| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coeq0 | Structured version Visualization version GIF version | ||
| Description: A composition of two relations is empty iff there is no overlap between the range of the second and the domain of the first. Useful in combination with coundi 6241 and coundir 6242 to prune meaningless terms in the result. (Contributed by Stefan O'Rear, 8-Oct-2014.) |
| Ref | Expression |
|---|---|
| coeq0 | ⊢ ((𝐴 ∘ 𝐵) = ∅ ↔ (dom 𝐴 ∩ ran 𝐵) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relco 6100 | . . 3 ⊢ Rel (𝐴 ∘ 𝐵) | |
| 2 | relrn0 5957 | . . 3 ⊢ (Rel (𝐴 ∘ 𝐵) → ((𝐴 ∘ 𝐵) = ∅ ↔ ran (𝐴 ∘ 𝐵) = ∅)) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ ((𝐴 ∘ 𝐵) = ∅ ↔ ran (𝐴 ∘ 𝐵) = ∅) |
| 4 | rnco 6246 | . . 3 ⊢ ran (𝐴 ∘ 𝐵) = ran (𝐴 ↾ ran 𝐵) | |
| 5 | 4 | eqeq1i 2741 | . 2 ⊢ (ran (𝐴 ∘ 𝐵) = ∅ ↔ ran (𝐴 ↾ ran 𝐵) = ∅) |
| 6 | relres 5997 | . . . 4 ⊢ Rel (𝐴 ↾ ran 𝐵) | |
| 7 | reldm0 5912 | . . . 4 ⊢ (Rel (𝐴 ↾ ran 𝐵) → ((𝐴 ↾ ran 𝐵) = ∅ ↔ dom (𝐴 ↾ ran 𝐵) = ∅)) | |
| 8 | 6, 7 | ax-mp 5 | . . 3 ⊢ ((𝐴 ↾ ran 𝐵) = ∅ ↔ dom (𝐴 ↾ ran 𝐵) = ∅) |
| 9 | relrn0 5957 | . . . 4 ⊢ (Rel (𝐴 ↾ ran 𝐵) → ((𝐴 ↾ ran 𝐵) = ∅ ↔ ran (𝐴 ↾ ran 𝐵) = ∅)) | |
| 10 | 6, 9 | ax-mp 5 | . . 3 ⊢ ((𝐴 ↾ ran 𝐵) = ∅ ↔ ran (𝐴 ↾ ran 𝐵) = ∅) |
| 11 | dmres 6004 | . . . . 5 ⊢ dom (𝐴 ↾ ran 𝐵) = (ran 𝐵 ∩ dom 𝐴) | |
| 12 | incom 4189 | . . . . 5 ⊢ (ran 𝐵 ∩ dom 𝐴) = (dom 𝐴 ∩ ran 𝐵) | |
| 13 | 11, 12 | eqtri 2759 | . . . 4 ⊢ dom (𝐴 ↾ ran 𝐵) = (dom 𝐴 ∩ ran 𝐵) |
| 14 | 13 | eqeq1i 2741 | . . 3 ⊢ (dom (𝐴 ↾ ran 𝐵) = ∅ ↔ (dom 𝐴 ∩ ran 𝐵) = ∅) |
| 15 | 8, 10, 14 | 3bitr3i 301 | . 2 ⊢ (ran (𝐴 ↾ ran 𝐵) = ∅ ↔ (dom 𝐴 ∩ ran 𝐵) = ∅) |
| 16 | 3, 5, 15 | 3bitri 297 | 1 ⊢ ((𝐴 ∘ 𝐵) = ∅ ↔ (dom 𝐴 ∩ ran 𝐵) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∩ cin 3930 ∅c0 4313 dom cdm 5659 ran crn 5660 ↾ cres 5661 ∘ ccom 5663 Rel wrel 5664 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 |
| This theorem is referenced by: coemptyd 15003 wrdpmtrlast 33109 diophrw 42749 relexpnul 43669 |
| Copyright terms: Public domain | W3C validator |