MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmpcovf Structured version   Visualization version   GIF version

Theorem cmpcovf 21565
Description: Combine cmpcov 21563 with ac6sfi 8473 to show the existence of a function that indexes the elements that are generating the open cover. (Contributed by Mario Carneiro, 14-Sep-2014.)
Hypotheses
Ref Expression
iscmp.1 𝑋 = 𝐽
cmpcovf.2 (𝑧 = (𝑓𝑦) → (𝜑𝜓))
Assertion
Ref Expression
cmpcovf ((𝐽 ∈ Comp ∧ ∀𝑥𝑋𝑦𝐽 (𝑥𝑦 ∧ ∃𝑧𝐴 𝜑)) → ∃𝑠 ∈ (𝒫 𝐽 ∩ Fin)(𝑋 = 𝑠 ∧ ∃𝑓(𝑓:𝑠𝐴 ∧ ∀𝑦𝑠 𝜓)))
Distinct variable groups:   𝑓,𝑠,𝑥,𝑦,𝑧,𝐴   𝐽,𝑠,𝑥,𝑦,𝑧   𝜑,𝑓,𝑠,𝑥   𝜓,𝑠,𝑧   𝑥,𝑋,𝑠
Allowed substitution hints:   𝜑(𝑦,𝑧)   𝜓(𝑥,𝑦,𝑓)   𝐽(𝑓)   𝑋(𝑦,𝑧,𝑓)

Proof of Theorem cmpcovf
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 simpl 476 . 2 ((𝐽 ∈ Comp ∧ ∀𝑥𝑋𝑦𝐽 (𝑥𝑦 ∧ ∃𝑧𝐴 𝜑)) → 𝐽 ∈ Comp)
2 iscmp.1 . . 3 𝑋 = 𝐽
32cmpcov2 21564 . 2 ((𝐽 ∈ Comp ∧ ∀𝑥𝑋𝑦𝐽 (𝑥𝑦 ∧ ∃𝑧𝐴 𝜑)) → ∃𝑢 ∈ (𝒫 𝐽 ∩ Fin)(𝑋 = 𝑢 ∧ ∀𝑦𝑢𝑧𝐴 𝜑))
4 elfpw 8537 . . . 4 (𝑢 ∈ (𝒫 𝐽 ∩ Fin) ↔ (𝑢𝐽𝑢 ∈ Fin))
5 simplrl 795 . . . . . . . 8 (((𝐽 ∈ Comp ∧ (𝑢𝐽𝑢 ∈ Fin)) ∧ (𝑋 = 𝑢 ∧ ∀𝑦𝑢𝑧𝐴 𝜑)) → 𝑢𝐽)
6 selpw 4385 . . . . . . . 8 (𝑢 ∈ 𝒫 𝐽𝑢𝐽)
75, 6sylibr 226 . . . . . . 7 (((𝐽 ∈ Comp ∧ (𝑢𝐽𝑢 ∈ Fin)) ∧ (𝑋 = 𝑢 ∧ ∀𝑦𝑢𝑧𝐴 𝜑)) → 𝑢 ∈ 𝒫 𝐽)
8 simplrr 796 . . . . . . 7 (((𝐽 ∈ Comp ∧ (𝑢𝐽𝑢 ∈ Fin)) ∧ (𝑋 = 𝑢 ∧ ∀𝑦𝑢𝑧𝐴 𝜑)) → 𝑢 ∈ Fin)
97, 8elind 4025 . . . . . 6 (((𝐽 ∈ Comp ∧ (𝑢𝐽𝑢 ∈ Fin)) ∧ (𝑋 = 𝑢 ∧ ∀𝑦𝑢𝑧𝐴 𝜑)) → 𝑢 ∈ (𝒫 𝐽 ∩ Fin))
10 simprl 787 . . . . . 6 (((𝐽 ∈ Comp ∧ (𝑢𝐽𝑢 ∈ Fin)) ∧ (𝑋 = 𝑢 ∧ ∀𝑦𝑢𝑧𝐴 𝜑)) → 𝑋 = 𝑢)
11 simprr 789 . . . . . . 7 (((𝐽 ∈ Comp ∧ (𝑢𝐽𝑢 ∈ Fin)) ∧ (𝑋 = 𝑢 ∧ ∀𝑦𝑢𝑧𝐴 𝜑)) → ∀𝑦𝑢𝑧𝐴 𝜑)
12 cmpcovf.2 . . . . . . . 8 (𝑧 = (𝑓𝑦) → (𝜑𝜓))
1312ac6sfi 8473 . . . . . . 7 ((𝑢 ∈ Fin ∧ ∀𝑦𝑢𝑧𝐴 𝜑) → ∃𝑓(𝑓:𝑢𝐴 ∧ ∀𝑦𝑢 𝜓))
148, 11, 13syl2anc 579 . . . . . 6 (((𝐽 ∈ Comp ∧ (𝑢𝐽𝑢 ∈ Fin)) ∧ (𝑋 = 𝑢 ∧ ∀𝑦𝑢𝑧𝐴 𝜑)) → ∃𝑓(𝑓:𝑢𝐴 ∧ ∀𝑦𝑢 𝜓))
15 unieq 4666 . . . . . . . . 9 (𝑠 = 𝑢 𝑠 = 𝑢)
1615eqeq2d 2835 . . . . . . . 8 (𝑠 = 𝑢 → (𝑋 = 𝑠𝑋 = 𝑢))
17 feq2 6260 . . . . . . . . . 10 (𝑠 = 𝑢 → (𝑓:𝑠𝐴𝑓:𝑢𝐴))
18 raleq 3350 . . . . . . . . . 10 (𝑠 = 𝑢 → (∀𝑦𝑠 𝜓 ↔ ∀𝑦𝑢 𝜓))
1917, 18anbi12d 624 . . . . . . . . 9 (𝑠 = 𝑢 → ((𝑓:𝑠𝐴 ∧ ∀𝑦𝑠 𝜓) ↔ (𝑓:𝑢𝐴 ∧ ∀𝑦𝑢 𝜓)))
2019exbidv 2020 . . . . . . . 8 (𝑠 = 𝑢 → (∃𝑓(𝑓:𝑠𝐴 ∧ ∀𝑦𝑠 𝜓) ↔ ∃𝑓(𝑓:𝑢𝐴 ∧ ∀𝑦𝑢 𝜓)))
2116, 20anbi12d 624 . . . . . . 7 (𝑠 = 𝑢 → ((𝑋 = 𝑠 ∧ ∃𝑓(𝑓:𝑠𝐴 ∧ ∀𝑦𝑠 𝜓)) ↔ (𝑋 = 𝑢 ∧ ∃𝑓(𝑓:𝑢𝐴 ∧ ∀𝑦𝑢 𝜓))))
2221rspcev 3526 . . . . . 6 ((𝑢 ∈ (𝒫 𝐽 ∩ Fin) ∧ (𝑋 = 𝑢 ∧ ∃𝑓(𝑓:𝑢𝐴 ∧ ∀𝑦𝑢 𝜓))) → ∃𝑠 ∈ (𝒫 𝐽 ∩ Fin)(𝑋 = 𝑠 ∧ ∃𝑓(𝑓:𝑠𝐴 ∧ ∀𝑦𝑠 𝜓)))
239, 10, 14, 22syl12anc 870 . . . . 5 (((𝐽 ∈ Comp ∧ (𝑢𝐽𝑢 ∈ Fin)) ∧ (𝑋 = 𝑢 ∧ ∀𝑦𝑢𝑧𝐴 𝜑)) → ∃𝑠 ∈ (𝒫 𝐽 ∩ Fin)(𝑋 = 𝑠 ∧ ∃𝑓(𝑓:𝑠𝐴 ∧ ∀𝑦𝑠 𝜓)))
2423ex 403 . . . 4 ((𝐽 ∈ Comp ∧ (𝑢𝐽𝑢 ∈ Fin)) → ((𝑋 = 𝑢 ∧ ∀𝑦𝑢𝑧𝐴 𝜑) → ∃𝑠 ∈ (𝒫 𝐽 ∩ Fin)(𝑋 = 𝑠 ∧ ∃𝑓(𝑓:𝑠𝐴 ∧ ∀𝑦𝑠 𝜓))))
254, 24sylan2b 587 . . 3 ((𝐽 ∈ Comp ∧ 𝑢 ∈ (𝒫 𝐽 ∩ Fin)) → ((𝑋 = 𝑢 ∧ ∀𝑦𝑢𝑧𝐴 𝜑) → ∃𝑠 ∈ (𝒫 𝐽 ∩ Fin)(𝑋 = 𝑠 ∧ ∃𝑓(𝑓:𝑠𝐴 ∧ ∀𝑦𝑠 𝜓))))
2625rexlimdva 3240 . 2 (𝐽 ∈ Comp → (∃𝑢 ∈ (𝒫 𝐽 ∩ Fin)(𝑋 = 𝑢 ∧ ∀𝑦𝑢𝑧𝐴 𝜑) → ∃𝑠 ∈ (𝒫 𝐽 ∩ Fin)(𝑋 = 𝑠 ∧ ∃𝑓(𝑓:𝑠𝐴 ∧ ∀𝑦𝑠 𝜓))))
271, 3, 26sylc 65 1 ((𝐽 ∈ Comp ∧ ∀𝑥𝑋𝑦𝐽 (𝑥𝑦 ∧ ∃𝑧𝐴 𝜑)) → ∃𝑠 ∈ (𝒫 𝐽 ∩ Fin)(𝑋 = 𝑠 ∧ ∃𝑓(𝑓:𝑠𝐴 ∧ ∀𝑦𝑠 𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1656  wex 1878  wcel 2164  wral 3117  wrex 3118  cin 3797  wss 3798  𝒫 cpw 4378   cuni 4658  wf 6119  cfv 6123  Fincfn 8222  Compccmp 21560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-rab 3126  df-v 3416  df-sbc 3663  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-br 4874  df-opab 4936  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-om 7327  df-1o 7826  df-er 8009  df-en 8223  df-fin 8226  df-cmp 21561
This theorem is referenced by:  txtube  21814  txcmplem1  21815  txcmplem2  21816  xkococnlem  21833  cnheibor  23124  heicant  33981
  Copyright terms: Public domain W3C validator