| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coeq0 | Structured version Visualization version GIF version | ||
| Description: A composition of two relations is empty iff there is no overlap between the range of the second and the domain of the first. Useful in combination with coundi 6220 and coundir 6221 to prune meaningless terms in the result. (Contributed by Stefan O'Rear, 8-Oct-2014.) |
| Ref | Expression |
|---|---|
| coeq0 | ⊢ ((𝐴 ∘ 𝐵) = ∅ ↔ (dom 𝐴 ∩ ran 𝐵) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relco 6079 | . . 3 ⊢ Rel (𝐴 ∘ 𝐵) | |
| 2 | relrn0 5936 | . . 3 ⊢ (Rel (𝐴 ∘ 𝐵) → ((𝐴 ∘ 𝐵) = ∅ ↔ ran (𝐴 ∘ 𝐵) = ∅)) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ ((𝐴 ∘ 𝐵) = ∅ ↔ ran (𝐴 ∘ 𝐵) = ∅) |
| 4 | rnco 6225 | . . 3 ⊢ ran (𝐴 ∘ 𝐵) = ran (𝐴 ↾ ran 𝐵) | |
| 5 | 4 | eqeq1i 2734 | . 2 ⊢ (ran (𝐴 ∘ 𝐵) = ∅ ↔ ran (𝐴 ↾ ran 𝐵) = ∅) |
| 6 | relres 5976 | . . . 4 ⊢ Rel (𝐴 ↾ ran 𝐵) | |
| 7 | reldm0 5891 | . . . 4 ⊢ (Rel (𝐴 ↾ ran 𝐵) → ((𝐴 ↾ ran 𝐵) = ∅ ↔ dom (𝐴 ↾ ran 𝐵) = ∅)) | |
| 8 | 6, 7 | ax-mp 5 | . . 3 ⊢ ((𝐴 ↾ ran 𝐵) = ∅ ↔ dom (𝐴 ↾ ran 𝐵) = ∅) |
| 9 | relrn0 5936 | . . . 4 ⊢ (Rel (𝐴 ↾ ran 𝐵) → ((𝐴 ↾ ran 𝐵) = ∅ ↔ ran (𝐴 ↾ ran 𝐵) = ∅)) | |
| 10 | 6, 9 | ax-mp 5 | . . 3 ⊢ ((𝐴 ↾ ran 𝐵) = ∅ ↔ ran (𝐴 ↾ ran 𝐵) = ∅) |
| 11 | dmres 5983 | . . . . 5 ⊢ dom (𝐴 ↾ ran 𝐵) = (ran 𝐵 ∩ dom 𝐴) | |
| 12 | incom 4172 | . . . . 5 ⊢ (ran 𝐵 ∩ dom 𝐴) = (dom 𝐴 ∩ ran 𝐵) | |
| 13 | 11, 12 | eqtri 2752 | . . . 4 ⊢ dom (𝐴 ↾ ran 𝐵) = (dom 𝐴 ∩ ran 𝐵) |
| 14 | 13 | eqeq1i 2734 | . . 3 ⊢ (dom (𝐴 ↾ ran 𝐵) = ∅ ↔ (dom 𝐴 ∩ ran 𝐵) = ∅) |
| 15 | 8, 10, 14 | 3bitr3i 301 | . 2 ⊢ (ran (𝐴 ↾ ran 𝐵) = ∅ ↔ (dom 𝐴 ∩ ran 𝐵) = ∅) |
| 16 | 3, 5, 15 | 3bitri 297 | 1 ⊢ ((𝐴 ∘ 𝐵) = ∅ ↔ (dom 𝐴 ∩ ran 𝐵) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∩ cin 3913 ∅c0 4296 dom cdm 5638 ran crn 5639 ↾ cres 5640 ∘ ccom 5642 Rel wrel 5643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 |
| This theorem is referenced by: coemptyd 14945 wrdpmtrlast 33050 diophrw 42747 relexpnul 43667 |
| Copyright terms: Public domain | W3C validator |