![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnvpsb | Structured version Visualization version GIF version |
Description: The converse of a poset is a poset. (Contributed by FL, 5-Jan-2009.) |
Ref | Expression |
---|---|
cnvpsb | ⊢ (Rel 𝑅 → (𝑅 ∈ PosetRel ↔ ◡𝑅 ∈ PosetRel)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvps 18569 | . 2 ⊢ (𝑅 ∈ PosetRel → ◡𝑅 ∈ PosetRel) | |
2 | cnvps 18569 | . . 3 ⊢ (◡𝑅 ∈ PosetRel → ◡◡𝑅 ∈ PosetRel) | |
3 | dfrel2 6193 | . . . 4 ⊢ (Rel 𝑅 ↔ ◡◡𝑅 = 𝑅) | |
4 | eleq1 2817 | . . . . 5 ⊢ (◡◡𝑅 = 𝑅 → (◡◡𝑅 ∈ PosetRel ↔ 𝑅 ∈ PosetRel)) | |
5 | 4 | biimpd 228 | . . . 4 ⊢ (◡◡𝑅 = 𝑅 → (◡◡𝑅 ∈ PosetRel → 𝑅 ∈ PosetRel)) |
6 | 3, 5 | sylbi 216 | . . 3 ⊢ (Rel 𝑅 → (◡◡𝑅 ∈ PosetRel → 𝑅 ∈ PosetRel)) |
7 | 2, 6 | syl5 34 | . 2 ⊢ (Rel 𝑅 → (◡𝑅 ∈ PosetRel → 𝑅 ∈ PosetRel)) |
8 | 1, 7 | impbid2 225 | 1 ⊢ (Rel 𝑅 → (𝑅 ∈ PosetRel ↔ ◡𝑅 ∈ PosetRel)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1534 ∈ wcel 2099 ◡ccnv 5677 Rel wrel 5683 PosetRelcps 18555 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ps 18557 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |