MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvpsb Structured version   Visualization version   GIF version

Theorem cnvpsb 17813
Description: The converse of a poset is a poset. (Contributed by FL, 5-Jan-2009.)
Assertion
Ref Expression
cnvpsb (Rel 𝑅 → (𝑅 ∈ PosetRel ↔ 𝑅 ∈ PosetRel))

Proof of Theorem cnvpsb
StepHypRef Expression
1 cnvps 17812 . 2 (𝑅 ∈ PosetRel → 𝑅 ∈ PosetRel)
2 cnvps 17812 . . 3 (𝑅 ∈ PosetRel → 𝑅 ∈ PosetRel)
3 dfrel2 6044 . . . 4 (Rel 𝑅𝑅 = 𝑅)
4 eleq1 2905 . . . . 5 (𝑅 = 𝑅 → (𝑅 ∈ PosetRel ↔ 𝑅 ∈ PosetRel))
54biimpd 230 . . . 4 (𝑅 = 𝑅 → (𝑅 ∈ PosetRel → 𝑅 ∈ PosetRel))
63, 5sylbi 218 . . 3 (Rel 𝑅 → (𝑅 ∈ PosetRel → 𝑅 ∈ PosetRel))
72, 6syl5 34 . 2 (Rel 𝑅 → (𝑅 ∈ PosetRel → 𝑅 ∈ PosetRel))
81, 7impbid2 227 1 (Rel 𝑅 → (𝑅 ∈ PosetRel ↔ 𝑅 ∈ PosetRel))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207   = wceq 1530  wcel 2107  ccnv 5553  Rel wrel 5559  PosetRelcps 17798
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ral 3148  df-rex 3149  df-rab 3152  df-v 3502  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4838  df-br 5064  df-opab 5126  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ps 17800
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator