MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmpcovf Structured version   Visualization version   GIF version

Theorem cmpcovf 23115
Description: Combine cmpcov 23113 with ac6sfi 9289 to show the existence of a function that indexes the elements that are generating the open cover. (Contributed by Mario Carneiro, 14-Sep-2014.)
Hypotheses
Ref Expression
iscmp.1 𝑋 = 𝐽
cmpcovf.2 (𝑧 = (𝑓𝑦) → (𝜑𝜓))
Assertion
Ref Expression
cmpcovf ((𝐽 ∈ Comp ∧ ∀𝑥𝑋𝑦𝐽 (𝑥𝑦 ∧ ∃𝑧𝐴 𝜑)) → ∃𝑠 ∈ (𝒫 𝐽 ∩ Fin)(𝑋 = 𝑠 ∧ ∃𝑓(𝑓:𝑠𝐴 ∧ ∀𝑦𝑠 𝜓)))
Distinct variable groups:   𝑓,𝑠,𝑥,𝑦,𝑧,𝐴   𝐽,𝑠,𝑥,𝑦,𝑧   𝜑,𝑓,𝑠,𝑥   𝜓,𝑠,𝑧   𝑥,𝑋,𝑠
Allowed substitution hints:   𝜑(𝑦,𝑧)   𝜓(𝑥,𝑦,𝑓)   𝐽(𝑓)   𝑋(𝑦,𝑧,𝑓)

Proof of Theorem cmpcovf
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 simpl 481 . 2 ((𝐽 ∈ Comp ∧ ∀𝑥𝑋𝑦𝐽 (𝑥𝑦 ∧ ∃𝑧𝐴 𝜑)) → 𝐽 ∈ Comp)
2 iscmp.1 . . 3 𝑋 = 𝐽
32cmpcov2 23114 . 2 ((𝐽 ∈ Comp ∧ ∀𝑥𝑋𝑦𝐽 (𝑥𝑦 ∧ ∃𝑧𝐴 𝜑)) → ∃𝑢 ∈ (𝒫 𝐽 ∩ Fin)(𝑋 = 𝑢 ∧ ∀𝑦𝑢𝑧𝐴 𝜑))
4 elfpw 9356 . . . 4 (𝑢 ∈ (𝒫 𝐽 ∩ Fin) ↔ (𝑢𝐽𝑢 ∈ Fin))
5 simplrl 773 . . . . . . . 8 (((𝐽 ∈ Comp ∧ (𝑢𝐽𝑢 ∈ Fin)) ∧ (𝑋 = 𝑢 ∧ ∀𝑦𝑢𝑧𝐴 𝜑)) → 𝑢𝐽)
6 velpw 4606 . . . . . . . 8 (𝑢 ∈ 𝒫 𝐽𝑢𝐽)
75, 6sylibr 233 . . . . . . 7 (((𝐽 ∈ Comp ∧ (𝑢𝐽𝑢 ∈ Fin)) ∧ (𝑋 = 𝑢 ∧ ∀𝑦𝑢𝑧𝐴 𝜑)) → 𝑢 ∈ 𝒫 𝐽)
8 simplrr 774 . . . . . . 7 (((𝐽 ∈ Comp ∧ (𝑢𝐽𝑢 ∈ Fin)) ∧ (𝑋 = 𝑢 ∧ ∀𝑦𝑢𝑧𝐴 𝜑)) → 𝑢 ∈ Fin)
97, 8elind 4193 . . . . . 6 (((𝐽 ∈ Comp ∧ (𝑢𝐽𝑢 ∈ Fin)) ∧ (𝑋 = 𝑢 ∧ ∀𝑦𝑢𝑧𝐴 𝜑)) → 𝑢 ∈ (𝒫 𝐽 ∩ Fin))
10 simprl 767 . . . . . 6 (((𝐽 ∈ Comp ∧ (𝑢𝐽𝑢 ∈ Fin)) ∧ (𝑋 = 𝑢 ∧ ∀𝑦𝑢𝑧𝐴 𝜑)) → 𝑋 = 𝑢)
11 simprr 769 . . . . . . 7 (((𝐽 ∈ Comp ∧ (𝑢𝐽𝑢 ∈ Fin)) ∧ (𝑋 = 𝑢 ∧ ∀𝑦𝑢𝑧𝐴 𝜑)) → ∀𝑦𝑢𝑧𝐴 𝜑)
12 cmpcovf.2 . . . . . . . 8 (𝑧 = (𝑓𝑦) → (𝜑𝜓))
1312ac6sfi 9289 . . . . . . 7 ((𝑢 ∈ Fin ∧ ∀𝑦𝑢𝑧𝐴 𝜑) → ∃𝑓(𝑓:𝑢𝐴 ∧ ∀𝑦𝑢 𝜓))
148, 11, 13syl2anc 582 . . . . . 6 (((𝐽 ∈ Comp ∧ (𝑢𝐽𝑢 ∈ Fin)) ∧ (𝑋 = 𝑢 ∧ ∀𝑦𝑢𝑧𝐴 𝜑)) → ∃𝑓(𝑓:𝑢𝐴 ∧ ∀𝑦𝑢 𝜓))
15 unieq 4918 . . . . . . . . 9 (𝑠 = 𝑢 𝑠 = 𝑢)
1615eqeq2d 2741 . . . . . . . 8 (𝑠 = 𝑢 → (𝑋 = 𝑠𝑋 = 𝑢))
17 feq2 6698 . . . . . . . . . 10 (𝑠 = 𝑢 → (𝑓:𝑠𝐴𝑓:𝑢𝐴))
18 raleq 3320 . . . . . . . . . 10 (𝑠 = 𝑢 → (∀𝑦𝑠 𝜓 ↔ ∀𝑦𝑢 𝜓))
1917, 18anbi12d 629 . . . . . . . . 9 (𝑠 = 𝑢 → ((𝑓:𝑠𝐴 ∧ ∀𝑦𝑠 𝜓) ↔ (𝑓:𝑢𝐴 ∧ ∀𝑦𝑢 𝜓)))
2019exbidv 1922 . . . . . . . 8 (𝑠 = 𝑢 → (∃𝑓(𝑓:𝑠𝐴 ∧ ∀𝑦𝑠 𝜓) ↔ ∃𝑓(𝑓:𝑢𝐴 ∧ ∀𝑦𝑢 𝜓)))
2116, 20anbi12d 629 . . . . . . 7 (𝑠 = 𝑢 → ((𝑋 = 𝑠 ∧ ∃𝑓(𝑓:𝑠𝐴 ∧ ∀𝑦𝑠 𝜓)) ↔ (𝑋 = 𝑢 ∧ ∃𝑓(𝑓:𝑢𝐴 ∧ ∀𝑦𝑢 𝜓))))
2221rspcev 3611 . . . . . 6 ((𝑢 ∈ (𝒫 𝐽 ∩ Fin) ∧ (𝑋 = 𝑢 ∧ ∃𝑓(𝑓:𝑢𝐴 ∧ ∀𝑦𝑢 𝜓))) → ∃𝑠 ∈ (𝒫 𝐽 ∩ Fin)(𝑋 = 𝑠 ∧ ∃𝑓(𝑓:𝑠𝐴 ∧ ∀𝑦𝑠 𝜓)))
239, 10, 14, 22syl12anc 833 . . . . 5 (((𝐽 ∈ Comp ∧ (𝑢𝐽𝑢 ∈ Fin)) ∧ (𝑋 = 𝑢 ∧ ∀𝑦𝑢𝑧𝐴 𝜑)) → ∃𝑠 ∈ (𝒫 𝐽 ∩ Fin)(𝑋 = 𝑠 ∧ ∃𝑓(𝑓:𝑠𝐴 ∧ ∀𝑦𝑠 𝜓)))
2423ex 411 . . . 4 ((𝐽 ∈ Comp ∧ (𝑢𝐽𝑢 ∈ Fin)) → ((𝑋 = 𝑢 ∧ ∀𝑦𝑢𝑧𝐴 𝜑) → ∃𝑠 ∈ (𝒫 𝐽 ∩ Fin)(𝑋 = 𝑠 ∧ ∃𝑓(𝑓:𝑠𝐴 ∧ ∀𝑦𝑠 𝜓))))
254, 24sylan2b 592 . . 3 ((𝐽 ∈ Comp ∧ 𝑢 ∈ (𝒫 𝐽 ∩ Fin)) → ((𝑋 = 𝑢 ∧ ∀𝑦𝑢𝑧𝐴 𝜑) → ∃𝑠 ∈ (𝒫 𝐽 ∩ Fin)(𝑋 = 𝑠 ∧ ∃𝑓(𝑓:𝑠𝐴 ∧ ∀𝑦𝑠 𝜓))))
2625rexlimdva 3153 . 2 (𝐽 ∈ Comp → (∃𝑢 ∈ (𝒫 𝐽 ∩ Fin)(𝑋 = 𝑢 ∧ ∀𝑦𝑢𝑧𝐴 𝜑) → ∃𝑠 ∈ (𝒫 𝐽 ∩ Fin)(𝑋 = 𝑠 ∧ ∃𝑓(𝑓:𝑠𝐴 ∧ ∀𝑦𝑠 𝜓))))
271, 3, 26sylc 65 1 ((𝐽 ∈ Comp ∧ ∀𝑥𝑋𝑦𝐽 (𝑥𝑦 ∧ ∃𝑧𝐴 𝜑)) → ∃𝑠 ∈ (𝒫 𝐽 ∩ Fin)(𝑋 = 𝑠 ∧ ∃𝑓(𝑓:𝑠𝐴 ∧ ∀𝑦𝑠 𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1539  wex 1779  wcel 2104  wral 3059  wrex 3068  cin 3946  wss 3947  𝒫 cpw 4601   cuni 4907  wf 6538  cfv 6542  Fincfn 8941  Compccmp 23110
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-om 7858  df-en 8942  df-fin 8945  df-cmp 23111
This theorem is referenced by:  txtube  23364  txcmplem1  23365  txcmplem2  23366  xkococnlem  23383  cnheibor  24701  heicant  36826
  Copyright terms: Public domain W3C validator