MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coeq0 Structured version   Visualization version   GIF version

Theorem coeq0 6228
Description: A composition of two relations is empty iff there is no overlap between the range of the second and the domain of the first. Useful in combination with coundi 6220 and coundir 6221 to prune meaningless terms in the result. (Contributed by Stefan O'Rear, 8-Oct-2014.)
Assertion
Ref Expression
coeq0 ((𝐴𝐵) = ∅ ↔ (dom 𝐴 ∩ ran 𝐵) = ∅)

Proof of Theorem coeq0
StepHypRef Expression
1 relco 6079 . . 3 Rel (𝐴𝐵)
2 relrn0 5936 . . 3 (Rel (𝐴𝐵) → ((𝐴𝐵) = ∅ ↔ ran (𝐴𝐵) = ∅))
31, 2ax-mp 5 . 2 ((𝐴𝐵) = ∅ ↔ ran (𝐴𝐵) = ∅)
4 rnco 6225 . . 3 ran (𝐴𝐵) = ran (𝐴 ↾ ran 𝐵)
54eqeq1i 2734 . 2 (ran (𝐴𝐵) = ∅ ↔ ran (𝐴 ↾ ran 𝐵) = ∅)
6 relres 5976 . . . 4 Rel (𝐴 ↾ ran 𝐵)
7 reldm0 5891 . . . 4 (Rel (𝐴 ↾ ran 𝐵) → ((𝐴 ↾ ran 𝐵) = ∅ ↔ dom (𝐴 ↾ ran 𝐵) = ∅))
86, 7ax-mp 5 . . 3 ((𝐴 ↾ ran 𝐵) = ∅ ↔ dom (𝐴 ↾ ran 𝐵) = ∅)
9 relrn0 5936 . . . 4 (Rel (𝐴 ↾ ran 𝐵) → ((𝐴 ↾ ran 𝐵) = ∅ ↔ ran (𝐴 ↾ ran 𝐵) = ∅))
106, 9ax-mp 5 . . 3 ((𝐴 ↾ ran 𝐵) = ∅ ↔ ran (𝐴 ↾ ran 𝐵) = ∅)
11 dmres 5983 . . . . 5 dom (𝐴 ↾ ran 𝐵) = (ran 𝐵 ∩ dom 𝐴)
12 incom 4172 . . . . 5 (ran 𝐵 ∩ dom 𝐴) = (dom 𝐴 ∩ ran 𝐵)
1311, 12eqtri 2752 . . . 4 dom (𝐴 ↾ ran 𝐵) = (dom 𝐴 ∩ ran 𝐵)
1413eqeq1i 2734 . . 3 (dom (𝐴 ↾ ran 𝐵) = ∅ ↔ (dom 𝐴 ∩ ran 𝐵) = ∅)
158, 10, 143bitr3i 301 . 2 (ran (𝐴 ↾ ran 𝐵) = ∅ ↔ (dom 𝐴 ∩ ran 𝐵) = ∅)
163, 5, 153bitri 297 1 ((𝐴𝐵) = ∅ ↔ (dom 𝐴 ∩ ran 𝐵) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  cin 3913  c0 4296  dom cdm 5638  ran crn 5639  cres 5640  ccom 5642  Rel wrel 5643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650
This theorem is referenced by:  coemptyd  14945  wrdpmtrlast  33050  diophrw  42747  relexpnul  43667
  Copyright terms: Public domain W3C validator