| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coeq0 | Structured version Visualization version GIF version | ||
| Description: A composition of two relations is empty iff there is no overlap between the range of the second and the domain of the first. Useful in combination with coundi 6201 and coundir 6202 to prune meaningless terms in the result. (Contributed by Stefan O'Rear, 8-Oct-2014.) |
| Ref | Expression |
|---|---|
| coeq0 | ⊢ ((𝐴 ∘ 𝐵) = ∅ ↔ (dom 𝐴 ∩ ran 𝐵) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relco 6063 | . . 3 ⊢ Rel (𝐴 ∘ 𝐵) | |
| 2 | relrn0 5918 | . . 3 ⊢ (Rel (𝐴 ∘ 𝐵) → ((𝐴 ∘ 𝐵) = ∅ ↔ ran (𝐴 ∘ 𝐵) = ∅)) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ ((𝐴 ∘ 𝐵) = ∅ ↔ ran (𝐴 ∘ 𝐵) = ∅) |
| 4 | rnco 6206 | . . 3 ⊢ ran (𝐴 ∘ 𝐵) = ran (𝐴 ↾ ran 𝐵) | |
| 5 | 4 | eqeq1i 2738 | . 2 ⊢ (ran (𝐴 ∘ 𝐵) = ∅ ↔ ran (𝐴 ↾ ran 𝐵) = ∅) |
| 6 | relres 5960 | . . . 4 ⊢ Rel (𝐴 ↾ ran 𝐵) | |
| 7 | reldm0 5874 | . . . 4 ⊢ (Rel (𝐴 ↾ ran 𝐵) → ((𝐴 ↾ ran 𝐵) = ∅ ↔ dom (𝐴 ↾ ran 𝐵) = ∅)) | |
| 8 | 6, 7 | ax-mp 5 | . . 3 ⊢ ((𝐴 ↾ ran 𝐵) = ∅ ↔ dom (𝐴 ↾ ran 𝐵) = ∅) |
| 9 | relrn0 5918 | . . . 4 ⊢ (Rel (𝐴 ↾ ran 𝐵) → ((𝐴 ↾ ran 𝐵) = ∅ ↔ ran (𝐴 ↾ ran 𝐵) = ∅)) | |
| 10 | 6, 9 | ax-mp 5 | . . 3 ⊢ ((𝐴 ↾ ran 𝐵) = ∅ ↔ ran (𝐴 ↾ ran 𝐵) = ∅) |
| 11 | dmres 5967 | . . . . 5 ⊢ dom (𝐴 ↾ ran 𝐵) = (ran 𝐵 ∩ dom 𝐴) | |
| 12 | incom 4158 | . . . . 5 ⊢ (ran 𝐵 ∩ dom 𝐴) = (dom 𝐴 ∩ ran 𝐵) | |
| 13 | 11, 12 | eqtri 2756 | . . . 4 ⊢ dom (𝐴 ↾ ran 𝐵) = (dom 𝐴 ∩ ran 𝐵) |
| 14 | 13 | eqeq1i 2738 | . . 3 ⊢ (dom (𝐴 ↾ ran 𝐵) = ∅ ↔ (dom 𝐴 ∩ ran 𝐵) = ∅) |
| 15 | 8, 10, 14 | 3bitr3i 301 | . 2 ⊢ (ran (𝐴 ↾ ran 𝐵) = ∅ ↔ (dom 𝐴 ∩ ran 𝐵) = ∅) |
| 16 | 3, 5, 15 | 3bitri 297 | 1 ⊢ ((𝐴 ∘ 𝐵) = ∅ ↔ (dom 𝐴 ∩ ran 𝐵) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∩ cin 3897 ∅c0 4282 dom cdm 5621 ran crn 5622 ↾ cres 5623 ∘ ccom 5625 Rel wrel 5626 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 |
| This theorem is referenced by: coemptyd 14890 wrdpmtrlast 33071 diophrw 42879 relexpnul 43798 |
| Copyright terms: Public domain | W3C validator |