| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coeq0 | Structured version Visualization version GIF version | ||
| Description: A composition of two relations is empty iff there is no overlap between the range of the second and the domain of the first. Useful in combination with coundi 6200 and coundir 6201 to prune meaningless terms in the result. (Contributed by Stefan O'Rear, 8-Oct-2014.) |
| Ref | Expression |
|---|---|
| coeq0 | ⊢ ((𝐴 ∘ 𝐵) = ∅ ↔ (dom 𝐴 ∩ ran 𝐵) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relco 6063 | . . 3 ⊢ Rel (𝐴 ∘ 𝐵) | |
| 2 | relrn0 5918 | . . 3 ⊢ (Rel (𝐴 ∘ 𝐵) → ((𝐴 ∘ 𝐵) = ∅ ↔ ran (𝐴 ∘ 𝐵) = ∅)) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ ((𝐴 ∘ 𝐵) = ∅ ↔ ran (𝐴 ∘ 𝐵) = ∅) |
| 4 | rnco 6205 | . . 3 ⊢ ran (𝐴 ∘ 𝐵) = ran (𝐴 ↾ ran 𝐵) | |
| 5 | 4 | eqeq1i 2734 | . 2 ⊢ (ran (𝐴 ∘ 𝐵) = ∅ ↔ ran (𝐴 ↾ ran 𝐵) = ∅) |
| 6 | relres 5960 | . . . 4 ⊢ Rel (𝐴 ↾ ran 𝐵) | |
| 7 | reldm0 5874 | . . . 4 ⊢ (Rel (𝐴 ↾ ran 𝐵) → ((𝐴 ↾ ran 𝐵) = ∅ ↔ dom (𝐴 ↾ ran 𝐵) = ∅)) | |
| 8 | 6, 7 | ax-mp 5 | . . 3 ⊢ ((𝐴 ↾ ran 𝐵) = ∅ ↔ dom (𝐴 ↾ ran 𝐵) = ∅) |
| 9 | relrn0 5918 | . . . 4 ⊢ (Rel (𝐴 ↾ ran 𝐵) → ((𝐴 ↾ ran 𝐵) = ∅ ↔ ran (𝐴 ↾ ran 𝐵) = ∅)) | |
| 10 | 6, 9 | ax-mp 5 | . . 3 ⊢ ((𝐴 ↾ ran 𝐵) = ∅ ↔ ran (𝐴 ↾ ran 𝐵) = ∅) |
| 11 | dmres 5967 | . . . . 5 ⊢ dom (𝐴 ↾ ran 𝐵) = (ran 𝐵 ∩ dom 𝐴) | |
| 12 | incom 4162 | . . . . 5 ⊢ (ran 𝐵 ∩ dom 𝐴) = (dom 𝐴 ∩ ran 𝐵) | |
| 13 | 11, 12 | eqtri 2752 | . . . 4 ⊢ dom (𝐴 ↾ ran 𝐵) = (dom 𝐴 ∩ ran 𝐵) |
| 14 | 13 | eqeq1i 2734 | . . 3 ⊢ (dom (𝐴 ↾ ran 𝐵) = ∅ ↔ (dom 𝐴 ∩ ran 𝐵) = ∅) |
| 15 | 8, 10, 14 | 3bitr3i 301 | . 2 ⊢ (ran (𝐴 ↾ ran 𝐵) = ∅ ↔ (dom 𝐴 ∩ ran 𝐵) = ∅) |
| 16 | 3, 5, 15 | 3bitri 297 | 1 ⊢ ((𝐴 ∘ 𝐵) = ∅ ↔ (dom 𝐴 ∩ ran 𝐵) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∩ cin 3904 ∅c0 4286 dom cdm 5623 ran crn 5624 ↾ cres 5625 ∘ ccom 5627 Rel wrel 5628 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 |
| This theorem is referenced by: coemptyd 14904 wrdpmtrlast 33048 diophrw 42735 relexpnul 43654 |
| Copyright terms: Public domain | W3C validator |