𝐽 ∈ Comp ∧ (𝑢𝐽𝑢 ∈ Fin)) → ((𝑋 = 𝑢 ∧ ∀𝑦𝑢𝑧𝐴 𝜑) → ∃𝑠 ∈ (𝒫 𝐽 ∩ Fin)(𝑋 = 𝑠 ∧ ∃𝑓(𝑓:𝑠𝐴 ∧ ∀𝑦𝑠 𝜓))))
254, 24sylan2b 593 . . 3 ((𝐽 ∈ Comp ∧ 𝑢 ∈ (𝒫 𝐽 ∩ Fin)) → ((𝑋 = 𝑢 ∧ ∀𝑦𝑢𝑧𝐴 𝜑) → ∃𝑠 ∈ (𝒫 𝐽 ∩ Fin)(𝑋 = 𝑠 ∧ ∃𝑓(𝑓:𝑠𝐴 ∧ ∀𝑦𝑠 𝜓))))
2625rexlimdva 3161 . 2 (𝐽 ∈ Comp → (∃𝑢 ∈ (𝒫 𝐽 ∩ Fin)(𝑋 = 𝑢 ∧ ∀𝑦𝑢𝑧𝐴 𝜑) → ∃𝑠 ∈ (𝒫 𝐽 ∩ Fin)(𝑋 = 𝑠 ∧ ∃𝑓(𝑓:𝑠𝐴 ∧ ∀𝑦𝑠 𝜓))))
271, 3, 26sylc 65 1 ((𝐽 ∈ Comp ∧ ∀𝑥𝑋𝑦𝐽 (𝑥𝑦 ∧ ∃𝑧𝐴 𝜑)) → ∃𝑠 ∈ (𝒫 𝐽 ∩ Fin)(𝑋 = 𝑠 ∧ ∃𝑓(𝑓:𝑠𝐴 ∧ ∀𝑦𝑠 𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wex 1777  wcel 2108  wral 3067  wrex 3076  cin 3975  wss 3976  𝒫 cpw 4622   cuni 4931  wf 6569  cfv 6573  Fincfn 9003  Compccmp 23415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-om 7904  df-en 9004  df-fin 9007  df-cmp 23416
This theorem is referenced by:  txtube  23669  txcmplem1  23670  txcmplem2  23671  xkococnlem  23688  cnheibor  25006  heicant  37615
  Copyright terms: Public domain W3C validator