Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cosnopne | Structured version Visualization version GIF version |
Description: Composition of two ordered pair singletons with non-matching domain and range. (Contributed by Thierry Arnoux, 24-Sep-2023.) |
Ref | Expression |
---|---|
cosnopne.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
cosnopne.c | ⊢ (𝜑 → 𝐶 ∈ 𝑋) |
cosnopne.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐷) |
Ref | Expression |
---|---|
cosnopne | ⊢ (𝜑 → ({〈𝐴, 𝐵〉} ∘ {〈𝐶, 𝐷〉}) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cosnopne.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
2 | dmsnopg 6116 | . . . . 5 ⊢ (𝐵 ∈ 𝑊 → dom {〈𝐴, 𝐵〉} = {𝐴}) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝜑 → dom {〈𝐴, 𝐵〉} = {𝐴}) |
4 | cosnopne.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ 𝑋) | |
5 | rnsnopg 6124 | . . . . 5 ⊢ (𝐶 ∈ 𝑋 → ran {〈𝐶, 𝐷〉} = {𝐷}) | |
6 | 4, 5 | syl 17 | . . . 4 ⊢ (𝜑 → ran {〈𝐶, 𝐷〉} = {𝐷}) |
7 | 3, 6 | ineq12d 4147 | . . 3 ⊢ (𝜑 → (dom {〈𝐴, 𝐵〉} ∩ ran {〈𝐶, 𝐷〉}) = ({𝐴} ∩ {𝐷})) |
8 | cosnopne.1 | . . . 4 ⊢ (𝜑 → 𝐴 ≠ 𝐷) | |
9 | disjsn2 4648 | . . . 4 ⊢ (𝐴 ≠ 𝐷 → ({𝐴} ∩ {𝐷}) = ∅) | |
10 | 8, 9 | syl 17 | . . 3 ⊢ (𝜑 → ({𝐴} ∩ {𝐷}) = ∅) |
11 | 7, 10 | eqtrd 2778 | . 2 ⊢ (𝜑 → (dom {〈𝐴, 𝐵〉} ∩ ran {〈𝐶, 𝐷〉}) = ∅) |
12 | 11 | coemptyd 14690 | 1 ⊢ (𝜑 → ({〈𝐴, 𝐵〉} ∘ {〈𝐶, 𝐷〉}) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∩ cin 3886 ∅c0 4256 {csn 4561 〈cop 4567 dom cdm 5589 ran crn 5590 ∘ ccom 5593 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 |
This theorem is referenced by: coprprop 31032 |
Copyright terms: Public domain | W3C validator |