Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cosnopne | Structured version Visualization version GIF version |
Description: Composition of two ordered pair singletons with non-matching domain and range. (Contributed by Thierry Arnoux, 24-Sep-2023.) |
Ref | Expression |
---|---|
cosnopne.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
cosnopne.c | ⊢ (𝜑 → 𝐶 ∈ 𝑋) |
cosnopne.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐷) |
Ref | Expression |
---|---|
cosnopne | ⊢ (𝜑 → ({〈𝐴, 𝐵〉} ∘ {〈𝐶, 𝐷〉}) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cosnopne.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
2 | dmsnopg 6155 | . . . . 5 ⊢ (𝐵 ∈ 𝑊 → dom {〈𝐴, 𝐵〉} = {𝐴}) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝜑 → dom {〈𝐴, 𝐵〉} = {𝐴}) |
4 | cosnopne.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ 𝑋) | |
5 | rnsnopg 6163 | . . . . 5 ⊢ (𝐶 ∈ 𝑋 → ran {〈𝐶, 𝐷〉} = {𝐷}) | |
6 | 4, 5 | syl 17 | . . . 4 ⊢ (𝜑 → ran {〈𝐶, 𝐷〉} = {𝐷}) |
7 | 3, 6 | ineq12d 4164 | . . 3 ⊢ (𝜑 → (dom {〈𝐴, 𝐵〉} ∩ ran {〈𝐶, 𝐷〉}) = ({𝐴} ∩ {𝐷})) |
8 | cosnopne.1 | . . . 4 ⊢ (𝜑 → 𝐴 ≠ 𝐷) | |
9 | disjsn2 4664 | . . . 4 ⊢ (𝐴 ≠ 𝐷 → ({𝐴} ∩ {𝐷}) = ∅) | |
10 | 8, 9 | syl 17 | . . 3 ⊢ (𝜑 → ({𝐴} ∩ {𝐷}) = ∅) |
11 | 7, 10 | eqtrd 2777 | . 2 ⊢ (𝜑 → (dom {〈𝐴, 𝐵〉} ∩ ran {〈𝐶, 𝐷〉}) = ∅) |
12 | 11 | coemptyd 14789 | 1 ⊢ (𝜑 → ({〈𝐴, 𝐵〉} ∘ {〈𝐶, 𝐷〉}) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 ≠ wne 2941 ∩ cin 3900 ∅c0 4273 {csn 4577 〈cop 4583 dom cdm 5624 ran crn 5625 ∘ ccom 5628 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5247 ax-nul 5254 ax-pr 5376 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2715 df-cleq 2729 df-clel 2815 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3444 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-nul 4274 df-if 4478 df-sn 4578 df-pr 4580 df-op 4584 df-br 5097 df-opab 5159 df-xp 5630 df-rel 5631 df-cnv 5632 df-co 5633 df-dm 5634 df-rn 5635 df-res 5636 |
This theorem is referenced by: coprprop 31317 |
Copyright terms: Public domain | W3C validator |