| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cosnopne | Structured version Visualization version GIF version | ||
| Description: Composition of two ordered pair singletons with non-matching domain and range. (Contributed by Thierry Arnoux, 24-Sep-2023.) |
| Ref | Expression |
|---|---|
| cosnopne.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| cosnopne.c | ⊢ (𝜑 → 𝐶 ∈ 𝑋) |
| cosnopne.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐷) |
| Ref | Expression |
|---|---|
| cosnopne | ⊢ (𝜑 → ({〈𝐴, 𝐵〉} ∘ {〈𝐶, 𝐷〉}) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cosnopne.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 2 | dmsnopg 6160 | . . . . 5 ⊢ (𝐵 ∈ 𝑊 → dom {〈𝐴, 𝐵〉} = {𝐴}) | |
| 3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝜑 → dom {〈𝐴, 𝐵〉} = {𝐴}) |
| 4 | cosnopne.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ 𝑋) | |
| 5 | rnsnopg 6168 | . . . . 5 ⊢ (𝐶 ∈ 𝑋 → ran {〈𝐶, 𝐷〉} = {𝐷}) | |
| 6 | 4, 5 | syl 17 | . . . 4 ⊢ (𝜑 → ran {〈𝐶, 𝐷〉} = {𝐷}) |
| 7 | 3, 6 | ineq12d 4171 | . . 3 ⊢ (𝜑 → (dom {〈𝐴, 𝐵〉} ∩ ran {〈𝐶, 𝐷〉}) = ({𝐴} ∩ {𝐷})) |
| 8 | cosnopne.1 | . . . 4 ⊢ (𝜑 → 𝐴 ≠ 𝐷) | |
| 9 | disjsn2 4665 | . . . 4 ⊢ (𝐴 ≠ 𝐷 → ({𝐴} ∩ {𝐷}) = ∅) | |
| 10 | 8, 9 | syl 17 | . . 3 ⊢ (𝜑 → ({𝐴} ∩ {𝐷}) = ∅) |
| 11 | 7, 10 | eqtrd 2766 | . 2 ⊢ (𝜑 → (dom {〈𝐴, 𝐵〉} ∩ ran {〈𝐶, 𝐷〉}) = ∅) |
| 12 | 11 | coemptyd 14883 | 1 ⊢ (𝜑 → ({〈𝐴, 𝐵〉} ∘ {〈𝐶, 𝐷〉}) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∩ cin 3901 ∅c0 4283 {csn 4576 〈cop 4582 dom cdm 5616 ran crn 5617 ∘ ccom 5620 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 |
| This theorem is referenced by: coprprop 32675 |
| Copyright terms: Public domain | W3C validator |