![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnvpsb | Structured version Visualization version GIF version |
Description: The converse of a poset is a poset. (Contributed by FL, 5-Jan-2009.) |
Ref | Expression |
---|---|
cnvpsb | ⊢ (Rel 𝑅 → (𝑅 ∈ PosetRel ↔ ◡𝑅 ∈ PosetRel)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvps 18650 | . 2 ⊢ (𝑅 ∈ PosetRel → ◡𝑅 ∈ PosetRel) | |
2 | cnvps 18650 | . . 3 ⊢ (◡𝑅 ∈ PosetRel → ◡◡𝑅 ∈ PosetRel) | |
3 | dfrel2 6222 | . . . 4 ⊢ (Rel 𝑅 ↔ ◡◡𝑅 = 𝑅) | |
4 | eleq1 2832 | . . . . 5 ⊢ (◡◡𝑅 = 𝑅 → (◡◡𝑅 ∈ PosetRel ↔ 𝑅 ∈ PosetRel)) | |
5 | 4 | biimpd 229 | . . . 4 ⊢ (◡◡𝑅 = 𝑅 → (◡◡𝑅 ∈ PosetRel → 𝑅 ∈ PosetRel)) |
6 | 3, 5 | sylbi 217 | . . 3 ⊢ (Rel 𝑅 → (◡◡𝑅 ∈ PosetRel → 𝑅 ∈ PosetRel)) |
7 | 2, 6 | syl5 34 | . 2 ⊢ (Rel 𝑅 → (◡𝑅 ∈ PosetRel → 𝑅 ∈ PosetRel)) |
8 | 1, 7 | impbid2 226 | 1 ⊢ (Rel 𝑅 → (𝑅 ∈ PosetRel ↔ ◡𝑅 ∈ PosetRel)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 ◡ccnv 5699 Rel wrel 5705 PosetRelcps 18636 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7772 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ps 18638 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |