Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cosnopne Structured version   Visualization version   GIF version

Theorem cosnopne 31312
Description: Composition of two ordered pair singletons with non-matching domain and range. (Contributed by Thierry Arnoux, 24-Sep-2023.)
Hypotheses
Ref Expression
cosnopne.b (𝜑𝐵𝑊)
cosnopne.c (𝜑𝐶𝑋)
cosnopne.1 (𝜑𝐴𝐷)
Assertion
Ref Expression
cosnopne (𝜑 → ({⟨𝐴, 𝐵⟩} ∘ {⟨𝐶, 𝐷⟩}) = ∅)

Proof of Theorem cosnopne
StepHypRef Expression
1 cosnopne.b . . . . 5 (𝜑𝐵𝑊)
2 dmsnopg 6155 . . . . 5 (𝐵𝑊 → dom {⟨𝐴, 𝐵⟩} = {𝐴})
31, 2syl 17 . . . 4 (𝜑 → dom {⟨𝐴, 𝐵⟩} = {𝐴})
4 cosnopne.c . . . . 5 (𝜑𝐶𝑋)
5 rnsnopg 6163 . . . . 5 (𝐶𝑋 → ran {⟨𝐶, 𝐷⟩} = {𝐷})
64, 5syl 17 . . . 4 (𝜑 → ran {⟨𝐶, 𝐷⟩} = {𝐷})
73, 6ineq12d 4164 . . 3 (𝜑 → (dom {⟨𝐴, 𝐵⟩} ∩ ran {⟨𝐶, 𝐷⟩}) = ({𝐴} ∩ {𝐷}))
8 cosnopne.1 . . . 4 (𝜑𝐴𝐷)
9 disjsn2 4664 . . . 4 (𝐴𝐷 → ({𝐴} ∩ {𝐷}) = ∅)
108, 9syl 17 . . 3 (𝜑 → ({𝐴} ∩ {𝐷}) = ∅)
117, 10eqtrd 2777 . 2 (𝜑 → (dom {⟨𝐴, 𝐵⟩} ∩ ran {⟨𝐶, 𝐷⟩}) = ∅)
1211coemptyd 14789 1 (𝜑 → ({⟨𝐴, 𝐵⟩} ∘ {⟨𝐶, 𝐷⟩}) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  wne 2941  cin 3900  c0 4273  {csn 4577  cop 4583  dom cdm 5624  ran crn 5625  ccom 5628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5247  ax-nul 5254  ax-pr 5376
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2715  df-cleq 2729  df-clel 2815  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3405  df-v 3444  df-dif 3904  df-un 3906  df-in 3908  df-ss 3918  df-nul 4274  df-if 4478  df-sn 4578  df-pr 4580  df-op 4584  df-br 5097  df-opab 5159  df-xp 5630  df-rel 5631  df-cnv 5632  df-co 5633  df-dm 5634  df-rn 5635  df-res 5636
This theorem is referenced by:  coprprop  31317
  Copyright terms: Public domain W3C validator