| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cosnopne | Structured version Visualization version GIF version | ||
| Description: Composition of two ordered pair singletons with non-matching domain and range. (Contributed by Thierry Arnoux, 24-Sep-2023.) |
| Ref | Expression |
|---|---|
| cosnopne.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| cosnopne.c | ⊢ (𝜑 → 𝐶 ∈ 𝑋) |
| cosnopne.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐷) |
| Ref | Expression |
|---|---|
| cosnopne | ⊢ (𝜑 → ({〈𝐴, 𝐵〉} ∘ {〈𝐶, 𝐷〉}) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cosnopne.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 2 | dmsnopg 6200 | . . . . 5 ⊢ (𝐵 ∈ 𝑊 → dom {〈𝐴, 𝐵〉} = {𝐴}) | |
| 3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝜑 → dom {〈𝐴, 𝐵〉} = {𝐴}) |
| 4 | cosnopne.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ 𝑋) | |
| 5 | rnsnopg 6208 | . . . . 5 ⊢ (𝐶 ∈ 𝑋 → ran {〈𝐶, 𝐷〉} = {𝐷}) | |
| 6 | 4, 5 | syl 17 | . . . 4 ⊢ (𝜑 → ran {〈𝐶, 𝐷〉} = {𝐷}) |
| 7 | 3, 6 | ineq12d 4194 | . . 3 ⊢ (𝜑 → (dom {〈𝐴, 𝐵〉} ∩ ran {〈𝐶, 𝐷〉}) = ({𝐴} ∩ {𝐷})) |
| 8 | cosnopne.1 | . . . 4 ⊢ (𝜑 → 𝐴 ≠ 𝐷) | |
| 9 | disjsn2 4686 | . . . 4 ⊢ (𝐴 ≠ 𝐷 → ({𝐴} ∩ {𝐷}) = ∅) | |
| 10 | 8, 9 | syl 17 | . . 3 ⊢ (𝜑 → ({𝐴} ∩ {𝐷}) = ∅) |
| 11 | 7, 10 | eqtrd 2769 | . 2 ⊢ (𝜑 → (dom {〈𝐴, 𝐵〉} ∩ ran {〈𝐶, 𝐷〉}) = ∅) |
| 12 | 11 | coemptyd 14987 | 1 ⊢ (𝜑 → ({〈𝐴, 𝐵〉} ∘ {〈𝐶, 𝐷〉}) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 ∩ cin 3923 ∅c0 4306 {csn 4599 〈cop 4605 dom cdm 5652 ran crn 5653 ∘ ccom 5656 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5264 ax-nul 5274 ax-pr 5400 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3414 df-v 3459 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-sn 4600 df-pr 4602 df-op 4606 df-br 5118 df-opab 5180 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 |
| This theorem is referenced by: coprprop 32610 |
| Copyright terms: Public domain | W3C validator |