MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvpsb Structured version   Visualization version   GIF version

Theorem cnvpsb 18487
Description: The converse of a poset is a poset. (Contributed by FL, 5-Jan-2009.)
Assertion
Ref Expression
cnvpsb (Rel 𝑅 → (𝑅 ∈ PosetRel ↔ 𝑅 ∈ PosetRel))

Proof of Theorem cnvpsb
StepHypRef Expression
1 cnvps 18486 . 2 (𝑅 ∈ PosetRel → 𝑅 ∈ PosetRel)
2 cnvps 18486 . . 3 (𝑅 ∈ PosetRel → 𝑅 ∈ PosetRel)
3 dfrel2 6141 . . . 4 (Rel 𝑅𝑅 = 𝑅)
4 eleq1 2821 . . . . 5 (𝑅 = 𝑅 → (𝑅 ∈ PosetRel ↔ 𝑅 ∈ PosetRel))
54biimpd 229 . . . 4 (𝑅 = 𝑅 → (𝑅 ∈ PosetRel → 𝑅 ∈ PosetRel))
63, 5sylbi 217 . . 3 (Rel 𝑅 → (𝑅 ∈ PosetRel → 𝑅 ∈ PosetRel))
72, 6syl5 34 . 2 (Rel 𝑅 → (𝑅 ∈ PosetRel → 𝑅 ∈ PosetRel))
81, 7impbid2 226 1 (Rel 𝑅 → (𝑅 ∈ PosetRel ↔ 𝑅 ∈ PosetRel))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2113  ccnv 5618  Rel wrel 5624  PosetRelcps 18472
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ps 18474
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator