MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coeq0 Structured version   Visualization version   GIF version

Theorem coeq0 6159
Description: A composition of two relations is empty iff there is no overlap between the range of the second and the domain of the first. Useful in combination with coundi 6151 and coundir 6152 to prune meaningless terms in the result. (Contributed by Stefan O'Rear, 8-Oct-2014.)
Assertion
Ref Expression
coeq0 ((𝐴𝐵) = ∅ ↔ (dom 𝐴 ∩ ran 𝐵) = ∅)

Proof of Theorem coeq0
StepHypRef Expression
1 relco 6148 . . 3 Rel (𝐴𝐵)
2 relrn0 5878 . . 3 (Rel (𝐴𝐵) → ((𝐴𝐵) = ∅ ↔ ran (𝐴𝐵) = ∅))
31, 2ax-mp 5 . 2 ((𝐴𝐵) = ∅ ↔ ran (𝐴𝐵) = ∅)
4 rnco 6156 . . 3 ran (𝐴𝐵) = ran (𝐴 ↾ ran 𝐵)
54eqeq1i 2743 . 2 (ran (𝐴𝐵) = ∅ ↔ ran (𝐴 ↾ ran 𝐵) = ∅)
6 relres 5920 . . . 4 Rel (𝐴 ↾ ran 𝐵)
7 reldm0 5837 . . . 4 (Rel (𝐴 ↾ ran 𝐵) → ((𝐴 ↾ ran 𝐵) = ∅ ↔ dom (𝐴 ↾ ran 𝐵) = ∅))
86, 7ax-mp 5 . . 3 ((𝐴 ↾ ran 𝐵) = ∅ ↔ dom (𝐴 ↾ ran 𝐵) = ∅)
9 relrn0 5878 . . . 4 (Rel (𝐴 ↾ ran 𝐵) → ((𝐴 ↾ ran 𝐵) = ∅ ↔ ran (𝐴 ↾ ran 𝐵) = ∅))
106, 9ax-mp 5 . . 3 ((𝐴 ↾ ran 𝐵) = ∅ ↔ ran (𝐴 ↾ ran 𝐵) = ∅)
11 dmres 5913 . . . . 5 dom (𝐴 ↾ ran 𝐵) = (ran 𝐵 ∩ dom 𝐴)
12 incom 4135 . . . . 5 (ran 𝐵 ∩ dom 𝐴) = (dom 𝐴 ∩ ran 𝐵)
1311, 12eqtri 2766 . . . 4 dom (𝐴 ↾ ran 𝐵) = (dom 𝐴 ∩ ran 𝐵)
1413eqeq1i 2743 . . 3 (dom (𝐴 ↾ ran 𝐵) = ∅ ↔ (dom 𝐴 ∩ ran 𝐵) = ∅)
158, 10, 143bitr3i 301 . 2 (ran (𝐴 ↾ ran 𝐵) = ∅ ↔ (dom 𝐴 ∩ ran 𝐵) = ∅)
163, 5, 153bitri 297 1 ((𝐴𝐵) = ∅ ↔ (dom 𝐴 ∩ ran 𝐵) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1539  cin 3886  c0 4256  dom cdm 5589  ran crn 5590  cres 5591  ccom 5593  Rel wrel 5594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601
This theorem is referenced by:  coemptyd  14690  diophrw  40581  relexpnul  41286
  Copyright terms: Public domain W3C validator