![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnvpsb | Structured version Visualization version GIF version |
Description: The converse of a poset is a poset. (Contributed by FL, 5-Jan-2009.) |
Ref | Expression |
---|---|
cnvpsb | ⊢ (Rel 𝑅 → (𝑅 ∈ PosetRel ↔ ◡𝑅 ∈ PosetRel)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvps 18645 | . 2 ⊢ (𝑅 ∈ PosetRel → ◡𝑅 ∈ PosetRel) | |
2 | cnvps 18645 | . . 3 ⊢ (◡𝑅 ∈ PosetRel → ◡◡𝑅 ∈ PosetRel) | |
3 | dfrel2 6217 | . . . 4 ⊢ (Rel 𝑅 ↔ ◡◡𝑅 = 𝑅) | |
4 | eleq1 2829 | . . . . 5 ⊢ (◡◡𝑅 = 𝑅 → (◡◡𝑅 ∈ PosetRel ↔ 𝑅 ∈ PosetRel)) | |
5 | 4 | biimpd 229 | . . . 4 ⊢ (◡◡𝑅 = 𝑅 → (◡◡𝑅 ∈ PosetRel → 𝑅 ∈ PosetRel)) |
6 | 3, 5 | sylbi 217 | . . 3 ⊢ (Rel 𝑅 → (◡◡𝑅 ∈ PosetRel → 𝑅 ∈ PosetRel)) |
7 | 2, 6 | syl5 34 | . 2 ⊢ (Rel 𝑅 → (◡𝑅 ∈ PosetRel → 𝑅 ∈ PosetRel)) |
8 | 1, 7 | impbid2 226 | 1 ⊢ (Rel 𝑅 → (𝑅 ∈ PosetRel ↔ ◡𝑅 ∈ PosetRel)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1539 ∈ wcel 2108 ◡ccnv 5692 Rel wrel 5698 PosetRelcps 18631 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-opab 5214 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ps 18633 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |