MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvpsb Structured version   Visualization version   GIF version

Theorem cnvpsb 18542
Description: The converse of a poset is a poset. (Contributed by FL, 5-Jan-2009.)
Assertion
Ref Expression
cnvpsb (Rel 𝑅 → (𝑅 ∈ PosetRel ↔ 𝑅 ∈ PosetRel))

Proof of Theorem cnvpsb
StepHypRef Expression
1 cnvps 18541 . 2 (𝑅 ∈ PosetRel → 𝑅 ∈ PosetRel)
2 cnvps 18541 . . 3 (𝑅 ∈ PosetRel → 𝑅 ∈ PosetRel)
3 dfrel2 6188 . . . 4 (Rel 𝑅𝑅 = 𝑅)
4 eleq1 2820 . . . . 5 (𝑅 = 𝑅 → (𝑅 ∈ PosetRel ↔ 𝑅 ∈ PosetRel))
54biimpd 228 . . . 4 (𝑅 = 𝑅 → (𝑅 ∈ PosetRel → 𝑅 ∈ PosetRel))
63, 5sylbi 216 . . 3 (Rel 𝑅 → (𝑅 ∈ PosetRel → 𝑅 ∈ PosetRel))
72, 6syl5 34 . 2 (Rel 𝑅 → (𝑅 ∈ PosetRel → 𝑅 ∈ PosetRel))
81, 7impbid2 225 1 (Rel 𝑅 → (𝑅 ∈ PosetRel ↔ 𝑅 ∈ PosetRel))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1540  wcel 2105  ccnv 5675  Rel wrel 5681  PosetRelcps 18527
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ps 18529
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator