| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cosnopne | Structured version Visualization version GIF version | ||
| Description: Composition of two ordered pair singletons with non-matching domain and range. (Contributed by Thierry Arnoux, 24-Sep-2023.) |
| Ref | Expression |
|---|---|
| cosnopne.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| cosnopne.c | ⊢ (𝜑 → 𝐶 ∈ 𝑋) |
| cosnopne.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐷) |
| Ref | Expression |
|---|---|
| cosnopne | ⊢ (𝜑 → ({〈𝐴, 𝐵〉} ∘ {〈𝐶, 𝐷〉}) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cosnopne.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 2 | dmsnopg 6189 | . . . . 5 ⊢ (𝐵 ∈ 𝑊 → dom {〈𝐴, 𝐵〉} = {𝐴}) | |
| 3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝜑 → dom {〈𝐴, 𝐵〉} = {𝐴}) |
| 4 | cosnopne.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ 𝑋) | |
| 5 | rnsnopg 6197 | . . . . 5 ⊢ (𝐶 ∈ 𝑋 → ran {〈𝐶, 𝐷〉} = {𝐷}) | |
| 6 | 4, 5 | syl 17 | . . . 4 ⊢ (𝜑 → ran {〈𝐶, 𝐷〉} = {𝐷}) |
| 7 | 3, 6 | ineq12d 4187 | . . 3 ⊢ (𝜑 → (dom {〈𝐴, 𝐵〉} ∩ ran {〈𝐶, 𝐷〉}) = ({𝐴} ∩ {𝐷})) |
| 8 | cosnopne.1 | . . . 4 ⊢ (𝜑 → 𝐴 ≠ 𝐷) | |
| 9 | disjsn2 4679 | . . . 4 ⊢ (𝐴 ≠ 𝐷 → ({𝐴} ∩ {𝐷}) = ∅) | |
| 10 | 8, 9 | syl 17 | . . 3 ⊢ (𝜑 → ({𝐴} ∩ {𝐷}) = ∅) |
| 11 | 7, 10 | eqtrd 2765 | . 2 ⊢ (𝜑 → (dom {〈𝐴, 𝐵〉} ∩ ran {〈𝐶, 𝐷〉}) = ∅) |
| 12 | 11 | coemptyd 14952 | 1 ⊢ (𝜑 → ({〈𝐴, 𝐵〉} ∘ {〈𝐶, 𝐷〉}) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∩ cin 3916 ∅c0 4299 {csn 4592 〈cop 4598 dom cdm 5641 ran crn 5642 ∘ ccom 5645 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 |
| This theorem is referenced by: coprprop 32629 |
| Copyright terms: Public domain | W3C validator |