Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnvpsb | Structured version Visualization version GIF version |
Description: The converse of a poset is a poset. (Contributed by FL, 5-Jan-2009.) |
Ref | Expression |
---|---|
cnvpsb | ⊢ (Rel 𝑅 → (𝑅 ∈ PosetRel ↔ ◡𝑅 ∈ PosetRel)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvps 18211 | . 2 ⊢ (𝑅 ∈ PosetRel → ◡𝑅 ∈ PosetRel) | |
2 | cnvps 18211 | . . 3 ⊢ (◡𝑅 ∈ PosetRel → ◡◡𝑅 ∈ PosetRel) | |
3 | dfrel2 6081 | . . . 4 ⊢ (Rel 𝑅 ↔ ◡◡𝑅 = 𝑅) | |
4 | eleq1 2826 | . . . . 5 ⊢ (◡◡𝑅 = 𝑅 → (◡◡𝑅 ∈ PosetRel ↔ 𝑅 ∈ PosetRel)) | |
5 | 4 | biimpd 228 | . . . 4 ⊢ (◡◡𝑅 = 𝑅 → (◡◡𝑅 ∈ PosetRel → 𝑅 ∈ PosetRel)) |
6 | 3, 5 | sylbi 216 | . . 3 ⊢ (Rel 𝑅 → (◡◡𝑅 ∈ PosetRel → 𝑅 ∈ PosetRel)) |
7 | 2, 6 | syl5 34 | . 2 ⊢ (Rel 𝑅 → (◡𝑅 ∈ PosetRel → 𝑅 ∈ PosetRel)) |
8 | 1, 7 | impbid2 225 | 1 ⊢ (Rel 𝑅 → (𝑅 ∈ PosetRel ↔ ◡𝑅 ∈ PosetRel)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2108 ◡ccnv 5579 Rel wrel 5585 PosetRelcps 18197 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ps 18199 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |