MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvpsb Structured version   Visualization version   GIF version

Theorem cnvpsb 18520
Description: The converse of a poset is a poset. (Contributed by FL, 5-Jan-2009.)
Assertion
Ref Expression
cnvpsb (Rel 𝑅 → (𝑅 ∈ PosetRel ↔ 𝑅 ∈ PosetRel))

Proof of Theorem cnvpsb
StepHypRef Expression
1 cnvps 18519 . 2 (𝑅 ∈ PosetRel → 𝑅 ∈ PosetRel)
2 cnvps 18519 . . 3 (𝑅 ∈ PosetRel → 𝑅 ∈ PosetRel)
3 dfrel2 6150 . . . 4 (Rel 𝑅𝑅 = 𝑅)
4 eleq1 2816 . . . . 5 (𝑅 = 𝑅 → (𝑅 ∈ PosetRel ↔ 𝑅 ∈ PosetRel))
54biimpd 229 . . . 4 (𝑅 = 𝑅 → (𝑅 ∈ PosetRel → 𝑅 ∈ PosetRel))
63, 5sylbi 217 . . 3 (Rel 𝑅 → (𝑅 ∈ PosetRel → 𝑅 ∈ PosetRel))
72, 6syl5 34 . 2 (Rel 𝑅 → (𝑅 ∈ PosetRel → 𝑅 ∈ PosetRel))
81, 7impbid2 226 1 (Rel 𝑅 → (𝑅 ∈ PosetRel ↔ 𝑅 ∈ PosetRel))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  ccnv 5630  Rel wrel 5636  PosetRelcps 18505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ps 18507
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator