MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmpcovf Structured version   Visualization version   GIF version

Theorem cmpcovf 23307
Description: Combine cmpcov 23305 with ac6sfi 9175 to show the existence of a function that indexes the elements that are generating the open cover. (Contributed by Mario Carneiro, 14-Sep-2014.)
Hypotheses
Ref Expression
iscmp.1 𝑋 = 𝐽
cmpcovf.2 (𝑧 = (𝑓𝑦) → (𝜑𝜓))
Assertion
Ref Expression
cmpcovf ((𝐽 ∈ Comp ∧ ∀𝑥𝑋𝑦𝐽 (𝑥𝑦 ∧ ∃𝑧𝐴 𝜑)) → ∃𝑠 ∈ (𝒫 𝐽 ∩ Fin)(𝑋 = 𝑠 ∧ ∃𝑓(𝑓:𝑠𝐴 ∧ ∀𝑦𝑠 𝜓)))
Distinct variable groups:   𝑓,𝑠,𝑥,𝑦,𝑧,𝐴   𝐽,𝑠,𝑥,𝑦,𝑧   𝜑,𝑓,𝑠,𝑥   𝜓,𝑠,𝑧   𝑥,𝑋,𝑠
Allowed substitution hints:   𝜑(𝑦,𝑧)   𝜓(𝑥,𝑦,𝑓)   𝐽(𝑓)   𝑋(𝑦,𝑧,𝑓)

Proof of Theorem cmpcovf
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 simpl 482 . 2 ((𝐽 ∈ Comp ∧ ∀𝑥𝑋𝑦𝐽 (𝑥𝑦 ∧ ∃𝑧𝐴 𝜑)) → 𝐽 ∈ Comp)
2 iscmp.1 . . 3 𝑋 = 𝐽
32cmpcov2 23306 . 2 ((𝐽 ∈ Comp ∧ ∀𝑥𝑋𝑦𝐽 (𝑥𝑦 ∧ ∃𝑧𝐴 𝜑)) → ∃𝑢 ∈ (𝒫 𝐽 ∩ Fin)(𝑋 = 𝑢 ∧ ∀𝑦𝑢𝑧𝐴 𝜑))
4 elfpw 9245 . . . 4 (𝑢 ∈ (𝒫 𝐽 ∩ Fin) ↔ (𝑢𝐽𝑢 ∈ Fin))
5 simplrl 776 . . . . . . . 8 (((𝐽 ∈ Comp ∧ (𝑢𝐽𝑢 ∈ Fin)) ∧ (𝑋 = 𝑢 ∧ ∀𝑦𝑢𝑧𝐴 𝜑)) → 𝑢𝐽)
6 velpw 4554 . . . . . . . 8 (𝑢 ∈ 𝒫 𝐽𝑢𝐽)
75, 6sylibr 234 . . . . . . 7 (((𝐽 ∈ Comp ∧ (𝑢𝐽𝑢 ∈ Fin)) ∧ (𝑋 = 𝑢 ∧ ∀𝑦𝑢𝑧𝐴 𝜑)) → 𝑢 ∈ 𝒫 𝐽)
8 simplrr 777 . . . . . . 7 (((𝐽 ∈ Comp ∧ (𝑢𝐽𝑢 ∈ Fin)) ∧ (𝑋 = 𝑢 ∧ ∀𝑦𝑢𝑧𝐴 𝜑)) → 𝑢 ∈ Fin)
97, 8elind 4149 . . . . . 6 (((𝐽 ∈ Comp ∧ (𝑢𝐽𝑢 ∈ Fin)) ∧ (𝑋 = 𝑢 ∧ ∀𝑦𝑢𝑧𝐴 𝜑)) → 𝑢 ∈ (𝒫 𝐽 ∩ Fin))
10 simprl 770 . . . . . 6 (((𝐽 ∈ Comp ∧ (𝑢𝐽𝑢 ∈ Fin)) ∧ (𝑋 = 𝑢 ∧ ∀𝑦𝑢𝑧𝐴 𝜑)) → 𝑋 = 𝑢)
11 simprr 772 . . . . . . 7 (((𝐽 ∈ Comp ∧ (𝑢𝐽𝑢 ∈ Fin)) ∧ (𝑋 = 𝑢 ∧ ∀𝑦𝑢𝑧𝐴 𝜑)) → ∀𝑦𝑢𝑧𝐴 𝜑)
12 cmpcovf.2 . . . . . . . 8 (𝑧 = (𝑓𝑦) → (𝜑𝜓))
1312ac6sfi 9175 . . . . . . 7 ((𝑢 ∈ Fin ∧ ∀𝑦𝑢𝑧𝐴 𝜑) → ∃𝑓(𝑓:𝑢𝐴 ∧ ∀𝑦𝑢 𝜓))
148, 11, 13syl2anc 584 . . . . . 6 (((𝐽 ∈ Comp ∧ (𝑢𝐽𝑢 ∈ Fin)) ∧ (𝑋 = 𝑢 ∧ ∀𝑦𝑢𝑧𝐴 𝜑)) → ∃𝑓(𝑓:𝑢𝐴 ∧ ∀𝑦𝑢 𝜓))
15 unieq 4869 . . . . . . . . 9 (𝑠 = 𝑢 𝑠 = 𝑢)
1615eqeq2d 2744 . . . . . . . 8 (𝑠 = 𝑢 → (𝑋 = 𝑠𝑋 = 𝑢))
17 feq2 6635 . . . . . . . . . 10 (𝑠 = 𝑢 → (𝑓:𝑠𝐴𝑓:𝑢𝐴))
18 raleq 3290 . . . . . . . . . 10 (𝑠 = 𝑢 → (∀𝑦𝑠 𝜓 ↔ ∀𝑦𝑢 𝜓))
1917, 18anbi12d 632 . . . . . . . . 9 (𝑠 = 𝑢 → ((𝑓:𝑠𝐴 ∧ ∀𝑦𝑠 𝜓) ↔ (𝑓:𝑢𝐴 ∧ ∀𝑦𝑢 𝜓)))
2019exbidv 1922 . . . . . . . 8 (𝑠 = 𝑢 → (∃𝑓(𝑓:𝑠𝐴 ∧ ∀𝑦𝑠 𝜓) ↔ ∃𝑓(𝑓:𝑢𝐴 ∧ ∀𝑦𝑢 𝜓)))
2116, 20anbi12d 632 . . . . . . 7 (𝑠 = 𝑢 → ((𝑋 = 𝑠 ∧ ∃𝑓(𝑓:𝑠𝐴 ∧ ∀𝑦𝑠 𝜓)) ↔ (𝑋 = 𝑢 ∧ ∃𝑓(𝑓:𝑢𝐴 ∧ ∀𝑦𝑢 𝜓))))
2221rspcev 3573 . . . . . 6 ((𝑢 ∈ (𝒫 𝐽 ∩ Fin) ∧ (𝑋 = 𝑢 ∧ ∃𝑓(𝑓:𝑢𝐴 ∧ ∀𝑦𝑢 𝜓))) → ∃𝑠 ∈ (𝒫 𝐽 ∩ Fin)(𝑋 = 𝑠 ∧ ∃𝑓(𝑓:𝑠𝐴 ∧ ∀𝑦𝑠 𝜓)))
239, 10, 14, 22syl12anc 836 . . . . 5 (((𝐽 ∈ Comp ∧ (𝑢𝐽𝑢 ∈ Fin)) ∧ (𝑋 = 𝑢 ∧ ∀𝑦𝑢𝑧𝐴 𝜑)) → ∃𝑠 ∈ (𝒫 𝐽 ∩ Fin)(𝑋 = 𝑠 ∧ ∃𝑓(𝑓:𝑠𝐴 ∧ ∀𝑦𝑠 𝜓)))
2423ex 412 . . . 4 ((𝐽 ∈ Comp ∧ (𝑢𝐽𝑢 ∈ Fin)) → ((𝑋 = 𝑢 ∧ ∀𝑦𝑢𝑧𝐴 𝜑) → ∃𝑠 ∈ (𝒫 𝐽 ∩ Fin)(𝑋 = 𝑠 ∧ ∃𝑓(𝑓:𝑠𝐴 ∧ ∀𝑦𝑠 𝜓))))
254, 24sylan2b 594 . . 3 ((𝐽 ∈ Comp ∧ 𝑢 ∈ (𝒫 𝐽 ∩ Fin)) → ((𝑋 = 𝑢 ∧ ∀𝑦𝑢𝑧𝐴 𝜑) → ∃𝑠 ∈ (𝒫 𝐽 ∩ Fin)(𝑋 = 𝑠 ∧ ∃𝑓(𝑓:𝑠𝐴 ∧ ∀𝑦𝑠 𝜓))))
2625rexlimdva 3134 . 2 (𝐽 ∈ Comp → (∃𝑢 ∈ (𝒫 𝐽 ∩ Fin)(𝑋 = 𝑢 ∧ ∀𝑦𝑢𝑧𝐴 𝜑) → ∃𝑠 ∈ (𝒫 𝐽 ∩ Fin)(𝑋 = 𝑠 ∧ ∃𝑓(𝑓:𝑠𝐴 ∧ ∀𝑦𝑠 𝜓))))
271, 3, 26sylc 65 1 ((𝐽 ∈ Comp ∧ ∀𝑥𝑋𝑦𝐽 (𝑥𝑦 ∧ ∃𝑧𝐴 𝜑)) → ∃𝑠 ∈ (𝒫 𝐽 ∩ Fin)(𝑋 = 𝑠 ∧ ∃𝑓(𝑓:𝑠𝐴 ∧ ∀𝑦𝑠 𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2113  wral 3048  wrex 3057  cin 3897  wss 3898  𝒫 cpw 4549   cuni 4858  wf 6482  cfv 6486  Fincfn 8875  Compccmp 23302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-om 7803  df-en 8876  df-fin 8879  df-cmp 23303
This theorem is referenced by:  txtube  23556  txcmplem1  23557  txcmplem2  23558  xkococnlem  23575  cnheibor  24882  heicant  37715
  Copyright terms: Public domain W3C validator