Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > coeq0 | Structured version Visualization version GIF version |
Description: A composition of two relations is empty iff there is no overlap between the range of the second and the domain of the first. Useful in combination with coundi 6140 and coundir 6141 to prune meaningless terms in the result. (Contributed by Stefan O'Rear, 8-Oct-2014.) |
Ref | Expression |
---|---|
coeq0 | ⊢ ((𝐴 ∘ 𝐵) = ∅ ↔ (dom 𝐴 ∩ ran 𝐵) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relco 6137 | . . 3 ⊢ Rel (𝐴 ∘ 𝐵) | |
2 | relrn0 5867 | . . 3 ⊢ (Rel (𝐴 ∘ 𝐵) → ((𝐴 ∘ 𝐵) = ∅ ↔ ran (𝐴 ∘ 𝐵) = ∅)) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ ((𝐴 ∘ 𝐵) = ∅ ↔ ran (𝐴 ∘ 𝐵) = ∅) |
4 | rnco 6145 | . . 3 ⊢ ran (𝐴 ∘ 𝐵) = ran (𝐴 ↾ ran 𝐵) | |
5 | 4 | eqeq1i 2743 | . 2 ⊢ (ran (𝐴 ∘ 𝐵) = ∅ ↔ ran (𝐴 ↾ ran 𝐵) = ∅) |
6 | relres 5909 | . . . 4 ⊢ Rel (𝐴 ↾ ran 𝐵) | |
7 | reldm0 5826 | . . . 4 ⊢ (Rel (𝐴 ↾ ran 𝐵) → ((𝐴 ↾ ran 𝐵) = ∅ ↔ dom (𝐴 ↾ ran 𝐵) = ∅)) | |
8 | 6, 7 | ax-mp 5 | . . 3 ⊢ ((𝐴 ↾ ran 𝐵) = ∅ ↔ dom (𝐴 ↾ ran 𝐵) = ∅) |
9 | relrn0 5867 | . . . 4 ⊢ (Rel (𝐴 ↾ ran 𝐵) → ((𝐴 ↾ ran 𝐵) = ∅ ↔ ran (𝐴 ↾ ran 𝐵) = ∅)) | |
10 | 6, 9 | ax-mp 5 | . . 3 ⊢ ((𝐴 ↾ ran 𝐵) = ∅ ↔ ran (𝐴 ↾ ran 𝐵) = ∅) |
11 | dmres 5902 | . . . . 5 ⊢ dom (𝐴 ↾ ran 𝐵) = (ran 𝐵 ∩ dom 𝐴) | |
12 | incom 4131 | . . . . 5 ⊢ (ran 𝐵 ∩ dom 𝐴) = (dom 𝐴 ∩ ran 𝐵) | |
13 | 11, 12 | eqtri 2766 | . . . 4 ⊢ dom (𝐴 ↾ ran 𝐵) = (dom 𝐴 ∩ ran 𝐵) |
14 | 13 | eqeq1i 2743 | . . 3 ⊢ (dom (𝐴 ↾ ran 𝐵) = ∅ ↔ (dom 𝐴 ∩ ran 𝐵) = ∅) |
15 | 8, 10, 14 | 3bitr3i 300 | . 2 ⊢ (ran (𝐴 ↾ ran 𝐵) = ∅ ↔ (dom 𝐴 ∩ ran 𝐵) = ∅) |
16 | 3, 5, 15 | 3bitri 296 | 1 ⊢ ((𝐴 ∘ 𝐵) = ∅ ↔ (dom 𝐴 ∩ ran 𝐵) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∩ cin 3882 ∅c0 4253 dom cdm 5580 ran crn 5581 ↾ cres 5582 ∘ ccom 5584 Rel wrel 5585 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 |
This theorem is referenced by: coemptyd 14618 diophrw 40497 relexpnul 41175 |
Copyright terms: Public domain | W3C validator |