Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cosnopne Structured version   Visualization version   GIF version

Theorem cosnopne 31027
Description: Composition of two ordered pair singletons with non-matching domain and range. (Contributed by Thierry Arnoux, 24-Sep-2023.)
Hypotheses
Ref Expression
cosnopne.b (𝜑𝐵𝑊)
cosnopne.c (𝜑𝐶𝑋)
cosnopne.1 (𝜑𝐴𝐷)
Assertion
Ref Expression
cosnopne (𝜑 → ({⟨𝐴, 𝐵⟩} ∘ {⟨𝐶, 𝐷⟩}) = ∅)

Proof of Theorem cosnopne
StepHypRef Expression
1 cosnopne.b . . . . 5 (𝜑𝐵𝑊)
2 dmsnopg 6116 . . . . 5 (𝐵𝑊 → dom {⟨𝐴, 𝐵⟩} = {𝐴})
31, 2syl 17 . . . 4 (𝜑 → dom {⟨𝐴, 𝐵⟩} = {𝐴})
4 cosnopne.c . . . . 5 (𝜑𝐶𝑋)
5 rnsnopg 6124 . . . . 5 (𝐶𝑋 → ran {⟨𝐶, 𝐷⟩} = {𝐷})
64, 5syl 17 . . . 4 (𝜑 → ran {⟨𝐶, 𝐷⟩} = {𝐷})
73, 6ineq12d 4147 . . 3 (𝜑 → (dom {⟨𝐴, 𝐵⟩} ∩ ran {⟨𝐶, 𝐷⟩}) = ({𝐴} ∩ {𝐷}))
8 cosnopne.1 . . . 4 (𝜑𝐴𝐷)
9 disjsn2 4648 . . . 4 (𝐴𝐷 → ({𝐴} ∩ {𝐷}) = ∅)
108, 9syl 17 . . 3 (𝜑 → ({𝐴} ∩ {𝐷}) = ∅)
117, 10eqtrd 2778 . 2 (𝜑 → (dom {⟨𝐴, 𝐵⟩} ∩ ran {⟨𝐶, 𝐷⟩}) = ∅)
1211coemptyd 14690 1 (𝜑 → ({⟨𝐴, 𝐵⟩} ∘ {⟨𝐶, 𝐷⟩}) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  wne 2943  cin 3886  c0 4256  {csn 4561  cop 4567  dom cdm 5589  ran crn 5590  ccom 5593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601
This theorem is referenced by:  coprprop  31032
  Copyright terms: Public domain W3C validator