Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cosnopne Structured version   Visualization version   GIF version

Theorem cosnopne 30747
Description: Composition of two ordered pair singletons with non-matching domain and range. (Contributed by Thierry Arnoux, 24-Sep-2023.)
Hypotheses
Ref Expression
cosnopne.b (𝜑𝐵𝑊)
cosnopne.c (𝜑𝐶𝑋)
cosnopne.1 (𝜑𝐴𝐷)
Assertion
Ref Expression
cosnopne (𝜑 → ({⟨𝐴, 𝐵⟩} ∘ {⟨𝐶, 𝐷⟩}) = ∅)

Proof of Theorem cosnopne
StepHypRef Expression
1 cosnopne.b . . . . 5 (𝜑𝐵𝑊)
2 dmsnopg 6076 . . . . 5 (𝐵𝑊 → dom {⟨𝐴, 𝐵⟩} = {𝐴})
31, 2syl 17 . . . 4 (𝜑 → dom {⟨𝐴, 𝐵⟩} = {𝐴})
4 cosnopne.c . . . . 5 (𝜑𝐶𝑋)
5 rnsnopg 6084 . . . . 5 (𝐶𝑋 → ran {⟨𝐶, 𝐷⟩} = {𝐷})
64, 5syl 17 . . . 4 (𝜑 → ran {⟨𝐶, 𝐷⟩} = {𝐷})
73, 6ineq12d 4128 . . 3 (𝜑 → (dom {⟨𝐴, 𝐵⟩} ∩ ran {⟨𝐶, 𝐷⟩}) = ({𝐴} ∩ {𝐷}))
8 cosnopne.1 . . . 4 (𝜑𝐴𝐷)
9 disjsn2 4628 . . . 4 (𝐴𝐷 → ({𝐴} ∩ {𝐷}) = ∅)
108, 9syl 17 . . 3 (𝜑 → ({𝐴} ∩ {𝐷}) = ∅)
117, 10eqtrd 2777 . 2 (𝜑 → (dom {⟨𝐴, 𝐵⟩} ∩ ran {⟨𝐶, 𝐷⟩}) = ∅)
1211coemptyd 14542 1 (𝜑 → ({⟨𝐴, 𝐵⟩} ∘ {⟨𝐶, 𝐷⟩}) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1543  wcel 2110  wne 2940  cin 3865  c0 4237  {csn 4541  cop 4547  dom cdm 5551  ran crn 5552  ccom 5555
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pr 5322
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-br 5054  df-opab 5116  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563
This theorem is referenced by:  coprprop  30752
  Copyright terms: Public domain W3C validator