Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cosnopne Structured version   Visualization version   GIF version

Theorem cosnopne 30929
Description: Composition of two ordered pair singletons with non-matching domain and range. (Contributed by Thierry Arnoux, 24-Sep-2023.)
Hypotheses
Ref Expression
cosnopne.b (𝜑𝐵𝑊)
cosnopne.c (𝜑𝐶𝑋)
cosnopne.1 (𝜑𝐴𝐷)
Assertion
Ref Expression
cosnopne (𝜑 → ({⟨𝐴, 𝐵⟩} ∘ {⟨𝐶, 𝐷⟩}) = ∅)

Proof of Theorem cosnopne
StepHypRef Expression
1 cosnopne.b . . . . 5 (𝜑𝐵𝑊)
2 dmsnopg 6105 . . . . 5 (𝐵𝑊 → dom {⟨𝐴, 𝐵⟩} = {𝐴})
31, 2syl 17 . . . 4 (𝜑 → dom {⟨𝐴, 𝐵⟩} = {𝐴})
4 cosnopne.c . . . . 5 (𝜑𝐶𝑋)
5 rnsnopg 6113 . . . . 5 (𝐶𝑋 → ran {⟨𝐶, 𝐷⟩} = {𝐷})
64, 5syl 17 . . . 4 (𝜑 → ran {⟨𝐶, 𝐷⟩} = {𝐷})
73, 6ineq12d 4144 . . 3 (𝜑 → (dom {⟨𝐴, 𝐵⟩} ∩ ran {⟨𝐶, 𝐷⟩}) = ({𝐴} ∩ {𝐷}))
8 cosnopne.1 . . . 4 (𝜑𝐴𝐷)
9 disjsn2 4645 . . . 4 (𝐴𝐷 → ({𝐴} ∩ {𝐷}) = ∅)
108, 9syl 17 . . 3 (𝜑 → ({𝐴} ∩ {𝐷}) = ∅)
117, 10eqtrd 2778 . 2 (𝜑 → (dom {⟨𝐴, 𝐵⟩} ∩ ran {⟨𝐶, 𝐷⟩}) = ∅)
1211coemptyd 14618 1 (𝜑 → ({⟨𝐴, 𝐵⟩} ∘ {⟨𝐶, 𝐷⟩}) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  wne 2942  cin 3882  c0 4253  {csn 4558  cop 4564  dom cdm 5580  ran crn 5581  ccom 5584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592
This theorem is referenced by:  coprprop  30934
  Copyright terms: Public domain W3C validator