MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coeq0 Structured version   Visualization version   GIF version

Theorem coeq0 6261
Description: A composition of two relations is empty iff there is no overlap between the range of the second and the domain of the first. Useful in combination with coundi 6253 and coundir 6254 to prune meaningless terms in the result. (Contributed by Stefan O'Rear, 8-Oct-2014.)
Assertion
Ref Expression
coeq0 ((𝐴𝐵) = ∅ ↔ (dom 𝐴 ∩ ran 𝐵) = ∅)

Proof of Theorem coeq0
StepHypRef Expression
1 relco 6113 . . 3 Rel (𝐴𝐵)
2 relrn0 5972 . . 3 (Rel (𝐴𝐵) → ((𝐴𝐵) = ∅ ↔ ran (𝐴𝐵) = ∅))
31, 2ax-mp 5 . 2 ((𝐴𝐵) = ∅ ↔ ran (𝐴𝐵) = ∅)
4 rnco 6258 . . 3 ran (𝐴𝐵) = ran (𝐴 ↾ ran 𝐵)
54eqeq1i 2730 . 2 (ran (𝐴𝐵) = ∅ ↔ ran (𝐴 ↾ ran 𝐵) = ∅)
6 relres 6011 . . . 4 Rel (𝐴 ↾ ran 𝐵)
7 reldm0 5930 . . . 4 (Rel (𝐴 ↾ ran 𝐵) → ((𝐴 ↾ ran 𝐵) = ∅ ↔ dom (𝐴 ↾ ran 𝐵) = ∅))
86, 7ax-mp 5 . . 3 ((𝐴 ↾ ran 𝐵) = ∅ ↔ dom (𝐴 ↾ ran 𝐵) = ∅)
9 relrn0 5972 . . . 4 (Rel (𝐴 ↾ ran 𝐵) → ((𝐴 ↾ ran 𝐵) = ∅ ↔ ran (𝐴 ↾ ran 𝐵) = ∅))
106, 9ax-mp 5 . . 3 ((𝐴 ↾ ran 𝐵) = ∅ ↔ ran (𝐴 ↾ ran 𝐵) = ∅)
11 dmres 6017 . . . . 5 dom (𝐴 ↾ ran 𝐵) = (ran 𝐵 ∩ dom 𝐴)
12 incom 4199 . . . . 5 (ran 𝐵 ∩ dom 𝐴) = (dom 𝐴 ∩ ran 𝐵)
1311, 12eqtri 2753 . . . 4 dom (𝐴 ↾ ran 𝐵) = (dom 𝐴 ∩ ran 𝐵)
1413eqeq1i 2730 . . 3 (dom (𝐴 ↾ ran 𝐵) = ∅ ↔ (dom 𝐴 ∩ ran 𝐵) = ∅)
158, 10, 143bitr3i 300 . 2 (ran (𝐴 ↾ ran 𝐵) = ∅ ↔ (dom 𝐴 ∩ ran 𝐵) = ∅)
163, 5, 153bitri 296 1 ((𝐴𝐵) = ∅ ↔ (dom 𝐴 ∩ ran 𝐵) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1533  cin 3943  c0 4322  dom cdm 5678  ran crn 5679  cres 5680  ccom 5682  Rel wrel 5683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-br 5150  df-opab 5212  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690
This theorem is referenced by:  coemptyd  14962  wrdpmtrlast  32906  diophrw  42321  relexpnul  43250
  Copyright terms: Public domain W3C validator